浙江农业学报 ›› 2025, Vol. 37 ›› Issue (9): 1860-1871.DOI: 10.3969/j.issn.1004-1524.20240563
杨春1(
), 梁思慧1, 汪安然1, 陈娟1, 李燕1, 林开勤1, 密孝增1, 乔大河1,2, 陈正武1,2, 郭燕1,*(
)
收稿日期:2024-06-28
出版日期:2025-09-25
发布日期:2025-10-15
作者简介:郭燕,E-mail:710191785@qq.com通讯作者:
郭燕
基金资助:
YANG Chun1(
), LIANG Sihui1, WANG Anran1, CHEN Juan1, LI Yan1, LIN Kaiqin1, MI Xiaozeng1, QIAO Dahe1,2, CHEN Zhengwu1,2, GUO Yan1,*(
)
Received:2024-06-28
Online:2025-09-25
Published:2025-10-15
Contact:
GUO Yan
摘要: 为选育耐寒优质茶树新品种,同时明确茶树特征性代谢产物含量与茶树耐寒性间的相关性,基于田间调查得到54份茶树种质的冻害指数,并采用高效液相色谱检测其27种生化组分,通过差异显著性分析、相关分析和通径分析等方法得出与茶树耐寒性密切相关的生化组分。结果表明,54份茶树种质中有16份强耐寒性种质、7份弱耐寒性种质。咖啡碱、表没食子儿茶素没食子酸酯(EGCG)和茶氨酸分别是54份茶树种质中主要的生物碱类、儿茶素类和氨基酸类生化组分,平均含量分别为32.96、54.89和24.17 mg·g-1,氨基酸类的平均变异系数和遗传多样性指数高于生物碱类和儿茶素类。强耐寒性茶树种质的EGCG含量极显著(p<0.01)高于弱耐寒性种质,茶氨酸、丝氨酸、苏氨酸等9种氨基酸的含量显著(p<0.05或p<0.01)低于弱耐寒性种质。相关分析显示,EGCG与冻害指数呈极显著(p<0.01)负相关,丙氨酸、丝氨酸、亮氨酸等11种氨基酸与冻害指数呈显著(p<0.05或p<0.01)正相关。通径分析显示,丝氨酸和谷氨酸是对茶树冻害指数影响最大的生化组分,两者对冻害指数的贡献率分别为0.53和0.50,可能是影响茶树耐寒性的关键生化组分。结合生化组分含量和冻害指数,筛选出6份兼具强耐寒性和高茶氨酸含量的茶树种质,适用于贵州高海拔山地茶区;其中GT-GY-05和GT-AS-81表现出强耐寒性和高茶氨酸含量(≥30.0 mg·g-1),可用于选育耐寒优质茶树新品种。
中图分类号:
杨春, 梁思慧, 汪安然, 陈娟, 李燕, 林开勤, 密孝增, 乔大河, 陈正武, 郭燕. 五十四份茶树种质的特征性代谢产物含量与耐寒性[J]. 浙江农业学报, 2025, 37(9): 1860-1871.
YANG Chun, LIANG Sihui, WANG Anran, CHEN Juan, LI Yan, LIN Kaiqin, MI Xiaozeng, QIAO Dahe, CHEN Zhengwu, GUO Yan. Characteristic metabolite content and cold resistance of 54 tea germplasms[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1860-1871.
| 种质名称 Name | 种质来源 Origin | 种质名称 Name | 种质来源 Origin |
|---|---|---|---|
| GT-AS-19 | 安顺市Anshun City | GT-AS-80 | 安顺市Anshun City |
| GT-AS-37 | 安顺市Anshun City | GT-AS-81 | 安顺市Anshun City |
| GT-AS-38 | 安顺市Anshun City | GT-AS-82 | 安顺市Anshun City |
| GT-AS-41 | 安顺市Anshun City | GT-AS-83 | 安顺市Anshun City |
| GT-AS-54 | 安顺市Anshun City | GT-AS-94 | 安顺市Anshun City |
| GT-AS-55 | 安顺市Anshun City | GT-DY-08 | 都匀市Duyun City |
| GT-AS-56 | 安顺市Anshun City | GT-DZ-02 | 道真县Daozhen County |
| GT-AS-57 | 安顺市Anshun City | GT-DZ-06 | 道真县Daozhen County |
| GT-AS-58 | 安顺市Anshun City | HY | 道真县Daozhen County |
| GT-AS-60 | 安顺市Anshun City | GT-LP-03 | 黎平县Liping County |
| GT-AS-62 | 安顺市Anshun City | GT-LP-13 | 黎平县Liping County |
| GT-AS-63 | 安顺市Anshun City | GT-LP-14 | 黎平县Liping County |
| GT-AS-64 | 安顺市Anshun City | GT-LP-15 | 黎平县Liping County |
| GT-AS-65 | 安顺市Anshun City | GT-LP-22 | 黎平县Liping County |
| GT-AS-66 | 安顺市Anshun City | GT-SQ-10 | 石阡县Shiqian County |
| GT-AS-67 | 安顺市Anshun City | GT-SQ-13 | 石阡县Shiqian County |
| GT-AS-68 | 安顺市Anshun City | GT-SQ-14 | 石阡县Shiqian County |
| GT-AS-69 | 安顺市Anshun City | GT-GY-05 | 贵阳市Guiyang City |
| GT-AS-70 | 安顺市Anshun City | SCB | 湄潭县Meitan County |
| GT-AS-71 | 安顺市Anshun City | SLL | 湄潭县Meitan County |
| GT-AS-72 | 安顺市Anshun City | HJY-F1-64 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-73 | 安顺市Anshun City | HJY-F1-73 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-74 | 安顺市Anshun City | HJY-F1-76 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-75 | 安顺市Anshun City | HJY-F1-8 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-76 | 安顺市Anshun City | HJY-F1-102 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-77 | 安顺市Anshun City | HJY-F1-23 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-79 | 安顺市Anshun City | HJY-F1-55 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
表1 五十四份茶树种质信息
Table 1 Information of 54 tea germplasms
| 种质名称 Name | 种质来源 Origin | 种质名称 Name | 种质来源 Origin |
|---|---|---|---|
| GT-AS-19 | 安顺市Anshun City | GT-AS-80 | 安顺市Anshun City |
| GT-AS-37 | 安顺市Anshun City | GT-AS-81 | 安顺市Anshun City |
| GT-AS-38 | 安顺市Anshun City | GT-AS-82 | 安顺市Anshun City |
| GT-AS-41 | 安顺市Anshun City | GT-AS-83 | 安顺市Anshun City |
| GT-AS-54 | 安顺市Anshun City | GT-AS-94 | 安顺市Anshun City |
| GT-AS-55 | 安顺市Anshun City | GT-DY-08 | 都匀市Duyun City |
| GT-AS-56 | 安顺市Anshun City | GT-DZ-02 | 道真县Daozhen County |
| GT-AS-57 | 安顺市Anshun City | GT-DZ-06 | 道真县Daozhen County |
| GT-AS-58 | 安顺市Anshun City | HY | 道真县Daozhen County |
| GT-AS-60 | 安顺市Anshun City | GT-LP-03 | 黎平县Liping County |
| GT-AS-62 | 安顺市Anshun City | GT-LP-13 | 黎平县Liping County |
| GT-AS-63 | 安顺市Anshun City | GT-LP-14 | 黎平县Liping County |
| GT-AS-64 | 安顺市Anshun City | GT-LP-15 | 黎平县Liping County |
| GT-AS-65 | 安顺市Anshun City | GT-LP-22 | 黎平县Liping County |
| GT-AS-66 | 安顺市Anshun City | GT-SQ-10 | 石阡县Shiqian County |
| GT-AS-67 | 安顺市Anshun City | GT-SQ-13 | 石阡县Shiqian County |
| GT-AS-68 | 安顺市Anshun City | GT-SQ-14 | 石阡县Shiqian County |
| GT-AS-69 | 安顺市Anshun City | GT-GY-05 | 贵阳市Guiyang City |
| GT-AS-70 | 安顺市Anshun City | SCB | 湄潭县Meitan County |
| GT-AS-71 | 安顺市Anshun City | SLL | 湄潭县Meitan County |
| GT-AS-72 | 安顺市Anshun City | HJY-F1-64 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-73 | 安顺市Anshun City | HJY-F1-73 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-74 | 安顺市Anshun City | HJY-F1-76 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-75 | 安顺市Anshun City | HJY-F1-8 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-76 | 安顺市Anshun City | HJY-F1-102 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-77 | 安顺市Anshun City | HJY-F1-23 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-79 | 安顺市Anshun City | HJY-F1-55 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| 类别 Category | 组分 Component | 含量Content/(mg·g-1) | 变异系数 Coefficient of variation/% | 遗传多样性指数 Genetic diversity index | |||
|---|---|---|---|---|---|---|---|
| 最小值 Minimum | 最大值 Maximum | 平均值 Average value | 标准差 Standard deviation | ||||
| 生物碱类Alkaloids | TB | 3.95 | 17.18 | 8.32 | 2.24 | 26.86 | 1.91 |
| TP | 0.06 | 0.87 | 0.17 | 0.14 | 82.28 | 1.40 | |
| Caf | 24.88 | 44.71 | 32.96 | 4.05 | 12.28 | 2.03 | |
| 酚酸类Phenolic acids | GA | 0.07 | 0.97 | 0.45 | 0.18 | 39.18 | 1.86 |
| 儿茶素类Catechins | EGC | 10.99 | 32.39 | 17.93 | 4.53 | 25.26 | 1.93 |
| C | 0.33 | 2.05 | 0.54 | 0.23 | 43.61 | 1.26 | |
| EC | 3.82 | 13.89 | 8.36 | 2.41 | 28.83 | 2.04 | |
| EGCG | 32.69 | 90.34 | 54.89 | 11.05 | 20.14 | 1.99 | |
| GCG | 6.34 | 14.46 | 7.18 | 1.32 | 18.37 | 1.37 | |
| ECG | 8.39 | 27.64 | 17.73 | 4.80 | 27.09 | 2.02 | |
| 氨基酸类Amino acids | Thea | 4.37 | 42.03 | 24.17 | 9.02 | 37.30 | 1.98 |
| Asp | 1.12 | 4.83 | 2.51 | 0.84 | 33.30 | 1.84 | |
| Ser | 0.61 | 1.73 | 1.15 | 0.27 | 23.39 | 1.90 | |
| Glu | 2.85 | 10.06 | 5.75 | 1.75 | 30.44 | 1.81 | |
| Gly | 0.02 | 0.26 | 0.10 | 0.05 | 51.53 | 1.74 | |
