浙江农业学报 ›› 2020, Vol. 32 ›› Issue (10): 1910-1920.DOI: 10.3969/j.issn.1004-1524.2020.10.21
• 综述 • 上一篇
李君霞, 王春义, 丁宇涛, 代书桃, 朱灿灿, 宋迎辉, 秦娜, 陈宇翔
收稿日期:2020-04-24
出版日期:2020-10-25
发布日期:2020-11-16
作者简介:李君霞(1973—),女,河南禹州人,副研究员,主要从事谷子遗传选育及栽培研究。E-mail:lijunxia@126.com
基金资助:LI Junxia, WANG Chunyi, DING Yutao, DAI Shutao, ZHU Cancan, SONG Yinghui, QIN Na, CHEN Yuxiang
Received:2020-04-24
Online:2020-10-25
Published:2020-11-16
摘要: 盐胁迫是影响植物生长、发育及作物产量的重要环境因子。耐盐育种是保障农业生产的重要措施,利用基因工程技术提高植物耐盐性是优于传统育种的有效途径。MYB转录因子是植物中最大的转录因子家族之一,在包括盐胁迫在内的植物非生物胁迫调控中有重要作用。本文系统阐述了MYB转录因子的基本结构及其在拟南芥、烟草及水稻、大豆、番茄等植物耐盐基因工程中应用的研究进展,为MYB转录因子的利用及植物耐盐遗传改良及育种提供参考。
中图分类号:
李君霞, 王春义, 丁宇涛, 代书桃, 朱灿灿, 宋迎辉, 秦娜, 陈宇翔. MYB转录因子在植物耐盐基因工程中的应用进展[J]. 浙江农业学报, 2020, 32(10): 1910-1920.
LI Junxia, WANG Chunyi, DING Yutao, DAI Shutao, ZHU Cancan, SONG Yinghui, QIN Na, CHEN Yuxiang. Progress on application of MYB transcription factor in plant salt tolerance genetic engineering[J]. , 2020, 32(10): 1910-1920.
| [1] FLOWERS T J. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55(396):307-319. [2] 俞仁培, 陈德明. 我国盐渍土资源及其开发利用[J]. 土壤通报, 1999, 30(4):158-159. YU R P, CHEN D M. Saline soil resources in China and their exploitation[J]. Chinese Journal of Soil Science, 1999, 30(4):158-159.(in Chinese with English abstract) [3] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1):651-681. [4] KANEKO T, HORIE T, NAKAHARA Y, et al. Dynamic regulation of the root hydraulic conductivity of barley plants in response to salinity/osmotic stress[J]. Plant & Cell Physiology, 2015, 56(5):875-882. [5] MITTLER R. Abiotic stress, the field environment and stress combination[J]. Trends in Plant Science, 2006, 11(1):15-19. [6] RIECHMANN J L, HEARD J, MARTIN G, et al. [7] CHEN Y H, YANG X Y, HE K, et al. The MYB transcription factor superfamily of [8] RABINOWICZ P D, BRAUN E L, WOLFE A D, et al. Maize R2R3 Myb genes: sequence analysis reveals amplification in the higher plants[J]. Genetics, 1999, 153(1):427-444. [9] LI X X, GUO C, AHMAD S, et al. Systematic analysis of MYB family genes in potato and their multiple roles in development and stress responses[J]. Biomolecules, 2019, 9(8):317. [10] GUBLER F, KALLA R, ROBERTS J K, et al. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter[J]. The Plant Cell, 1995, 7(11):1879-1891. [11] ITURRIAGA G, LEYNS L, VILLEGAS A, et al. A family of novel myb-related genes from the resurrection plant [12] LAUVERGEAT V, RECH P, JAUNEAU A, et al. The vascular expression pattern directed by the [13] NEWMAN L J, PERAZZA D E, JUDA L, et al. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the [14] OH S, PARK S, HAN K H. Transcriptional regulation of secondary growth in [15] LIU Y, SHI Z, MAXIMOVA S N, et al. Tc-MYBPA is an [16] YANG Y, KLESSIG D F. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(25):14972-14977. [17] MA Q B, DAI X Y, XU Y Y, et al. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes[J]. Plant Physiology, 2009, 150(1):244-256. [18] EL-KEREAMY A, BI Y M, RANATHUNGE K, et al. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism[J]. PLoS One, 2012, 7(12):e52030. [19] LI M J, QIAO Y, LI Y Q, et al. A R2R3-MYB transcription factor gene in common wheat (namely [20] ZHAO Y, TIAN X J, WANG F, et al. Characterization of wheat MYB genes responsive to high temperatures[J]. BMC Plant Biology, 2017, 17(1):1-14. [21] YU Y T, WU Z, LU K, et al. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in [22] ZHANG L C, ZHAO G Y, XIA C, et al. A wheat R2R3-MYB gene, [23] JUNG C, SEO J S, HAN S W, et al. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic [24] CUI M H, YOO K S, HYOUNG S, et al. An [25] DING Z H, LI S M, AN X L, et al. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in [26] HE Y N, LI W, LV J, et al. Ectopic expression of a wheat MYB transcription factor gene, [27] QIN Y X, WANG M C, TIAN Y C, et al. Over-expression of [28] ZHANG L C, LIU G X, ZHAO G Y, et al. Characterization of a wheat R2R3-MYB transcription factor gene, [29] YU Y H, NI Z Y, CHEN Q J, et al. The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in [30] ZHANG L C, ZHAO G Y, JIA J Z, et al. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress[J]. Journal of Experimental Botany, 2012, 63(1):203-214. [31] DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in [32] LIPSICK J S. One billion years of Myb[J]. Oncogene, 1996, 13(2):223-235. [33] KANEIISHII C, SARAI A, SAWAZAKI T, et al. The tryptophan cluster: a hypothetical structure of the DNA-binding domain of the myb protooncogene product[J]. Journal of Biological Chemistry, 1990, 265(32):19990-19995. [34] OGATA K, MORIKAWA S, NAKAMURA H, et al. Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-Myb[J]. Nature Structural Biology, 1995, 2(4):309-320. [35] ROSINSKI J A, ATCHLEY W R. Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin[J]. Journal of Molecular Evolution, 1998, 46(1):74-83. [36] JIN H L, MARTIN C. Multifunctionality and diversity within the plant MYB-gene family[J]. Plant Molecular Biology, 1999, 41(5):577-585. [37] KATIYAR A, SMITA S, LENKA S K, et al. Genome-wide classification and expression analysis of MYB transcription factor families in rice and [38] ZHANG L C, ZHAO G Y, XIA C, et al. Overexpression of a wheat MYB transcription factor gene, [39] GAO F, ZHOU J, DENG R Y, et al. Overexpression of a Tartary buckwheat [40] HUANG Y J, ZHAO H X, GAO F, et al. A R2R3-MYB transcription factor gene, [41] DAI X Y, XU Y Y, MA Q B, et al. Overexpression of an R1R2R3 MYB gene, [42] WU J D, JIANG Y L, LIANG Y N, et al. Expression of the maize MYB transcription factor [43] LIAO Y, ZOU H F, WANG H W, et al. Soybean [44] LI X W, WANG Y, YAN F, et al. Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, tolerance to UV radiation and salt stress in transgenic [45] SHEN X J, WANG Y Y, ZHANG Y X, et al. Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and [46] ZHAO Y Y, YANG Z E, DING Y P, et al. Over-expression of an R2R3 MYB gene, [47] DONG W, SONG Y G, ZHAO Z, et al. The [48] DONG W, LIU X J, LI D L, et al. Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa[J]. PLoS One, 2018, 13(9):e0204033. [49] SHEN X J, GUO X W, GUO X, et al. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance[J]. Plant Physiology and Biochemistry, 2017, 112:302-311. [50] SHAN H, CHEN S M, JIANG J F, et al. Heterologous expression of the [51] JIANG X Q, LI S C, DING A Q, et al. The novel rose MYB transcription factor RhMYB96 enhances salt tolerance in transgenic [52] YAO L M, JIANG Y N, LU X X, et al. A R2R3-MYB transcription factor from [53] CHENG L Q, LI X X, HUANG X, et al. Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic [54] LI T, SUN J K, BI Y P, et al. Overexpression of an MYB-related gene [55] VILLALOBOS M A, BARTELS D, ITURRIAGA G. Stress tolerance and glucose insensitive phenotypes in [56] FANG Q, JIANG T Z, XU L X, et al. A salt-stress-regulator from the poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in [57] WEI Q H, LUO Q C, WANG R B, et al. A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants[J]. Frontiers in Plant Science, 2017, 8:1374. [58] LIU H X, ZHOU X Y, DONG N, et al. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to [59] WANG R K, CAO Z H, HAO Y J. Overexpression of a R2R3 MYB gene [60] SHINGOTE P R, KAWAR P G, PAGARIYA M C, et al. SoMYB18, a sugarcane MYB transcription factor improves salt and dehydration tolerance in tobacco[J]. Acta Physiologiae Plantarum, 2015, 37(10):1-12. [61] SHINGOTE P R, KAWAR P G, PAGARIYA M C, et al. Ectopic expression of SsMYB18, a novel MYB transcription factor from [62] GANESAN G, SANKARARAMASUBRAMANIAN H M, HARIKRISHNAN M, et al. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco[J]. Journal of Experimental Botany, 2012, 63(12):4549-4561. [63] SHUKLA P S, GUPTA K, AGARWAL P, et al. Overexpression of a novel SbMYB15 from [64] ZHU N, CHENG S F, LIU X Y, et al. The R2R3-type MYB gene [65] TANG Y H, BAO X X, ZHI Y L, et al. Overexpression of a MYB family gene, [66] XIONG H Y, LI J J, LIU P L, et al. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice[J]. PLoS One, 2014, 9(3):e92913. [67] DOU M Z, FAN S H, YANG S X, et al. Overexpression of [68] CHENG Y J, KIM M D, DENG X P, et al. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor[J]. Journal of Microbiology and Biotechnology, 2013, 23(12):1737-1746. [69] DU Y T, ZHAO M J, WANG C T, et al. Identification and characterization of GmMYB118 responses to drought and salt stress[J]. BMC Plant Biology, 2018, 18(1):1-18. [70] HE Y X, DONG Y S, YANG X D, et al. Functional activation of a novel R2R3-MYB protein gene, [71] CAMPOS J F, CARA B, PÉREZ-MARTÍN F, et al. The tomato mutantars1(altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation[J]. Plant Biotechnology Journal, 2016, 14(6):1345-1356. [72] ZHANG X, CHEN L C, SHI Q H, et al. [73] CUI J, JIANG N, ZHOU X X, et al. Tomato MYB49 enhances resistance to [74] GUO H Y, WANG Y C, WANG L Q, et al. Expression of the MYB transcription factor gene |
| [1] | 胡莹洁, 杜晨琪, 王鎏帆, 寿建昕, 王超, 徐梅, 严旭. 囊泡运输调控植物盐胁迫响应的研究进展[J]. 浙江农业学报, 2025, 37(9): 2003-2011. |
| [2] | 王小慧, 贾赛男, 冯佳宇, 尹馨悦, 刘子萱, 刘雯洁, 赵帅滢, 王姝婧, 唐跃辉. 麻风树JcMYB27基因的克隆与功能分析[J]. 浙江农业学报, 2025, 37(8): 1658-1665. |
| [3] | 师阳阳, 吕丽霞, 脱登峰. 低温弱光胁迫下AMF和PGPR对紫罗兰生长及营养吸收的影响[J]. 浙江农业学报, 2025, 37(8): 1694-1705. |
| [4] | 陈敏, 张巧艳, 王夏君, 王顺利, 郑蔚然. 固相萃取-高效液相色谱法测定植物源性产品中的熊果苷[J]. 浙江农业学报, 2025, 37(8): 1776-1784. |
| [5] | 赵泓雨, 周宇杰, 李建忠, 郑涵, 毕继安, 余初浪, 周宇航, 侯凡, 戴彬凤, 钟列权, 严成其, 张海鹏, 杨勇, 陈剑平, 王成雨. 微塑料对植物影响的研究现状、未来展望与植物激素抵抗微塑料的分子生物学机制[J]. 浙江农业学报, 2025, 37(7): 1595-1604. |
| [6] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [7] | 夏思, 房祥军, 吴伟杰, 刘瑞玲, 陈慧芝, 牛犇, 郜海燕. 发酵型杨梅果浆的制备及其功能风味品质研究[J]. 浙江农业学报, 2025, 37(3): 667-678. |
| [8] | 王湘洁, 韩科峰, 马正波, 楼金, 王帅, 吴良欢. 四翅滨藜在浙江省的生长适应性及其影响因素[J]. 浙江农业学报, 2025, 37(1): 134-144. |
| [9] | 白健, 罗来聪, 李爱新, 赖晓琴, 申展, 刘亮英, 郭圣茂, 张令. 不同生境入侵植物喜旱莲子草碳排放对氮磷输入的响应[J]. 浙江农业学报, 2024, 36(9): 2070-2078. |
| [10] | 展梦琪, 苏傲雪, 侯倩, 张皓宇, 姜欣蕊, 徐艳. 水稻对林丹的吸收累积与代谢组学研究[J]. 浙江农业学报, 2024, 36(9): 2110-2121. |
| [11] | 傅志强, 刘祯, 马春花, 温梦玲, 奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响[J]. 浙江农业学报, 2024, 36(7): 1634-1645. |
| [12] | 朱学慧, 谢辉, 韩守安, 王敏, 白世践, 马云龙, 王艳蒙, 麦斯乐, 潘明启, 张雯. 两种植物生长调节剂对无核白鸡心葡萄果实品质的影响[J]. 浙江农业学报, 2024, 36(6): 1309-1319. |
| [13] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
| [14] | 赵黎明, 王亚新, 蒋文鑫, 段绍彪, 沈雪峰, 郑殿峰, 冯乃杰. 植物生长调节剂对优质粳稻产量、品质与光合特性的影响[J]. 浙江农业学报, 2024, 36(5): 1003-1014. |
| [15] | 鲁子正钢, 朱立新, 季宏兵, 汪康. 鞘氨醇单胞菌修复土壤重金属污染研究进展[J]. 浙江农业学报, 2024, 36(5): 1208-1216. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||