浙江农业学报 ›› 2021, Vol. 33 ›› Issue (2): 326-334.DOI: 10.3969/j.issn.1004-1524.2021.02.16
刘如(), 董畅茹, 张祎雯, 屈铭慧, 张伟, 洒海洋, 陈海燕, 叶文玲, 樊霆*(
)
收稿日期:
2020-08-17
出版日期:
2021-02-25
发布日期:
2021-02-25
通讯作者:
樊霆
作者简介:
樊霆,E-mail: fanting@ahau.edu.cn基金资助:
LIU Ru(), DONG Changru, ZHANG Yiwen, QU Minghui, ZHANG Wei, SA Haiyang, CHEN Haiyan, YE Wenling, FAN Ting*(
)
Received:
2020-08-17
Online:
2021-02-25
Published:
2021-02-25
Contact:
FAN Ting
摘要:
以黑曲霉(Aspergillus niger)TL-F2为供试菌株,黑麦草为供试植物,研究Cd胁迫下A. niger TL-F2的促生特性,以及对黑麦草种子萌发、幼苗生长和Cd含量的影响。结果表明:与不加Cd的对照组相比,低浓度Cd(5 mg·L-1)胁迫下,A. niger TL-F2产吲哚乙酸(IAA)和溶磷的能力无显著变化,但产铁载体的能力显著(P<0.05)降低48.18%;中(20 mg·L-1)、高(50 mg·L-1)浓度Cd胁迫下,A. niger TL-F2产IAA的能力分别显著(P<0.05)降低55.76%和65.69%,溶磷量分别显著(P<0.05)降低50.07%和78.19%,产铁载体的能力分别显著(P<0.05)降低69.71%和80.08%。接种高浓度(1×108 mL-1)A. niger TL-F2有助于促进Cd胁迫下黑麦草种子的萌发和生长,高浓度Cd胁迫下,黑麦草地上部Cd含量较不接菌的显著(P<0.05)增加,增幅为17.95%;接种低浓度(1×106 mL-1)A. niger TL-F2对黑麦草种子萌发、Cd含量无明显促进作用。综合来看,接种适当量的A. niger TL-F2有助于促进Cd胁迫下黑麦草种子的萌发和生长,增加黑麦草地上部Cd含量,可作为黑麦草修复Cd污染水体和土壤的强化措施。
中图分类号:
刘如, 董畅茹, 张祎雯, 屈铭慧, 张伟, 洒海洋, 陈海燕, 叶文玲, 樊霆. 镉胁迫下黑曲霉TL-F2的促生特征及其对黑麦草种子萌发、幼苗生长和镉含量的影响[J]. 浙江农业学报, 2021, 33(2): 326-334.
LIU Ru, DONG Changru, ZHANG Yiwen, QU Minghui, ZHANG Wei, SA Haiyang, CHEN Haiyan, YE Wenling, FAN Ting. Growth-promoting characteristics of Aspergillus niger TL-F2 and its effect on seed germination and cadmium content in seedlings of ryegrass under cadmium stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 326-334.
