浙江农业学报 ›› 2018, Vol. 30 ›› Issue (10): 1790-1797.DOI: 10.3969/j.issn.1004-1524.2018.10.24

• 生物系统工程 • 上一篇    下一篇

基于性能改善深度信念网络的棉花病虫害预测方法

王献锋1, 丁军1, 朱义海2   

  1. 1.西京学院 理学院, 陕西 西安 710123;
    2.Tableau Software, Seattle 98103, USA
  • 收稿日期:2018-01-11 出版日期:2018-10-25 发布日期:2018-11-02
  • 作者简介:王献锋(1965—),男,陕西西安人,博士,副教授,研究方向为机器学习及其在植物病虫害识别与预测中的应用。E-mail:wangxianfeng@xijing.edu.cn
  • 基金资助:
    国家自然科学基金(61473237)

A forecasting method of cotton diseases and insect pests based on deep belief network with improved performance

WANG Xianfeng1, DING Jun1, ZHU Yihai2   

  1. 1. Department of Science, Xijing University, Xi'an 710123, China;
    2. Tableau Software, Seattle 98103, USA
  • Received:2018-01-11 Online:2018-10-25 Published:2018-11-02

摘要: 针对与棉花病虫害发生相关的环境信息数据具有大容量、多样性的特点,提出一种基于环境信息和改进深度信念网络(MDBN)相结合的棉花病虫害预测模型。该模型由3层限制玻尔兹曼机(RBM)网络和1个BP网络组成。利用MDBN提取与病虫害发生相关的特征变量,并利用BP神经网络进行病虫害预测。该方法的特点是将自适应学习率引入到DBN的无监督预训练阶段,并从训练数据批次的选择、参数调优的迭代周期以及在线学习训练等多个方面对MDBN的性能进行优化和改善,从而能够利用MDBN充分挖掘数据集中病虫害预测的特征向量,提高网络的预测精度。对实际棉花病虫害的预测结果表明,MDBN比传统预测模型具有更高的预测精度,是一种有效的农作物病虫害预测方法。

关键词: 病虫害预测, 棉花环境信息, 受限玻尔兹曼机, 改进深度信念网络

Abstract: As for the large capacity and diversity of the environmental information of cotton growth related to the occurrence of diseases and insect pests, a prediction method of cotton diseases and pests was proposed by combining the environmental information and improved depth belief network (MDBN). MDBN consisted of a three level restricted Boltzmann machine (RBM) network and a BP neural network (BPNN). In the method, MDBN was used to extract the characteristic variables reflecting the occurrence of pests and diseases, and BPNN was utilized to predict the cotton pests and diseases. The characteristic of MDBN was that the adaptive learning rate was introduced into the unsupervised training stage of MDBN, and the performance of MDBN was optimized by the selection of training data batches, the iteration cycle of parameter tuning and online learning and training, so that MDBN could fully extract the information features from the dataset to improve the network precondition rate. The prediction results on the actual environmental information dataset of the cotton diseases and insects showed that the proposed method was effective for predicting crop pests and diseases.

Key words: disease and pest forecasting, cotton environmental information, restricted Boltzmann machine (RBM), modified deep belief network (MDBN)

中图分类号: