浙江农业学报 ›› 2024, Vol. 36 ›› Issue (12): 2705-2718.DOI: 10.3969/j.issn.1004-1524.20231310
赵邯1,2(), 项可心1,2, 刘春菊2, 李斌1,*(
), 李大婧2, 李越1, 牛丽影2, 于蕊2
收稿日期:
2023-11-22
出版日期:
2024-12-25
发布日期:
2024-12-27
作者简介:
赵邯(1997—),女,吉林白山人,硕士,研究方向为果蔬加工与品质调控。E-mail:zhaohan19970529@163.com
通讯作者:
*李斌,E-mail:libinsyau@163.com
基金资助:
ZHAO Han1,2(), XIANG Kexin1,2, LIU Chunju2, LI Bin1,*(
), LI Dajing2, LI Yue1, NIU Liying2, YU Rui2
Received:
2023-11-22
Online:
2024-12-25
Published:
2024-12-27
摘要:
为探究桃果实化学组分、微观结构与质地之间的关系,对4种新鲜桃果实的化学组分、细胞壁组分、微观结构、孔隙度、力学特性和硬度进行主成分与相关性分析。结果表明: 水蜜桃半纤维素(HC)、纤维素(CEL)含量较高,细胞截面积较大,形态结构不规则;蟠桃水分含量最高,可溶性糖含量低,水溶性果胶(WSP)含量最高,细胞壁较薄,弹性模量与硬度较低;油桃可溶性糖、碱溶性果胶(NSP)含量较高,细胞较大,形态完整,排列规则,孔隙度与硬度较高;黄桃螯合性果胶(CSP)含量高,细胞小且排列紧密,细胞壁较厚,孔隙度较低,弹性模量较高。经统计分析发现,细胞壁厚度、细胞壁物质(CWM)含量、CSP含量、脂肪含量、蛋白质含量与力学特性(屈服力、屈服能、最大应力)呈极显著(P<0.01)正相关;硬度与固形物含量、蛋白质含量、可溶性糖含量、CSP含量、NSP含量、细胞壁厚度、部分力学特性呈极显著(P<0.01)正相关,硬度与体积密度、水分含量呈显著(P<0.05)负相关;可溶性糖含量与体积密度呈显著(P<0.05)负相关,与NSP含量、细胞圆度、硬度呈极显著(P<0.01)正相关;孔隙度与微观结构(细胞截面积、细胞周长、当量直径)呈极显著(P<0.01)正相关。综上所述,细胞微观结构影响桃果实的孔隙度和颗粒密度,可溶性糖含量、果胶含量等化学组分对力学特性有所影响。
中图分类号:
赵邯, 项可心, 刘春菊, 李斌, 李大婧, 李越, 牛丽影, 于蕊. 不同品种桃果实化学组分、微观结构与质地的关系[J]. 浙江农业学报, 2024, 36(12): 2705-2718.
ZHAO Han, XIANG Kexin, LIU Chunju, LI Bin, LI Dajing, LI Yue, NIU Liying, YU Rui. Relationship between chemical composition, microstructure and texture of different varieties of peach fruits[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2705-2718.
样品 Sample | 水分含量 Moisture content | 总固形物含量 Total solid content | 脂肪含量 Fat content | 蛋白质含量 Protein content |
---|---|---|---|---|
水蜜桃Honey peach | 897.67±3.21 ab | 102.33±3.21 bc | 2.53±0.22 ab | 4.67±0.14 c |
蟠桃Flat peach | 907.61±7.67 a | 92.39±7.67 c | 2.08±0.20 b | 4.33±0.21 d |
油桃Nectarine | 866.63±8.42 c | 133.37±8.42 a | 2.72±0.22 a | 6.00±0.10 a |
黄桃Yellow peach | 886.79±3.80 b | 113.21±3.80 b | 2.89±0.31 a | 5.78±0.14 b |
表1 不同品种桃果实的化学组分含量
Table 1 The chemical composition content of different varieties of peach fruits mg·g-1
样品 Sample | 水分含量 Moisture content | 总固形物含量 Total solid content | 脂肪含量 Fat content | 蛋白质含量 Protein content |
---|---|---|---|---|
水蜜桃Honey peach | 897.67±3.21 ab | 102.33±3.21 bc | 2.53±0.22 ab | 4.67±0.14 c |
蟠桃Flat peach | 907.61±7.67 a | 92.39±7.67 c | 2.08±0.20 b | 4.33±0.21 d |
油桃Nectarine | 866.63±8.42 c | 133.37±8.42 a | 2.72±0.22 a | 6.00±0.10 a |
黄桃Yellow peach | 886.79±3.80 b | 113.21±3.80 b | 2.89±0.31 a | 5.78±0.14 b |
样品 Sample | 果糖含量 Fructose content | 葡萄糖含量 Glucose content | 蔗糖含量 Sucrose content | 总糖含量 Total sugar content |
---|---|---|---|---|
水蜜桃Honey peach | 7.69±0.30 b | 8.28±0.35 d | 42.52±0.35 b | 58.49±0.92 c |
蟠桃Flat peach | 7.89±1.13 b | 8.91±0.10 c | 40.85±3.97 b | 57.65±3.90 c |
油桃Nectarine | 10.28±1.52 a | 15.03±0.40 a | 54.52±3.63 a | 79.83±2.52 a |
黄桃Yellow peach | 8.20±0.38 b | 10.35±0.46 b | 44.85±1.32 b | 63.40±1.49 b |
表2 不同品种桃果实的可溶性糖含量
Table 2 Soluble sugar content of different varieties of peach fruits mg·g-1
样品 Sample | 果糖含量 Fructose content | 葡萄糖含量 Glucose content | 蔗糖含量 Sucrose content | 总糖含量 Total sugar content |
---|---|---|---|---|
水蜜桃Honey peach | 7.69±0.30 b | 8.28±0.35 d | 42.52±0.35 b | 58.49±0.92 c |
蟠桃Flat peach | 7.89±1.13 b | 8.91±0.10 c | 40.85±3.97 b | 57.65±3.90 c |
油桃Nectarine | 10.28±1.52 a | 15.03±0.40 a | 54.52±3.63 a | 79.83±2.52 a |
黄桃Yellow peach | 8.20±0.38 b | 10.35±0.46 b | 44.85±1.32 b | 63.40±1.49 b |
样品 | CWM | WSP | CSP | NSP | TP | HC | CEL | TC |
---|---|---|---|---|---|---|---|---|
Sample | ||||||||
水蜜桃 | 8.56±0.05b | 1.69±0.08 b | 0.92±0.05 c | 1.48±0.05 d | 4.09±0.02 d | 1.53±0.07 a | 2.06±0.08 a | 3.59±0.02 a |
Honey peach | ||||||||
蟠桃Flat peach | 8.37±0.06 c | 2.01±0.05 a | 0.92±0.01 c | 1.70±0.03 c | 4.63±0.02 c | 1.09±0.03 bc | 1.50±0.02 d | 2.59±0.02 c |
油桃Nectarine | 8.65±0.11 b | 1.69±0.43 b | 1.07±0.05 b | 2.07±0.03 a | 4.83±0.01 b | 1.16±0.03 bc | 1.87±0.02 b | 3.03±0.09 b |
黄桃Yellow peach | 8.92±0.01 a | 1.96±0.38 a | 1.16±0.02 a | 1.88±0.03 b | 5.00±0.05 a | 1.01±0.03 c | 1.63±0.02 c | 2.64±0.05 c |
表3 不同品种桃果实的细胞壁与细胞壁组分含量
Table 3 Cell wall and cell wall component contents of different varieties of peach fruits mg·g-1
样品 | CWM | WSP | CSP | NSP | TP | HC | CEL | TC |
---|---|---|---|---|---|---|---|---|
Sample | ||||||||
水蜜桃 | 8.56±0.05b | 1.69±0.08 b | 0.92±0.05 c | 1.48±0.05 d | 4.09±0.02 d | 1.53±0.07 a | 2.06±0.08 a | 3.59±0.02 a |
Honey peach | ||||||||
蟠桃Flat peach | 8.37±0.06 c | 2.01±0.05 a | 0.92±0.01 c | 1.70±0.03 c | 4.63±0.02 c | 1.09±0.03 bc | 1.50±0.02 d | 2.59±0.02 c |
油桃Nectarine | 8.65±0.11 b | 1.69±0.43 b | 1.07±0.05 b | 2.07±0.03 a | 4.83±0.01 b | 1.16±0.03 bc | 1.87±0.02 b | 3.03±0.09 b |
黄桃Yellow peach | 8.92±0.01 a | 1.96±0.38 a | 1.16±0.02 a | 1.88±0.03 b | 5.00±0.05 a | 1.01±0.03 c | 1.63±0.02 c | 2.64±0.05 c |
图1 不同品种桃果实的过碘酸雪夫染色结果 a,水蜜桃;b,蟠桃;c,油桃;d,黄桃。放大倍数6.5×,标尺=200 μm。
Fig.1 Periodic acid-schiff (PAS) staining results of different varieties of peach fruits a, Honey peach; b, Flat peach; c, Nectarine; d, Yellow peach. Magnification 6.5×, scale=200 μm.
样品 Sample | 细胞截面面积 Cell cross section area/μm2 | 细胞截面周长 Cell cross section perimeter/μm | 当量直径 Cell equivalent diameter/μm | 细胞圆度 Cell roundness | 分形维数 Fractal dimension |
---|---|---|---|---|---|
水蜜桃Honey peach | 12 067.85±108.18 a | 445.36±11.63 a | 123.99±0.56 a | 0.77±0.04 b | 1.93±0.01 a |
蟠桃Flat peach | 9 434.66±301.51 b | 386.82±8.74 c | 109.62±1.76 b | 0.79±0.04 b | 1.94±0.01 a |
油桃Nectarine | 12 339.77±199.98 a | 425.41±5.64 b | 125.38±1.02 a | 0.86±0.11 a | 1.90±0.01 b |
黄桃Yellow peach | 4 462.90±58.37 c | 263.81±6.96 d | 7 5.40±0.49 c | 0.74±0.03 b | 1.94±0.01 a |
表4 不同品种桃果实的细胞结构差异
Table 4 Cell structure parameters of different varieties of peach fruits
样品 Sample | 细胞截面面积 Cell cross section area/μm2 | 细胞截面周长 Cell cross section perimeter/μm | 当量直径 Cell equivalent diameter/μm | 细胞圆度 Cell roundness | 分形维数 Fractal dimension |
---|---|---|---|---|---|
水蜜桃Honey peach | 12 067.85±108.18 a | 445.36±11.63 a | 123.99±0.56 a | 0.77±0.04 b | 1.93±0.01 a |
蟠桃Flat peach | 9 434.66±301.51 b | 386.82±8.74 c | 109.62±1.76 b | 0.79±0.04 b | 1.94±0.01 a |
油桃Nectarine | 12 339.77±199.98 a | 425.41±5.64 b | 125.38±1.02 a | 0.86±0.11 a | 1.90±0.01 b |
黄桃Yellow peach | 4 462.90±58.37 c | 263.81±6.96 d | 7 5.40±0.49 c | 0.74±0.03 b | 1.94±0.01 a |
图3 不同品种桃果实的超微结构图 a,水蜜桃;b,蟠桃;c,油桃;d,黄桃。CW,细胞壁;CM,细胞膜;ML,中胶层;CC,细胞内容物;M,线粒体。放大倍数5×,标尺=2 μm.
Fig.3 Ultrastructure diagram of different varieties of peach fruits a, Honey peach; b, Flat peach; c, Nectarine; d, Yellow peach. CW, Cell wall; CM, Cell membrane; ML, Middle lamella; CC, Cell content; M, Mitochondrion. Magnification 5×, scale=200 μm.
图4 不同品种桃果实的细胞壁厚度 柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.4 Cell wall thickness of different varieties of peach fruits Data marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
样品 Sample | 弹性模量 Elastic modulus/MPa | 屈服力 Yield force/N | 屈服能 Yield energy/J | 最大应力 Maximum stress/MPa | 硬度 Hardness/g |
---|---|---|---|---|---|
水蜜桃Honey peach | 6.44±0.71 a | 52.64±12.64 b | 49.52±11.38 c | 0.09±0.02 a | 5 590.54±329.25 c |
蟠桃Flat peach | 5.92±0.80 b | 51.58±16.15 b | 50.12±16.86 c | 0.09±0.03 a | 5 353.25±402.34 c |
油桃Nectarine | 6.78±0.65 a | 65.18±5.94 a | 61.24±5.24 b | 0.11±0.01 a | 7 589.45±521.90 a |
黄桃Yellow peach | 6.80±0.12 a | 67.71±3.34 a | 65.13±2.71 a | 0.12±0.01 a | 6 989.11±511.10 b |
表5 不同品种桃果实力学特性和硬度之间的差异
Table 5 Differences between mechanical properties and hardness of different varieties of peach fruits
样品 Sample | 弹性模量 Elastic modulus/MPa | 屈服力 Yield force/N | 屈服能 Yield energy/J | 最大应力 Maximum stress/MPa | 硬度 Hardness/g |
---|---|---|---|---|---|
水蜜桃Honey peach | 6.44±0.71 a | 52.64±12.64 b | 49.52±11.38 c | 0.09±0.02 a | 5 590.54±329.25 c |
蟠桃Flat peach | 5.92±0.80 b | 51.58±16.15 b | 50.12±16.86 c | 0.09±0.03 a | 5 353.25±402.34 c |
油桃Nectarine | 6.78±0.65 a | 65.18±5.94 a | 61.24±5.24 b | 0.11±0.01 a | 7 589.45±521.90 a |
黄桃Yellow peach | 6.80±0.12 a | 67.71±3.34 a | 65.13±2.71 a | 0.12±0.01 a | 6 989.11±511.10 b |
图6 相关性分析 **表示在0.01水平(双侧)上显著相关;*表示在0.05 水平(双侧)上显著相关。
Fig.6 Correlation analysis **, Significant correlation at 0.01 level (both sides); *, Significant correlation at 0.05 level (both sides).
[1] | 俞明亮, 马瑞娟, 沈志军, 等. 中国桃种质资源研究进展[J]. 江苏农业学报, 2010, 26(6):1418-1423. |
YU M L, MA R J, SHEN Z J, et al. Research advances in peach germplasm in China[J]. Jiangsu Journal of Agricultural Sciences, 2010, 26(6):1418-1423. (in Chinese with English abstract) | |
[2] | 毕金峰, 吕健, 刘璇, 等. 国内外桃加工科技与产业现状及展望[J]. 食品科学技术学报, 2019, 37(5):7-15. |
BI J F, LÜ J, LIU X, et al. Research on techniques and industry situation and prospect for peach processing in domestic and aboard[J]. Journal of Food Science and Technology, 2019, 37(5):7-15. (in Chinese with English abstract) | |
[3] | 许建兰, 马瑞娟, 俞明亮, 等. ‘银河’蟠桃果实性状遗传评价及育种利用探讨[J]. 果树学报, 2014, 31(5):769-775. |
XU J L, MA R J, YU M L, et al. Genetic evaluation of fruit characteristics of flat peach variety ‘Galaxy’ and its breeding value[J]. Journal of Fruit Science, 2014, 31(5):769-775. (in Chinese with English abstract) | |
[4] | 荣传胜, 姜永峰, 陆玉卓, 等. 不同采收期对油桃果实采后贮藏品质的影响[J]. 中国果树, 2023(9):86-89. |
RONG C S, JIANG Y F, LU Y Z, et al. Effect of different harvesting periods on the postharvest storage quality of nectarine fruit[J]. China Fruits, 2023(9):86-89. (in Chinese with English abstract) | |
[5] | 李思纯, 杜雅珉, 李书悦, 等. 外源褪黑素处理对油桃采后品质的影响[J]. 中国果菜, 2021, 41(5):50-56. |
LI S C, DU Y M, LI S Y, et al. Effects of exogenous melatonin on postharvest quality of nectarines[J]. China Fruit & Vegetable, 2021, 41(5):50-56. (in Chinese with English abstract) | |
[6] | WANG J, MUJUMDAR A S, WANG H, et al. Effect of drying method and cultivar on sensory attributes, textural profiles, and volatile characteristics of grape raisins[J]. Drying Technology, 2021, 39(4):495-506. |
[7] | FERRANDO M, SPIESS W E L. Cellular response of plant tissue during the osmotic treatment with sucrose, maltose, and trehalose solutions[J]. Journal of Food Engineering, 2001, 49(2/3):115-127. |
[8] | 李卓豪, 毕金峰, 易建勇, 等. 不同小分子糖渗透草莓的传质动力学及对真空冷冻干燥草莓品质的影响[J]. 食品科学, 2022, 43(17):95-104. |
LI Z H, BI J F, YI J Y, et al. Mass transfer kinetics of osmotic dehydration of strawberries with various small-molecule sugars and their effect on the quality of freeze-dried strawberries[J]. Food Science, 2022, 43(17):95-104. (in Chinese with English abstract) | |
[9] | ZHANG Y, RYU G H. Effects of pea protein content and extrusion types on physicochemical properties and texture characteristic of meat analogs[J]. JSFA Reports, 2023, 3(1):30-40. |
[10] | 张崇彬. 微波处理对大米储藏品质及微观结构的稳定性影响研究[D]. 南京: 南京财经大学, 2023. |
ZHANG C B. Study on the effect of microwave treatment on the stability of rice storage quality and microstructure[D]. Nanjing: Nanjing University of Finance & Economics, 2023. (in Chinese with English abstract) | |
[11] | FENG S H, BI J F, YI J Y, et al. Cell wall polysaccharides and mono-/disaccharides as chemical determinants for the texture and hygroscopicity of freeze-dried fruit and vegetable cubes[J]. Food Chemistry, 2022, 395:133574. |
[12] | BLAKER K M, OLMSTEAD J W. Cell wall composition of the skin and flesh tissue of crisp and standard texture southern highbush blueberry genotypes[J]. Journal of Berry Research, 2015, 5(1):9-15. |
[13] | 武新慧, 郭玉明, 冯慧敏. 高压脉冲电场预处理对果蔬动态黏弹特性的影响[J]. 农业工程学报, 2016, 32(18):247-254. |
WU X H, GUO Y M, FENG H M. Effect of high pulsed electric field pretreatment on dynamic viscoelasticity of fruits and vegetables[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18):247-254. (in Chinese with English abstract) | |
[14] | 田青兰, 张英俊, 刘洁云, 等. 西番莲果皮质构特性和显微结构特征分析[J]. 果树学报, 2022, 39(12):2365-2375. |
TIAN Q L, ZHANG Y J, LIU J Y, et al. Analysis of texture characteristics and microstructure of passion fruit pericarp[J]. Journal of Fruit Science, 2022, 39(12):2365-2375. (in Chinese with English abstract) | |
[15] | 李汴生, 苏芳萍, 朱悦夫, 等. 超高压处理对不同果蔬结构和性质的影响[J]. 高压物理学报, 2018, 32(3):152-162. |
LI B S, SU F P, ZHU Y F, et al. Effect of high pressure processing on texture and quality of fruits and vegetables[J]. Chinese Journal of High Pressure Physics, 2018, 32(3):152-162. (in Chinese with English abstract) | |
[16] | 彭勇, 陈义伦, 王庆国, 等. 桃品种间质地、水分及细胞壁组分的比较[J]. 西北农业学报, 2019, 28(11):1836-1844. |
PENG Y, CHEN Y L, WANG Q G, et al. Comparative study on texture, water status and cell wall components of peach cultivars[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(11):1836-1844. (in Chinese with English abstract) | |
[17] | ZIELINSKA M, SADOWSKI P, BŁASZCZAK W. Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.)[J]. LWT-Food Science and Technology, 2015, 62(1):555-563. |
[18] | 黄丽萍, 张倩茹, 尹蓉, 等. 不同品种桃果实糖、酸、VC含量分析[J]. 农学学报, 2017, 7(10):51-55. |
HUANG L P, ZHANG Q R, YIN R, et al. Content analysis of sugar, acid and vc in fruits of different peach varieties[J]. Journal of Agriculture, 2017, 7(10):51-55. (in Chinese with English abstract) | |
[19] | 陈亚敏. 核果类果实采后细胞壁多糖微观结构及降解模式的研究[D]. 郑州: 河南工业大学, 2013. |
CHEN Y M. Study on cell wall polysaccharide microstructure and degradation mode of postharvest drupe fruits[D]. Zhengzhou: Henan University of Technology, 2013. (in Chinese with English abstract) | |
[20] | 肖敏, 易建勇, 毕金峰, 等. 不同干燥方式对苹果片质构的影响及其与果胶性质的关系[J]. 现代食品科技, 2017, 33(7):157-162. |
XIAO M, YI J Y, BI J F, et al. Influence of different dehydration processes on the texture and pectin characteristics of apple chips[J]. Modern Food Science and Technology, 2017, 33(7):157-162. (in Chinese with English abstract) | |
[21] | VAN BUGGENHOUT S, SILA D N, DUVETTER T, et al. Pectins in processed fruits and vegetables:part Ⅲ:texture engineering[J]. Comprehensive Reviews in Food Science and Food Safety, 2009, 8(2):105-117. |
[22] | JARVIS M C, BRIGGS S P H, KNOX J P. Intercellular adhesion and cell separation in plants[J]. Plant, Cell & Environment, 2003, 26(7):977-989. |
[23] | 辛颖, 陈复生, 杨宏顺. 番茄中碱溶性果胶的含量和纳米结构的研究[J]. 食品工业科技, 2010, 31(5):104-106. |
XIN Y, CHEN F S, YANG H S. Study on contents and nanostructures of sodium carbonate-soluble pectin in tomatoes[J]. Science and Technology of Food Industry, 2010, 31(5):104-106. (in Chinese with English abstract) | |
[24] | NOWICKA P, WOJDYŁO A, LASKOWSKI P. Principal component analysis (PCA) of physicochemical compounds’ content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC[J]. European Food Research and Technology, 2019, 245(4):929-938. |
[25] | ZATYLNY A M, ZIEHL W D, ST-PIERRE R G. Physicochemical properties of fruit of chokecherry (Prunus virginiana L.), highbush cranberry (Viburnum trilobum Marsh.), and black currant (Ribes nigrum L.) cultivars grown in Saskatchewan[J]. Canadian Journal of Plant Science, 2005, 85(2):425-429. |
[26] | 陈丹, 郑炯, 张甫生, 等. 超高压及热处理后不同果块竹笋软罐头质地差异的研究[J]. 食品与发酵工业, 2024, 50(17):318-327. |
CHEN D, ZHENG J, ZHANG F S, et al. Texture difference of bamboo shoots in pouches with different fruit pieces after ultra-high pressure and thermal processing[J]. Food and Fermentation Industries, 2024, 50(17):318-327. (in Chinese with English abstract) | |
[27] | WANG H, WANG J, MUJUMDAR A S, et al. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa)[J]. Food Hydrocolloids, 2021, 118:106808. |
[28] | LIU G J, LIU Y Z, YAN S L, et al. Acetic acid reducing the softening of Lotus rhizome during heating by regulating the chelate-soluble polysaccharides[J]. Carbohydrate Polymers, 2020, 240:116209. |
[29] | VEYTSMAN B A, COSGROVE D J. A model of cell wall expansion based on thermodynamics of polymer networks[J]. Biophysical Journal, 1998, 75(5):2240-2250. |
[30] | RANGANATHAN K, SUBRAMANIAN V, SHANMUGAM N. Effect of thermal and nonthermal processing on textural quality of plant tissues[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(16):2665-2694. |
[31] | YAO J Q, YANG C, SHI K X, et al. Effect of pulp cell wall polysaccharides on Citrus fruit with different mastication traits[J]. Food Chemistry, 2023, 429:136740. |
[32] | 杨佳琪. 果蔬干燥过程微观组织结构变化的实验研究[D]. 西安: 陕西科技大学, 2020. |
YANG J Q. Experimental study on microstructure changes of fruits and vegetables during drying[D]. Xi’an: Shaanxi University of Science & Technology, 2020. (in Chinese with English abstract) | |
[33] | 韩占闯, 刘黎萍, 孙立军. 基于分形维数及考虑假集料影响的冷再生混合料级配控制方法[J]. 同济大学学报(自然科学版), 2023, 51(4):588-597. |
HAN Z C, LIU L P, SUN L J. Gradation control method of cold-recycled mixture considering influence of fractal dimensions and false aggregates[J]. Journal of Tongji University(Natural Science), 2023, 51(4):588-597. (in Chinese with English abstract) | |
[34] | 李树刚, 周雨璇, 胡彪, 等. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响[J]. 煤田地质与勘探, 2023, 51(2):127-136. |
LI S G, ZHOU Y X, HU B, et al. Structural characteristics of adsorption pores in low-rank coals and their effects on methane adsorption performance[J]. Coal Geology & Exploration, 2023, 51(2):127-136. (in Chinese with English abstract) | |
[35] | WU B G, MA Y J, GUO X Y, et al. Catalytic infrared blanching and drying of carrot slices with different thicknesses:effects on surface dynamic crusting and quality characterization[J]. Innovative Food Science & Emerging Technologies, 2023, 88:103444. |
[36] | 张鹏龙, 陈复生, 杨宏顺, 等. 果实成熟软化过程中细胞壁降解研究进展[J]. 食品科技, 2010, 35(11):62-66. |
ZHANG P L, CHEN F S, YANG H S, et al. Research advances on cell wall disassembly in fruit ripening and softening[J]. Food Science and Technology, 2010, 35(11):62-66. (in Chinese with English abstract) | |
[37] | 王艳婷. 植物细胞壁果胶结构特性与木质纤维素高效酶解产糖分子机理的研究[D]. 武汉: 华中农业大学, 2018. |
WANG Y T. Characterization of pectin features that distinctively affcet lignocellulose enzymatic saccharification in plants[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[38] | 吴芬, 邹叶茂, 龙松华. 植物细胞壁的研究进展[J]. 湖南农业科学, 2010(5):14-16. |
WU F, ZOU Y M, LONG S H. Progress of plant cell wall[J]. Hunan Agricultural Sciences, 2010(5):14-16. (in Chinese with English abstract) | |
[39] | 高原原, 曹洪波, 李东东, 等. 不同肉质桃果实成熟过程中细胞壁相关酶活性变化[J]. 北方园艺, 2023(9):15-22. |
GAO Y Y, CAO H B, LI D D, et al. Changes of cell wall related enzyme activities in different flesh peach fruits during ripening[J]. Northern Horticulture, 2023(9):15-22. (in Chinese with English abstract) | |
[40] | 陈星星, 张斌斌, 郭绍雷, 等. 不同肉质型桃果实成熟过程中乙烯生物合成相关基因的表达差异[J]. 南京农业大学学报, 2020, 43(4):637-644. |
CHEN X X, ZHANG B B, GUO S L, et al. The expression differences of genes related to ethylene biosynthesis in different fleshy peach fruits during ripening[J]. Journal of Nanjing Agricultural University, 2020, 43(4):637-644. (in Chinese with English abstract) | |
[41] | WANG D D, YEATS T H, ULUISIK S, et al. Fruit softening:revisiting the role of pectin[J]. Trends in Plant Science, 2018, 23(4):302-310. |
[42] | 彭健. 压差闪蒸干燥胡萝卜脆条质构品质形成机制研究[D]. 北京: 中国农业科学院, 2019. |
PENG J. Formation mechanism of texture and structural properties of instant controlled pressure drop (DIC) dried carrot chips[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract) | |
[43] | UMAÑA M, CALAHORRO M, EIM V, et al. Measurement of microstructural changes promoted by ultrasound application on plant materials with different porosity[J]. Ultrasonics Sonochemistry, 2022, 88:106087. |
[44] | 袁越锦, 韩思明, 徐英英, 等. 干燥方法对水蜜桃微观结构变化的影响[J]. 食品工业科技, 2022, 43(19):43-52. |
YUAN Y J, HAN S M, XU Y Y, et al. Effects of drying methods on microstructure of juicy peach[J]. Science and Technology of Food Industry, 2022, 43(19):43-52. (in Chinese with English abstract) | |
[45] | 杨佳. 温度对胡萝卜拉伸弹性模量的影响[J]. 食品安全导刊, 2022(20):89-91. |
YANG J. Effect of temperature on tensile elastic modulus of carrot[J]. China Food Safety Magazine, 2022(20):89-91. (in Chinese with English abstract) | |
[46] | 黄榜彪, 李晓, 黄秉章, 等. 造纸白泥烧结页岩多孔砖的抗压性能及弹性模量[J]. 科学技术与工程, 2017, 17(35):300-306. |
HUANG B B, LI X, HUANG B Z, et al. Compressive test of the hollow brick of papermaking white clay shale[J]. Science Technology and Engineering, 2017, 17(35):300-306. (in Chinese with English abstract) | |
[47] | DONG Y, ZHANG S Y, WANG Y. Compositional changes in cell wall polyuronides and enzyme activities associated with melting/mealy textural property during ripening following long-term storage of ‘Comice’ and ‘d’Anjou’ pears[J]. Postharvest Biology and Technology, 2018, 135:131-140. |
[48] | 杨银爱, 韩延超, 牛犇, 等. 不同成熟度莲子鲜食品质评价[J]. 食品科学, 2022, 43(15):44-51. |
YANG Y A, HAN Y C, NIU B, et al. Evaluation of the eating quality of fresh lotus seeds at different maturation stages[J]. Food Science, 2022, 43(15):44-51. (in Chinese with English abstract) | |