| His | 1.50 | 10.60 | 4.87 | 2.53 | 51.92 | 1.88 | |
| Arg | 1.05 | 11.79 | 6.95 | 2.81 | 40.49 | 2.04 | |
| Thr | — | 0.36 | 0.13 | 0.11 | 87.78 | 1.92 | |
| Ala | — | 0.76 | 0.26 | 0.18 | 68.66 | 1.77 | |
| Pro | 0.57 | 1.85 | 1.04 | 0.39 | 37.58 | 1.79 | |
| Cys | — | 0.02 | 0.01 | 0.01 | 101.42 | 1.64 | |
| Tyr | 0.01 | 0.15 | 0.07 | 0.04 | 57.16 | 2.01 | |
| Val | 1.57 | 5.06 | 3.63 | 0.99 | 27.40 | 1.95 | |
| Met | 0.01 | 0.30 | 0.12 | 0.07 | 59.64 | 1.93 | |
| Lys | — | 0.27 | 0.08 | 0.06 | 78.36 | 1.74 | |
| Leu | 0.04 | 0.30 | 0.14 | 0.05 | 37.25 | 1.66 | |
| Phe | 0.12 | 0.38 | 0.25 | 0.06 | 24.35 | 1.87 | |
表2 五十四份茶树种质的生化成分含量
Table 2 Biochemical components contents of 54 tea germplasms
| 类别 Category | 组分 Component | 含量Content/(mg·g-1) | 变异系数 Coefficient of variation/% | 遗传多样性指数 Genetic diversity index | |||
|---|---|---|---|---|---|---|---|
| 最小值 Minimum | 最大值 Maximum | 平均值 Average value | 标准差 Standard deviation | ||||
| 生物碱类Alkaloids | TB | 3.95 | 17.18 | 8.32 | 2.24 | 26.86 | 1.91 |
| TP | 0.06 | 0.87 | 0.17 | 0.14 | 82.28 | 1.40 | |
| Caf | 24.88 | 44.71 | 32.96 | 4.05 | 12.28 | 2.03 | |
| 酚酸类Phenolic acids | GA | 0.07 | 0.97 | 0.45 | 0.18 | 39.18 | 1.86 |
| 儿茶素类Catechins | EGC | 10.99 | 32.39 | 17.93 | 4.53 | 25.26 | 1.93 |
| C | 0.33 | 2.05 | 0.54 | 0.23 | 43.61 | 1.26 | |
| EC | 3.82 | 13.89 | 8.36 | 2.41 | 28.83 | 2.04 | |
| EGCG | 32.69 | 90.34 | 54.89 | 11.05 | 20.14 | 1.99 | |
| GCG | 6.34 | 14.46 | 7.18 | 1.32 | 18.37 | 1.37 | |
| ECG | 8.39 | 27.64 | 17.73 | 4.80 | 27.09 | 2.02 | |
| 氨基酸类Amino acids | Thea | 4.37 | 42.03 | 24.17 | 9.02 | 37.30 | 1.98 |
| Asp | 1.12 | 4.83 | 2.51 | 0.84 | 33.30 | 1.84 | |
| Ser | 0.61 | 1.73 | 1.15 | 0.27 | 23.39 | 1.90 | |
| Glu | 2.85 | 10.06 | 5.75 | 1.75 | 30.44 | 1.81 | |
| Gly | 0.02 | 0.26 | 0.10 | 0.05 | 51.53 | 1.74 | |
| His | 1.50 | 10.60 | 4.87 | 2.53 | 51.92 | 1.88 | |
| Arg | 1.05 | 11.79 | 6.95 | 2.81 | 40.49 | 2.04 | |
| Thr | — | 0.36 | 0.13 | 0.11 | 87.78 | 1.92 | |
| Ala | — | 0.76 | 0.26 | 0.18 | 68.66 | 1.77 | |
| Pro | 0.57 | 1.85 | 1.04 | 0.39 | 37.58 | 1.79 | |
| Cys | — | 0.02 | 0.01 | 0.01 | 101.42 | 1.64 | |
| Tyr | 0.01 | 0.15 | 0.07 | 0.04 | 57.16 | 2.01 | |
| Val | 1.57 | 5.06 | 3.63 | 0.99 | 27.40 | 1.95 | |
| Met | 0.01 | 0.30 | 0.12 | 0.07 | 59.64 | 1.93 | |
| Lys | — | 0.27 | 0.08 | 0.06 | 78.36 | 1.74 | |
| Leu | 0.04 | 0.30 | 0.14 | 0.05 | 37.25 | 1.66 | |
| Phe | 0.12 | 0.38 | 0.25 | 0.06 | 24.35 | 1.87 | |
图2 不同耐寒级别茶树种质的生物碱类、酚酸类、儿茶素类含量 TB,可可碱;TP,茶叶碱;Caf,咖啡碱;GA,没食子酸;EGC,表没食子儿茶素;C,儿茶素;EC,表儿茶素;EGCG,表没食子儿茶素没食子酸酯;GCG,没食子儿茶素没食子酸酯;ECG,表儿茶素没食子酸酯。*和**分别表示在p<0.05和p<0.01水平差异显著。HR、R、M和HS分别表示耐寒性强、较强、中和弱。下同。
Fig.2 Contents of alkaloids, phenolic acids, and catechins in tea germplasms with different cold resistance levels TB, Theobromine; TP, Theophylline; Caf, Caffeine; GA, Gallic acid; EGC, Epigallocatechin; C, Catechin; EC, Epicatechin; EGCG, Epigallocatechin gallate; GCG, Gallocatechin gallate; ECG, Epicatechin gallate. * and ** indicate significant differences at p<0.05 and p<0.01 levels, respectively. HR, R, M, and HS respectively represent highly cold resistance, cold resistance, moderate cold resistance, and higly cold sensitivity. The same as below.