图1 不同浓度Cd对TL-F2菌株分泌IAA的影响 柱上无相同字母的表示处理间差异显著(P<0.05)。下同。
Fig.1 Effects of different concentrations of Cd on IAA production by A. niger TL-F2 Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
Cd/ (mg·L-1) | 菌浓度 Stain content/mL-1 | GV/% | GR/% | GI | VI | TI | SI |
---|---|---|---|---|---|---|---|
0 | 0 | 72±2 ab | 90±1 a | 45.03±0.93 a | 736.22±15.18 b | 1.00±0.01 ab | 0 de |
0 | 1×106 | 66±4 bcd | 88±3 a | 42.80±2.04 ab | 692.11±32.93 c | 1.00±0.15 ab | -0.01±0.15 de |
0 | 1×108 | 78±3 a | 90±3 a | 46.22±1.43 a | 839.05±26.01 a | 1.13±0.16 a | -0.13±0.16 e |
5 | 0 | 70±2 abc | 90±2 a | 44.39±0.95 ab | 592.68±12.62 d | 0.82±0.06 bc | 0.18±0.03 cd |
5 | 1×106 | 66±4 bcd | 88±2 a | 42.69±1.08 ab | 604.43±15.34 d | 0.87±0.06 b | 0.13±0.06 d |
5 | 1×108 | 74±3 ab | 90±3 a | 45.11±1.82 a | 828.25±33.27 a | 1.14±0.18 a | -0.14±0.18 e |
20 | 0 | 60±3 cd | 84±6 a | 40.45±3.15 ab | 251.19±19.57 f | 0.38±0.04 d | 0.62±0.04 b |
20 | 1×106 | 56±9 d | 84±5 a | 39.13±2.88 b | 191.362±14.06 g | 0.30±0.02 d | 0.70±0.02 b |
20 | 1×108 | 66±5 bcd | 88±2 a | 42.77±1.69 ab | 425.98±16.81 e | 0.62±0.20 c | 0.38±0.20 b |
50 | 0 | 32±6 f | 64±7 b | 26.37±3.47 c | 0 h | 0 e | 1.00 a |
50 | 1×106 | 28±6 f | 64±6 b | 26.45±3.02 c | 0 h | 0 e | 1.00 a |
50 | 1×108 | 44±7 e | 64±8 b | 30.19±4.12 c | 0 h | 0 e | 1.00 a |
表1 不同浓度Cd胁迫下接种TL-F2菌株对黑麦草种子萌发的影响
Table 1 Effects of different concentrations of Cd on ryegrass seed germination with inoculation of A. niger TL-F2
Cd/ (mg·L-1) | 菌浓度 Stain content/mL-1 | GV/% | GR/% | GI | VI | TI | SI |
---|---|---|---|---|---|---|---|
0 | 0 | 72±2 ab | 90±1 a | 45.03±0.93 a | 736.22±15.18 b | 1.00±0.01 ab | 0 de |
0 | 1×106 | 66±4 bcd | 88±3 a | 42.80±2.04 ab | 692.11±32.93 c | 1.00±0.15 ab | -0.01±0.15 de |
0 | 1×108 | 78±3 a | 90±3 a | 46.22±1.43 a | 839.05±26.01 a | 1.13±0.16 a | -0.13±0.16 e |
5 | 0 | 70±2 abc | 90±2 a | 44.39±0.95 ab | 592.68±12.62 d | 0.82±0.06 bc | 0.18±0.03 cd |
5 | 1×106 | 66±4 bcd | 88±2 a | 42.69±1.08 ab | 604.43±15.34 d | 0.87±0.06 b | 0.13±0.06 d |
5 | 1×108 | 74±3 ab | 90±3 a | 45.11±1.82 a | 828.25±33.27 a | 1.14±0.18 a | -0.14±0.18 e |
20 | 0 | 60±3 cd | 84±6 a | 40.45±3.15 ab | 251.19±19.57 f | 0.38±0.04 d | 0.62±0.04 b |
20 | 1×106 | 56±9 d | 84±5 a | 39.13±2.88 b | 191.362±14.06 g | 0.30±0.02 d | 0.70±0.02 b |
20 | 1×108 | 66±5 bcd | 88±2 a | 42.77±1.69 ab | 425.98±16.81 e | 0.62±0.20 c | 0.38±0.20 b |
50 | 0 | 32±6 f | 64±7 b | 26.37±3.47 c | 0 h | 0 e | 1.00 a |
50 | 1×106 | 28±6 f | 64±6 b | 26.45±3.02 c | 0 h | 0 e | 1.00 a |
50 | 1×108 | 44±7 e | 64±8 b | 30.19±4.12 c | 0 h | 0 e | 1.00 a |
Cd/ (mg·L-1) | 菌浓度 Stain content/mL-1 | 根长 Root length/cm | 芽长 Shoot length/cm | 根干重 Root dry weight/g | 芽干重 Shoot dry weight/g |
---|---|---|---|---|---|
0 | 0 | 5.45±0.75 ab | 13.90±0.34 a | 0.011±0.003 a | 0.044±0.011 a |
0 | 1×106 | 5.39±0.69 ab | 13.82±0.47 a | 0.013±0.001 a | 0.044±0.007 a |
0 | 1×108 | 6.05±0.42 a | 14.50±0.72 a | 0.014±0.001 a | 0.044±0.007 a |
5 | 0 | 4.45±0.47 b | 12.16±0.93 b | 0.013±0.001 a | 0.042±0.002 a |
5 | 1×106 | 4.72±0.29 b | 10.97±0.80 c | 0.013±0.001 a | 0.045±0.003 a |
5 | 1×108 | 6.12±0.77 a | 12.36±0.81 b | 0.015±0.003 a | 0.042±0.008 a |
20 | 0 | 2.07±0.51 d | 9.37±0.85 d | 0.011±0.002 a | 0.037±0.004 a |
20 | 1×106 | 1.63±0.26 d | 8.81±0.21 e | 0.015±0.005 a | 0.038±0.007 a |
20 | 1×108 | 3.32±1.08 c | 9.95±0.92 cd | 0.014±0.001 a | 0.044±0.007 a |
50 | 0 | — | 7.27±0.67 e | — | 0.036±0.007 a |
50 | 1×106 | — | 5.83±0.07 f | — | 0.034±0.005 a |
50 | 1×108 | — | 7.52±0.72 e | — | 0.036±0.007 a |
表2 不同浓度Cd胁迫下接种TL-F2菌株对黑麦草生长的影响
Table 2 Effects of different concentrations of Cd on ryegrass seedling growth with inoculation of A. niger TL-F2
Cd/ (mg·L-1) | 菌浓度 Stain content/mL-1 | 根长 Root length/cm | 芽长 Shoot length/cm | 根干重 Root dry weight/g | 芽干重 Shoot dry weight/g |
---|---|---|---|---|---|
0 | 0 | 5.45±0.75 ab | 13.90±0.34 a | 0.011±0.003 a | 0.044±0.011 a |
0 | 1×106 | 5.39±0.69 ab | 13.82±0.47 a | 0.013±0.001 a | 0.044±0.007 a |
0 | 1×108 | 6.05±0.42 a | 14.50±0.72 a | 0.014±0.001 a | 0.044±0.007 a |
5 | 0 | 4.45±0.47 b | 12.16±0.93 b | 0.013±0.001 a | 0.042±0.002 a |
5 | 1×106 | 4.72±0.29 b | 10.97±0.80 c | 0.013±0.001 a | 0.045±0.003 a |
5 | 1×108 | 6.12±0.77 a | 12.36±0.81 b | 0.015±0.003 a | 0.042±0.008 a |
20 | 0 | 2.07±0.51 d | 9.37±0.85 d | 0.011±0.002 a | 0.037±0.004 a |
20 | 1×106 | 1.63±0.26 d | 8.81±0.21 e | 0.015±0.005 a | 0.038±0.007 a |
20 | 1×108 | 3.32±1.08 c | 9.95±0.92 cd | 0.014±0.001 a | 0.044±0.007 a |
50 | 0 | — | 7.27±0.67 e | — | 0.036±0.007 a |
50 | 1×106 | — | 5.83±0.07 f | — | 0.034±0.005 a |
50 | 1×108 | — | 7.52±0.72 e | — | 0.036±0.007 a |
[1] |
ALI W, MAO K, ZHANG H, et al. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries[J]. Journal of Hazardous Materials, 2020,397:122720.
DOI URL PMID |
[2] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R/OL]. (2014-04-17) [2020-08-17]. http://www.gov.cnfootsite1/20140417/782bcb88840814ba158d01.pdf. |
[3] | 樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013,22(10):1727-1736. |
FAN T, YE W L, CHEN H Y, et al. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 2013,22(10):1727-1736.(in Chinese with English abstract) | |
[4] |
RIZWAN M, ALI S, ADREES M, et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere, 2017,182:90-105.
DOI URL PMID |
[5] |
ETESAMI H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018,147:175-191.
DOI URL PMID |
[6] |
WAN X M, LEI M, CHEN T B . Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil[J]. Science of the Total Environment, 2016,563/564:796-802.
DOI URL |
[7] |
ROSTAMI S, AZHDARPOOR A. The application of plant growth regulators to improve phytoremediation of contaminated soils: a review[J]. Chemosphere, 2019,220:818-827.
DOI URL |
[8] |
GERHARDT K E, GERWING P D, GREENBERG B M. Taking phytoremediation from proven technology to accepted practice[J]. Plant Science, 2017,256:170-185.