[49] | FAN X G, JIANG W B, GONG H S, et al. Cell wall polysaccharides degradation and ultrastructure modification of apricot during storage at a near freezing temperature[J]. Food Chemistry, 2019, 300:125194. |
[50] | XIE F, YUAN S Z, PAN H X, et al. Effect of yeast mannan treatments on ripening progress and modification of cell wall polysaccharides in tomato fruit[J]. Food Chemistry, 2017, 218:509-517. |
[51] | 李晨, 张秀玲, 李凤凤, 等. 五种小浆果抗氧化活性和相关营养物质的测定及主成分分析[J]. 食品与发酵工业, 2022, 48(14):226-234. |
LI C, ZHANG X L, LI F F, et al. Determination of antioxidant activity, nutrients and quality evaluation using principal component analysis of five kinds of small berries[J]. Food and Fermentation Industries, 2022, 48(14):226-234. (in Chinese with English abstract) | |
[52] | 张春岭, 刘慧, 刘杰超, 等. 基于主成分分析与聚类分析的中、早熟桃品种制汁品质评价[J]. 食品科学, 2019, 40(17):141-149. |
ZHANG C L, LIU H, LIU J C, et al. Evaluation of juice quality of mid-early ripening peach varieties based on principal component analysis and cluster analysis[J]. Food Science, 2019, 40(17):141-149. (in Chinese with English abstract) | |
[53] | WANG J, MUJUMDAR A S, DENG L Z, et al. High-humidity hot air impingement blanching alters texture, cell-wall polysaccharides, water status and distribution of seedless grape[J]. Carbohydrate Polymers, 2018, 194:9-17. |
[54] | ROIG-OLⅣER M, DOUTHE C, BOTA J, et al. Cell wall thickness and composition are related to photosynthesis in Antarctic mosses[J]. Physiologia Plantarum, 2021, 173(4):1914-1925. |
[55] | COSGROVE D J. Plant cell wall extensibility:connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes[J]. Journal of Experimental Botany, 2016, 67(2):463-476. |
[1] | 潘志洪, 温雪婷, 杨华, 吕文涛, 张俊杰, 肖英平. 番鸭肌肉氨基酸谱发育性变化研究[J]. 浙江农业学报, 2024, 36(9): 2010-2019. |
[2] | 程嘉瑜, 陈妙金, 李彤, 孙奇男, 张小斌, 赵懿滢, 朱怡航, 顾清. 基于改进Faster-RCNN网络的无人机遥感影像桃树检测[J]. 浙江农业学报, 2024, 36(8): 1909-1919. |
[3] | 高兰芸, 刘昊, 李爱, 张婷婷, 杨丽芳, 高英. NaCl对樱桃砧木组培生根、IAA原位分布及相关酶活性的影响[J]. 浙江农业学报, 2024, 36(6): 1300-1308. |
[4] | 傅童, 郑航, 薛向磊, 叶云翔, 俞国红, 葛青. 茶树嫩梢形态与力学特性试验研究[J]. 浙江农业学报, 2024, 36(6): 1425-1435. |
[5] | 薛贤滨, 贾琼, 陈峥峰, 黎瑞源, 陈庆富, 石桃雄. 基于主成分分析的苦荞麦重组自交系农艺性状综合评价[J]. 浙江农业学报, 2024, 36(4): 748-759. |
[6] | 张翰生, 昌秦湘, 康建忠, 梁宗锁. 核桃的营养价值及其开发利用研究进展[J]. 浙江农业学报, 2024, 36(4): 905-919. |
[7] | 刘玉红, 金检生, 陈丽萍, 孙彩霞. 黄桃中4种农药残留动态与风险评估[J]. 浙江农业学报, 2024, 36(2): 432-440. |
[8] | 高憬, 陆玲鸿, 古咸彬, 范飞, 宋根华, 张慧琴. 猕猴桃AcWRKY94基因的克隆及其在盐胁迫下的功能分析[J]. 浙江农业学报, 2024, 36(11): 2501-2509. |
[9] | 赵凌吉, 廖香娇, 刘德春, 胡威, 匡柳青, 宋杰, 易明亮, 刘勇, 杨莉. 桃溪蜜柚果实贮藏期有机酸含量变化及相关基因表达分析[J]. 浙江农业学报, 2024, 36(11): 2510-2520. |
[10] | 林圣博, 王邦追, 吴美玲, 李亚健, 王国强, 唐忠. 香葱葱白机械载荷损伤力学特性表征[J]. 浙江农业学报, 2024, 36(11): 2627-2634. |
[11] | 刘博华, 张庆霞, 祁亮, 吴玉霞, 王延秀. 甜樱桃PP2C家族全基因组鉴定与表达分析[J]. 浙江农业学报, 2024, 36(10): 2204-2218. |
[12] | 张小斌, 朱怡航, 赵懿滢, 陈妙金, 孙奇男, 谢宝良, 冯绍然, 顾清. 基于可见/近红外光谱的水蜜桃糖度无损检测方法优化研究[J]. 浙江农业学报, 2023, 35(7): 1617-1625. |
[13] | 叶雷, 张波, 杨学圳, 李小林, 张小平, 谭伟. 竹屑替代木屑栽培毛木耳的可行性及其品质综合评价[J]. 浙江农业学报, 2023, 35(6): 1416-1426. |
[14] | 刘丽敏, 任萍, 陈建能, 张雪恒. 基于作物力学特性的甘蔗收割机参数优化与田间试验[J]. 浙江农业学报, 2023, 35(5): 1187-1194. |
[15] | 张红梅, 王保君, 沈亚强, 程旺大. 浙北地区不同粒形优质粳稻产量和品质对播期调控的响应[J]. 浙江农业学报, 2023, 35(12): 2751-2762. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||