图3 不同耐寒级别茶树种质的氨基酸含量 Thea,茶氨酸;Asp,天冬氨酸;Ser,丝氨酸;Glu,谷氨酸;Gly,甘氨酸;His,组氨酸;Arg,精氨酸;Thr,苏氨酸;Ala,丙氨酸;Pro,脯氨酸;Cys,半胱氨酸;Tyr,酪氨酸;Val,缬氨酸;Met,甲硫氨酸;Lys,赖氨酸;Leu,亮氨酸;Phe,苯丙氨酸。下同。
Fig.3 Content of amino acids in tea germplasms with different cold resistance levels Thea, L-theanine; Asp, Aspartic acid; Ser, Serine; Glu, Glutamic acid; Gly, Glycine; His, Histidine; Arg, Arginine; Thr, Threonine; Ala, Alanine; Pro, Proline; Cys, Cysteine; Tyr, Tyrosine; Val, Valine; Met, Methionine; Lys, Lysine; Leu, Leucine; Phe, Phenylalanine. The same as below.
图4 生化组分与冻害指数之间的相关系数 I表示冻害指数;*和**分别表示在p<0.05和p<0.01水平显著相关。
Fig.4 Correlation coefficients between biochemical components and freezing injury index I means freezing injury index; * and ** indicate significant correlations at p<0.05 and p<0.01 levels, respectively.
| 生化组分 Biochemical component | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 贡献率 Contribution rate | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EGCG | Thea | Ser | Glu | His | Arg | Thr | Ala | Tyr | Val | Lys | Leu | ||||
| EGCG | -0.56 | -0.22 | -0.14 | -0.15 | -0.13 | -0.11 | -0.14 | -0.09 | -0.12 | -0.07 | -0.13 | -0.05 | -0.11 | 0.12 | |
| Thea | 0.59 | 0.34 | -0.22 | 0.22 | 0.24 | 0.27 | 0.23 | 0.20 | 0.22 | 0.11 | 0.14 | 0.10 | 0.15 | 0.20 | |
| Ser | 0.71 | 0.74 | -0.51 | 0.48 | 0.49 | 0.40 | 0.60 | 0.60 | 0.65 | 0.50 | 0.37 | 0.44 | 0.59 | 0.53 | |
| Glu | 0.57 | 0.88 | -0.52 | 0.62 | 0.58 | 0.74 | 0.54 | 0.50 | 0.54 | 0.24 | 0.26 | 0.12 | 0.27 | 0.50 | |
| His | 0.49 | 0.78 | -0.41 | 0.62 | 0.42 | 0.65 | 0.41 | 0.40 | 0.48 | 0.07 | 0.30 | 0.07 | 0.23 | 0.38 | |
| Arg | 0.58 | 0.37 | -0.23 | 0.25 | 0.30 | 0.22 | 0.19 | 0.25 | 0.25 | 0.22 | 0.16 | 0.25 | 0.23 | 0.21 | |
| Thr | 0.63 | 0.72 | -0.31 | 0.42 | 0.58 | 0.41 | 0.37 | 0.49 | 0.53 | 0.49 | 0.09 | 0.35 | 0.42 | 0.45 | |
| Ala | 0.72 | 0.25 | -0.14 | 0.17 | 0.22 | 0.15 | 0.15 | 0.17 | 0.18 | 0.15 | 0.13 | 0.15 | 0.19 | 0.18 | |
| Tyr | 0.47 | 0.52 | -0.16 | 0.17 | 0.35 | 0.14 | 0.05 | 0.31 | 0.35 | 0.30 | 0.08 | 0.40 | 0.34 | 0.24 | |
| Val | 0.46 | 0.21 | -0.13 | 0.09 | 0.10 | 0.06 | 0.08 | 0.09 | 0.03 | 0.11 | 0.03 | 0.08 | 0.11 | 0.10 | |
| Lys | 0.46 | 0.45 | -0.10 | 0.13 | 0.27 | 0.06 | 0.04 | 0.31 | 0.22 | 0.27 | 0.36 | 0.17 | 0.30 | 0.21 | |
| Leu | 0.67 | 0.49 | -0.25 | 0.22 | 0.39 | 0.15 | 0.14 | 0.31 | 0.28 | 0.37 | 0.32 | 0.25 | 0.33 | 0.33 | |
表3 显著相关生化组分对冻害指数影响的通径分析
Table 3 Path analysis of the impact of significantly correlated biochemical components on freezing injury index
| 生化组分 Biochemical component | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 贡献率 Contribution rate | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EGCG | Thea | Ser | Glu | His | Arg | Thr | Ala | Tyr | Val | Lys | Leu | ||||
| EGCG | -0.56 | -0.22 | -0.14 | -0.15 | -0.13 | -0.11 | -0.14 | -0.09 | -0.12 | -0.07 | -0.13 | -0.05 | -0.11 | 0.12 | |
| Thea | 0.59 | 0.34 | -0.22 | 0.22 | 0.24 | 0.27 | 0.23 | 0.20 | 0.22 | 0.11 | 0.14 | 0.10 | 0.15 | 0.20 | |
| Ser | 0.71 | 0.74 | -0.51 | 0.48 | 0.49 | 0.40 | 0.60 | 0.60 | 0.65 | 0.50 | 0.37 | 0.44 | 0.59 | 0.53 | |