DOI URL PMID |
[9] | YASUDA M, TAKENOUCHI Y, NITTA Y, et al. Italian ryegrass (Lolium multiflorum lam) as a high-potential bio-ethanol resource[J]. BioEnergy Research, 2015,8(3):1303-1309. |
[10] |
HEALY M G, RYAN P C, FENTON O, et al. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge[J]. Ecotoxicology and Environmental Safety, 2016,130:303-309.
DOI URL PMID |
[11] |
MA Y, OLIVEIRA R S, NAI F J, et al. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil[J]. Journal of Environmental Management, 2015,156:62-69.
DOI URL PMID |
[12] |
DENG Z J, CAO L X. Fungal endophytes and their interactions with plants in phytoremediation: a review[J]. Chemosphere, 2017,168:1100-1106.
DOI URL PMID |
[13] |
ZHANG X F, HU Z H, YAN T X, et al. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays[J]. Ecotoxicology and Environmental Safety, 2019,171:352-360.
DOI URL PMID |
[14] | PETRICCIONE M, PATRE D, FERRANTE P, et al. Effects of Pseudomonas fluorescens seed bioinoculation on heavy metal accumulation for Mirabilis jalapa phytoextraction in smelter-contaminated soil[J]. Water, Air, & Soil Pollution, 2013,224(8):1-17. |
[15] | JIANG Q Y, TAN S Y, ZHUO F, et al. Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum[J]. Applied Soil Ecology, 2016,98:112-120. |
[16] | 田野, 张会慧, 孟祥英, 等. 镉(Cd)污染土壤接种丛枝菌根真菌(Glomus mosseae)对黑麦草生长和光合的影响[J]. 草地学报, 2013,21(1):135-141. |
TIAN Y, ZHANG H H, MENG X Y, et al. Effects of arbuscular mycorrhizal fungi (Glomus mosseae) on growth and photosynjournal characteristics of Lolium perenne L. under Cd contaminated soil[J]. Acta Agrestia Sinica, 2013,21(1):135-141.(in Chinese with English abstract) | |
[17] | 江玲, 杨芸, 徐卫红, 等. 黑麦草-丛枝菌根对不同番茄品种抗氧化酶活性、镉积累及化学形态的影响[J]. 环境科学, 2014,35(6):2349-2357. |
JIANG L, YANG Y, XU W H, et al. Effects of ryegrass and arbuscular mycorrhiza on activities of antioxidant enzymes, accumulation and chemical forms of cadmium in different varieties of tomato[J]. Environmental Science, 2014,35(6):2349-2357.(in Chinese with English abstract) | |
[18] |
HAN S J, LI X N, AMOMBO E, et al. Cadmium tolerance of perennial ryegrass induced by Aspergillus aculeatus[J]. Frontiers in Microbiology, 2018,9:1579.
URL PMID |
[19] | 李定心, 樊霆, 唐子阳, 等. Cu(Ⅱ)胁迫下黑曲霉TL-F2谷胱甘肽系统的响应[J]. 农业环境科学学报, 2015,34(5):852-858. |
LI D X, FAN T, TANG Z Y, et al. Responses of glutathione system of Aspergillus niger TL-F2 to Cu(Ⅱ) stress[J]. Journal of Agro-Environment Science, 2015,34(5):852-858.(in Chinese with English abstract) | |
[20] | 赵思崎, 王敬敬, 杨宗政, 等. 微生物复合菌剂的制备[J]. 微生物学通报, 2020,47(5):1492-1502. |
ZHAO S Q, WANG J J, YANG Z Z, et al. Preparation of microbial compound agents[J]. Microbiology China, 2020,47(5):1492-1502.(in Chinese with English abstract) | |
[21] | 王欢, 王敬敬, 徐松, 等. 有机磷降解菌的筛选及其促生特性[J]. 微生物学报, 2017,57(5):667-680. |
WANG H, WANG J J, XU S, et al. Screening and growth promoting characteristics of efficient organophosphate-degradation bacteria[J]. Acta Microbiologica Sinica, 2017,57(5):667-680.(in Chinese with English abstract) | |
[22] | AHEMAD M, KHAN M S. Effects of insecticides on plant-growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19[J]. Pesticide Biochemistry and Physiology, 2011,100(1):51-56. |
[23] |
ELIAS F, WOYESSA D, MULETA D. Phosphate solubilization potential of rhizosphere fungi isolated from plants in jimma zone, southwest Ethiopia[J]. International Journal of Microbiology, 2016,2016:5472601.