| Glu | 0.57 | 0.88 | -0.52 | 0.62 | 0.58 | 0.74 | 0.54 | 0.50 | 0.54 | 0.24 | 0.26 | 0.12 | 0.27 | 0.50 | |
| His | 0.49 | 0.78 | -0.41 | 0.62 | 0.42 | 0.65 | 0.41 | 0.40 | 0.48 | 0.07 | 0.30 | 0.07 | 0.23 | 0.38 | |
| Arg | 0.58 | 0.37 | -0.23 | 0.25 | 0.30 | 0.22 | 0.19 | 0.25 | 0.25 | 0.22 | 0.16 | 0.25 | 0.23 | 0.21 | |
| Thr | 0.63 | 0.72 | -0.31 | 0.42 | 0.58 | 0.41 | 0.37 | 0.49 | 0.53 | 0.49 | 0.09 | 0.35 | 0.42 | 0.45 | |
| Ala | 0.72 | 0.25 | -0.14 | 0.17 | 0.22 | 0.15 | 0.15 | 0.17 | 0.18 | 0.15 | 0.13 | 0.15 | 0.19 | 0.18 | |
| Tyr | 0.47 | 0.52 | -0.16 | 0.17 | 0.35 | 0.14 | 0.05 | 0.31 | 0.35 | 0.30 | 0.08 | 0.40 | 0.34 | 0.24 | |
| Val | 0.46 | 0.21 | -0.13 | 0.09 | 0.10 | 0.06 | 0.08 | 0.09 | 0.03 | 0.11 | 0.03 | 0.08 | 0.11 | 0.10 | |
| Lys | 0.46 | 0.45 | -0.10 | 0.13 | 0.27 | 0.06 | 0.04 | 0.31 | 0.22 | 0.27 | 0.36 | 0.17 | 0.30 | 0.21 | |
| Leu | 0.67 | 0.49 | -0.25 | 0.22 | 0.39 | 0.15 | 0.14 | 0.31 | 0.28 | 0.37 | 0.32 | 0.25 | 0.33 | 0.33 | |
| [1] | 周佰铨, 翟盘茂. 未来的极端天气气候与水文事件预估及其应对[J]. 气象, 2023, 49(3): 257-266. |
| ZHOU B Q, ZHAI P M. The future projections of extreme weather, climate and water events and strategic responses[J]. Meteorological Monthly, 2023, 49(3): 257-266. (in Chinese with English abstract) | |
| [2] | 王培娟, 唐俊贤, 金志凤, 等. 中国茶树春霜冻害研究进展[J]. 应用气象学报, 2021, 32(2): 129-145. |
| WANG P J, TANG J X, JIN Z F, et al. Review on spring frost disaster for tea plant in China[J]. Journal of Applied Meteorological Science, 2021, 32(2): 129-145. (in Chinese with English abstract) | |
| [3] | WANG Y L, SAMARINA L, MALLANO A I, et al. Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants[J]. Frontiers in Plant Science, 2023, 14: 1145609. |
| [4] | 阮建云, 季凌飞, 申瑞寒, 等. 茶树栽培研究“十三五”进展及“十四五”发展方向[J]. 中国茶叶, 2021, 43(9): 58-65. |
| RUAN J Y, JI L F, SHEN R H, et al. Tea cultivation research during the 13th Five-Year Plan period and development direction in the 14th Five-Year Plan period[J]. China Tea, 2021, 43(9): 58-65. (in Chinese with English abstract) | |
| [5] | 张波, 孙思思, 丁立国, 等. 贵州春茶霜冻害危险性分析及区划[J]. 气象与环境学报, 2023, 39(5): 99-105. |
| ZHANG B, SUN S S, DING L G, et al. Risk analysis and zoning of frost damage for spring tea in Guizhou province[J]. Journal of Meteorology and Environment, 2023, 39(5): 99-105. (in Chinese with English abstract) | |
| [6] | 高文波, 林正雨, 王明田, 等. 1971—2020年西南茶区灌木型茶树晚霜冻害危险性时空演变特征[J]. 应用生态学报, 2021, 32(11): 4029-4038. |
| GAO W B, LIN Z Y, WANG M T, et al. Spatiotemporal evolution characteristics of the late frost damage risk to shrubby tea trees in tea region, southwest China from 1971 to 2020[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4029-4038. (in Chinese with English abstract) | |
| [7] | 任义方, 王培娟, 钱半吨, 等. 江苏省不同风险区域春茶霜冻害特征分析[J]. 中国农业气象, 2023, 44(9): 820-833. |
| REN Y F, WANG P J, QIAN B D, et al. Analysis on characteristics of spring tea frost damage in different risk areas in Jiangsu Province[J]. Chinese Journal of Agrometeorology, 2023, 44(9): 820-833. (in Chinese with English abstract) | |
| [8] | 余跑兰, 孙永明, 吴艳, 等. 地表覆盖对茶树冻害及茶园地温时空变化的影响[J]. 河南农业科学, 2022, 51(3): 65-72. |