DOI URL PMID |
[24] | BAAKZA A, VALA A K, DAVE B P, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats[J]. Journal of Experimental Marine Biology and Ecology, 2004,311(1):1-9. |
[25] | 刘玉玲, 彭鸥, 铁柏清, 等. Delftia sp. B9对镉胁迫下水稻种子萌发及幼苗镉积累的影响[J]. 农业环境科学学报, 2019,38(8):1855-1863. |
LIU Y L, PENG O, TIE B Q, et al. Effects of Delftia sp. B9 on rice seed germination and cadmium accumulation in rice seedlings under Cd stress[J]. Journal of Agro-Environment Science, 2019,38(8):1855-1863.(in Chinese with English abstract) | |
[26] | WILKINS D A. The measurement of tolerance to edaphic factors by means of root growth[J]. New Phytologist, 1978,80(3):623-633. |
[27] |
XIE Y, LI X N, HUANG X B, et al. Characterization of the Cd-resistant fungus Aspergillus aculeatus and its potential for increasing the antioxidant activity and photosynthetic efficiency of rice[J]. Ecotoxicology and Environmental Safety, 2019,171:373-381.
URL PMID |
[28] | LUBNA, ASAF S, HAMAYUN M, et al. Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid[J]. Journal of Plant Interactions, 2018,13(1):100-111. |
[29] |
MESA J, MATEOS-NARANJO E, CAVIEDES M A, et al. Scouting contaminated estuaries: heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima[J]. Marine Pollution Bulletin, 2015,90(1/2):150-159.
DOI URL |
[30] |
GLICK B R, PENROSE D M, LI J P. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria[J]. Journal of Theoretical Biology, 1998,190(1):63-68.
DOI URL PMID |
[31] | JOHNSTON H W. The solubilization of phosphate: the action of various organic compounds on dicalcium and tricalcium phosphate[J]. NZJ Science and Technology, 1952,33:436-446. |
[32] | 刘娟, 张乃明, 何云. 黑曲霉素J4对中低品位磷矿粉的溶磷效果及重金属释放的影响[J]. 生态环境学报, 2020,29(6):1260-1267. |
LIU J, ZHANG N M, HE Y. Effect of Aspergillus niger J4 on phosphate dissolution and release of heavy metals in medium and low grade phosphate powder[J]. Ecology and Environmental Sciences, 2020,29(6):1260-1267.(in Chinese with English abstract) | |
[33] |
BABU A G, SHIM J, BANG K S, et al. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil[J]. Journal of Environmental Management, 2014,132:129-134.
DOI URL PMID |
[34] |
HUANG Z Z, HE K, SONG Z X, et al. Alleviation of heavy metal and silver nanoparticle toxicity and enhancement of their removal by hydrogen sulfide in Phanerochaete chrysosporium[J]. Chemosphere, 2019,224:554-561.
DOI URL PMID |
[35] |
LI X X, ZHANG X, WANG X L, et al. Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum[J]. Chemosphere, 2019,224:716-725.