| YU P L, SUN Y M, WU Y, et al. Effects of overwintering mulching on freezing injury of tea plant and spatio-temporal variation of soil temperature in tea plantation[J]. Journal of Henan Agricultural Sciences, 2022, 51(3): 65-72. (in Chinese with English abstract) | |
| [9] | 孙永明, 雷礼文, 王永刚, 等. 基于气流屏障下的茶园低温冻害防控研究[J]. 茶叶学报, 2022, 63(1): 33-38. |
| SUN Y M, LEI L W, WANG Y G, et al. Deterrence of freeze-injury on tea bushes using airflow barriers at plantations[J]. Acta Tea Sinica, 2022, 63(1): 33-38. (in Chinese with English abstract) | |
| [10] | 李岩, 田维丽, 谢恩俊, 等. 低温胁迫及生理生化指标综合评价抗寒茶树[J]. 种子, 2020, 39(12): 38-43, 54. |
| LI Y, TIAN W L, XIE E J, et al. Comprehensive evaluation of cold-resistant Camellia sinensis(L.) O. Ktze. based on physiological and biochemical indexes under low temperature stress[J]. Seed, 2020, 39(12): 38-43, 54. (in Chinese with English abstract) | |
| [11] | 孙霞, 宋大鹏, 刘加英, 等. 冻害胁迫下水处理对茶树抗寒生理指标的影响[J]. 中国茶叶, 2022, 44(4): 41-49. |
| SUN X, SONG D P, LIU J Y, et al. Effects of water treatmenton cold-resistant physiological indexes of Camellia sinensis under freezing stress[J]. China Tea, 2022, 44(4): 41-49. (in Chinese with English abstract) | |
| [12] | 牛小军, 黄海涛, 李红莉, 等. 不同冷冻胁迫时间对茶鲜叶中酶活性和营养成分的影响[J]. 中国茶叶, 2023, 45(9): 37-42. |
| NIU X J, HUANG H T, LI H L, et al. Effects of different freezing stress times on the enzymatic activities and nutritional compositions in new tea shoots[J]. China Tea, 2023, 45(9): 37-42. (in Chinese with English abstract) | |
| [13] | 毕彩虹, 范开业, 沈凌言, 等. 8个无性系茶树品种的抗寒性鉴定与评价[J]. 茶叶, 2014, 40(3): 146-147. |
| BI C H, FAN K Y, SHEN L Y, et al. Assessment of cold resistance of 8 tea clonal cultivars[J]. Journal of Tea, 2014, 40(3): 146-147. (in Chinese with English abstract) | |
| [14] | 邢瑶, 李松, 唐锁海, 等. 茶树品种抗寒性试验[J]. 茶叶, 2022, 48(1): 34-38. |
| XING Y, LI S, TANG S H, et al. Investigation on extreme low temperature freezing injury of different tea varieties during overwintering[J]. Journal of Tea, 2022, 48(1): 34-38. (in Chinese with English abstract) | |
| [15] | 李佼, 李豆豆, 王令, 等. 43份汉中茶树种质资源叶片解剖结构分析[J]. 西北农业学报, 2023, 32(1): 62-71. |
| LI J, LI D D, WANG L, et al. Analysis of leaf anatomical structure of 43 tea plant(Camellia sinensis) germplasm resources in Hanzhong[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(1): 62-71. (in Chinese with English abstract) | |
| [16] | 董方, 涂娟, 杨菲颖, 等. 基于叶片解剖结构性状的17份江西茶树种质资源综合评价[J]. 江西农业大学学报, 2024, 46(2): 328-339. |
| DONG F, TU J, YANG F Y, et al. Comprehensive evaluation of 17 tea germplasm resources in Jiangxi based on leaf anatomical structure characteristics[J]. Acta Agriculturae Universitatis Jiangxiensis, 2024, 46(2): 328-339. (in Chinese with English abstract) | |
| [17] | 杨春, 苏胜峰, 杨代星, 等. 贵州两地野生茶树叶片解剖结构比较及抗逆性分析[J]. 河南农业科学, 2024, 53(1): 48-61. |
| YANG C, SU S F, YANG D X, et al. Comparison of leaf anatomical atructure and stress resistance analysis of wild tea plants in Panzhou City and Sandu County, Guizhou Province[J]. Journal of Henan Agricultural Sciences, 2024, 53(1): 48-61. (in Chinese with English abstract) | |
| [18] | 黄海涛, 余继忠, 王贤波, 等. 不同抗寒性茶树品种秋季新梢的生理特性研究[J]. 浙江农业学报, 2014, 26(4): 925-928. |
| HUANG H T, YU J Z, WANG X B, et al. Study on physiological characters of new shoot in different cold-resistant tea varieties in autumn[J]. Acta Agriculturae Zhejiangensis, 2014, 26(4): 925-928. (in Chinese with English abstract) | |
| [19] | 薄晓培, 王梦馨, 崔林, 等. 茶树3类渗透调节物质与冬春低温相关性及其品种间的差异评价[J]. 中国农业科学, 2016, 49(19): 3807-3817. |
| BO X P, WANG M X, CUI L, et al. Evaluation on correlations of three kinds of osmoregulation substances in tea fresh leaves with low temperature during winter and spring respectively and their difference among cultivars[J]. Scientia Agricultura Sinica, 2016, 49(19): 3807-3817. (in Chinese with English abstract) | |
| [20] | 杨春, 孟泽洪, 李帅, 等. 十二个茶树品种对茶棍蓟马、茶小绿叶蝉抗性表现及抗性成分初步鉴定[J]. 浙江农业学报, 2022, 34(8): 1713-1724. |
| YANG C, MENG Z H, LI S, et al. Resistance of 12 tea cultivars to Dendrothrips minowai Priesner and Empoasca onukii Matsuda and a preliminary identification of resistant components[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1713-1724. (in Chinese with English abstract) | |
| [21] | 程鸿浩, 陈诗燕, 吴筱萌, 等. 茶园花蓟马种群数量与茶叶中生化物质关系的数学分析[J]. 中国农业大学学报, 2022, 27(12): 148-157. |
| CHENG H H, CHEN S Y, WU X M, et al. Mathematical analysis of the relationship between the population number of Frankliniella intonsa in tea garden and biochemical substances in tea[J]. Journal of China Agricultural University, 2022, 27(12): 148-157. (in Chinese with English abstract) | |
| [22] | 徐悦, 吴筱萌, 王国庆, 等. 茶园广翅蜡蝉数量与茶叶中生化物质关系分析[J]. 浙江农业学报, 2023, 35(8): 1834-1843. |
| XU Y, WU X M, WANG G Q, et al. Analysis of relationship between number of Ricanidae in tea plantations and biochemical substances in tea leaves[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1834-1843. (in Chinese with English abstract) | |
| [23] | 靖翠翠, 杨秀芳, 谭蓉, 等. 微波制样对茶叶内质成分的影响[J]. 食品安全质量检测学报, 2015, 6(4): 1265-1270. |
| JING C C, YANG X F, TAN R, et al. Effect of microwave fixation on tea chemical components[J]. Journal of Food Safety & Quality, 2015, 6(4): 1265-1270. (in Chinese with English abstract) | |
| [24] | 杨春, 梁思慧, 陈正武, 等. 黄色芽叶茶树新品种黄金芽自然杂交后代的生化品质分析[J]. 西南农业学报, 2023, 36(9): 1859-1868. |
| YANG C, LIANG S H, CHEN Z W, et al. Biochemical quality analysis and evaluation of natural hybrid progenies from new tea variety with yellow bud leaf ‘Huangjinya’[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(9): 1859-1868. (in Chinese with English abstract) | |
| [25] | 张婷, 王雪艳, 郭勤卫, 等. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
| ZHANG T, WANG X Y, GUO Q W, et al. Genetic diversity of pepper germplasm resources based on agronomic traits[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 325-333. (in Chinese with English abstract) | |
| [26] | WANG L, DI T M, PENG J, et al. Comparative metabolomic analysis reveals the involvement of catechins in adaptation mechanism to cold stress in tea plant (Camellia sinensis var. sinensis)[J]. Environmental and Experimental Botany, 2022, 201: 104978. |
| [27] | 李洋, 刘凯, 魏吉鹏, 等. 不同浓度EGCG对NaCl胁迫下黄瓜种子萌发及其抗性的影响[J]. 浙江农业学报, 2018, 30(7): 1160-1167. |
| LI Y, LIU K, WEI J P, et al. Effects of various concentrations of EGCG on seed germination and resistance in cucumber under NaCl stress[J]. Acta Agriculturae Zhejiangensis, 2018, 30(7): 1160-1167. (in Chinese with English abstract) | |
| [28] | 方明雅, 余宏伟, 武雅娴, 等. 外源表没食子儿茶素没食子酸酯对甜瓜幼苗白粉病抗性的影响[J]. 浙江农业学报, 2023, 35(1): 138-145. |
| FANG M Y, YU H W, WU Y X, et al. Effects of exogenous epigallocatechin gallate on resistance of melon seedlings to powdery mildew[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 138-145. (in Chinese with English abstract) | |
| [29] | ROMANENKO K O, BABENKO L M, KOSAKIVSKA I V. Amino acids in regulation of abiotic stress tolerance in cereal crops: a review[J]. Cereal Research Communications, 2024, 52(2): 333-356. |
| [30] | YANG X X, LIU C, LI M D, et al. Integrated transcriptomics and metabolomics analysis reveals key regulatory network that response to cold stress in common Bean (Phaseolus vulgaris L.)[J]. BMC Plant Biology, 2023, 23(1): 85. |
| [31] | MAO C L, LI L, YANG T, et al. Transcriptomics integrated with widely targeted metabolomics reveals the cold resistance mechanism in Hevea brasiliensis[J]. Frontiers in Plant Science, 2023, 13: 1092411. |
| [32] | JIANG C K, HU W J, LU H L, et al. Alterations of phenotype, physiology, and functional substances reveal the chilling-tolerant mechanism in two common Olea europaea cultivars[J]. Frontiers in Plant Science, 2023, 14: 1046719. |
| [33] | CHENG Y H, BAN Q Y, MAO J L, et al. Integrated metabolomic and transcriptomic analysis reveals that amino acid biosynthesis may determine differences in cold-tolerant and cold-sensitive tea cultivars[J]. International Journal of Molecular Sciences, 2023, 24(3): 1907. |
| [1] | 张顺昌, 徐继根, 符成悦, 蒲占湑, 胡丽鹏, 吴昊, 李俊兵, 辛亮, 雷元军. 喷施氨基酸钙对红美人杂柑果皮龟裂与品质的影响[J]. 浙江农业学报, 2025, 37(8): 1706-1715. |
| [2] | 邓玉莲, 谭琳, 牛丽, 卢前程, 周玲红, 李桂花, 胡秋龙. 一株茶根腐病拮抗真菌的筛选鉴定与生物学特性研究[J]. 浙江农业学报, 2025, 37(7): 1469-1480. |
| [3] | 潘志洪, 温雪婷, 杨华, 吕文涛, 张俊杰, 肖英平. 番鸭肌肉氨基酸谱发育性变化研究[J]. 浙江农业学报, 2024, 36(9): 2010-2019. |
| [4] | 朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601. |
| [5] | 李慧, 谭晓琴, 唐茜, 杨洋, 陈玮. 疏花对紫嫣茶树产量及品质成分的影响[J]. 浙江农业学报, 2024, 36(7): 1602-1615. |
| [6] | 杨春, 杨代星, 苏胜峰, 梁思慧, 李燕, 郭燕, 乔大河, 密孝增, 陈正武. 贵州两地野生大厂茶嘌呤生物碱与儿茶素组分比较[J]. 浙江农业学报, 2024, 36(6): 1232-1244. |
| [7] | 徐悦, 吴筱萌, 王国庆, 邹运鼎, 毕守东. 茶园广翅蜡蝉数量与茶叶中生化物质关系分析[J]. 浙江农业学报, 2023, 35(8): 1834-1843. |
| [8] | 薛承进, 赵兰馨, 赵德刚, 黄小贞. 茶树NPR基因家族成员鉴定与表达分析及冷诱导CsNPR3的基因克隆[J]. 浙江农业学报, 2023, 35(7): 1511-1522. |
| [9] | 白鼎臣, 赵支飞, 龚雪, 刘源, 牛素贞, 陈正武. 贵州栽培型地方茶树叶片气孔性状全基因组关联分析[J]. 浙江农业学报, 2023, 35(7): 1550-1563. |
| [10] | 肖家昶, 雷凤芸, 格桑, 马俊英, 贺茂林, 李艳文, 郑阳霞. 外源喷施氨基酸肥对豆瓣菜生长与硒吸收的影响[J]. 浙江农业学报, 2023, 35(7): 1638-1647. |
| [11] | 叶雷, 张波, 杨学圳, 李小林, 张小平, 谭伟. 竹屑替代木屑栽培毛木耳的可行性及其品质综合评价[J]. 浙江农业学报, 2023, 35(6): 1416-1426. |
| [12] | 李春雷, 徐红梅, 刘杰, 张汝君, 马兴云, 张华. 铝在茶树叶片亚细胞中的分布及其与细胞壁的结合研究[J]. 浙江农业学报, 2023, 35(3): 509-514. |
| [13] | 丁一, 郑旭霞, 黄海涛, 毛宇骁, 赵芸. 浙江4个主要茶树群体种资源表型性状及遗传多样性分析[J]. 浙江农业学报, 2023, 35(2): 364-372. |
| [14] | 杨春, 孟泽洪, 李帅, 梁思慧, 乔大河, 陈正武. 十二个茶树品种对茶棍蓟马、茶小绿叶蝉抗性表现及抗性成分初步鉴定[J]. 浙江农业学报, 2022, 34(8): 1713-1724. |
| [15] | 杨春, 乔大河, 郭燕, 梁思慧, 林开勤, 陈正武. 115份贵州茶树资源氨基酸和茶氨酸分析与特异资源筛选[J]. 浙江农业学报, 2022, 34(7): 1351-1360. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||