DOI URL PMID |
[36] | 鲜靖苹, 王勇, 张平. 外源茉莉酸甲酯对镉胁迫下多年生黑麦草种子萌发及幼苗生理的影响[J]. 西北师范大学学报(自然科学版), 2019,55(6):74-82. |
XIAN J P, WANG Y, ZHANG P. Effects of exogenous methyl jasmonate on seed germination and physiological characteristics of Lolium perenne under cadmium stress[J]. Journal of Northwest Normal University (Natural Science), 2019,55(6):74-82.(in Chinese with English abstract) | |
[37] | ESPANANY A, FALLAH S, TADAYYON A. Seed priming improves seed germination and reduces oxidative stress in black cumin (Nigella sativa) in presence of cadmium[J]. Industrial Crops and Products, 2016,79:195-204. |
[38] | 张媛媛, 李加米, 李晓平, 等. 多年生黑麦草种子萌发及幼苗生长对镉胁迫的响应研究[J]. 乡村科技, 2018(28):90-91. |
ZHANG Y Y, LI J M, LI X P, et al. Study on the response of perennial ryegrass seed germination and seedling growth to cadmium stress[J]. Xiangcun Keji, 2018(28):90-91.(in Chinese) | |
[39] | 曲同宝, 杨塍希, 马文育, 等. 铅(Pb2+)和镉(Cd2+)对火炬树种子萌发及幼苗生长的影响 [J]. 中南林业科技大学学报, 2020,40(1):30-36. |
QU T B, YANG C X, MA W Y, et al. Effects of Pb2+ and Cd2+ on seed germination and seedling growth of Rhus typhina[J]. Journal of Central South University of Forestry & Technology, 2020,40(1):30-36.(in Chinese with English abstract) | |
[40] | 李冬, 王艳芳, 王悦华, 等. 外源褪黑素对镉胁迫下豌豆种子萌发、幼苗抗性生理及镉含量的影响[J]. 核农学报, 2019,33(11):2271-2279. |
LI D, WANG Y F, WANG Y H, et al. Effects of exogenous melatonin on seed germination, seedling resistance physiological and Cd content of pea under cadmium stress[J]. Journal of Nuclear Agricultural Sciences, 2019,33(11):2271-2279.(in Chinese with English abstract) | |
[41] | 王涛, 张海利, 邹路易, 等. 聚多曲霉菌对Cd胁迫下芥菜种子萌发、生长和Cd吸收的影响[J]. 植物资源与环境学报, 2018,27(3):25-32. |
WANG T, ZHANG H L, ZOU L Y, et al. Effect of Aspergillus sydowii on seed germination, growth, and Cd uptake of Brassica juncea under Cd stress[J]. Journal of Plant Resources and Environment, 2018,27(3):25-32.(in Chinese with English abstract) | |
[42] | 陆仲烟, 宋正国, 郭军康, 等. 伯克氏菌对水稻种子萌发及初生幼苗耐镉性的影响[J]. 农业资源与环境学报, 2013,30(6):87-90. |
LU Z Y, SONG Z G, GUO J K, et al. Effects of Burkholderia on rice seed germination and Cd-tolerance of rice seedlings[J]. Journal of Agricultural Resources and Environment, 2013,30(6):87-90.(in Chinese with English abstract) | |
[43] | EUN S O, SHIK YOUN H, LEE Y. Lead disturbs microtubule organization in the root meristem of Zea mays[J]. Physiologia Plantarum, 2000,110(3):357-365. |
[44] | 史鼎鼎, 梁小迪, 徐少慧, 等. EDTA与耐性细菌对黑麦草吸收复合污染红壤中铅镉的影响[J]. 农业环境科学学报, 2018,37(8):1634-1641. |
SHI D D, LIANG X D, XU S H, et al. Effects of EDTA and resistant bacteria on the uptake of Pb and Cd by ryegrass grown in Pb and Cd-contaminated soil[J]. Journal of Agro-Environment Science, 2018,37(8):1634-1641.(in Chinese with English abstract) | |
[45] |
NDEDDY AKA R J, BABALOLA O O. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea[J]. International Journal of Phytoremediation, 2016,18(2):200-209.
DOI URL PMID |
[1] | 谷建诚, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李华, 李凝玉. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 2020, 32(6): 963-970. |
[2] | 朱森林, 梅忠, 邢承华. 缺磷抑制拟南芥对镉的吸收[J]. 浙江农业学报, 2020, 32(5): 804-809. |
[3] | 邹传, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李凝玉, 李华. 不同粒径腐殖酸颗粒对土壤有效态镉的影响[J]. 浙江农业学报, 2019, 31(4): 616-623. |
[4] | 谢杰, 董爱琴, 徐昌旭, 苏金平, 范芳, 胡美蓉, 刘佳. 紫云英长期还田对稻田土壤Cd含量与形态的影响[J]. 浙江农业学报, 2019, 31(12): 2084-2094. |
[5] | 李洋, 刘凯, 魏吉鹏, 张兰, 李鑫, 韩文炎, 李青云. 不同浓度EGCG对NaCl胁迫下黄瓜种子萌发及其抗性的影响[J]. 浙江农业学报, 2018, 30(7): 1160-1167. |
[6] | 姜武, 吴志刚, 陈松林, 陶正明. 镉胁迫对铁皮石斛叶片抗氧化酶活性的影响及动力学分析[J]. 浙江农业学报, 2017, 29(9): 1421-1429. |
[7] | 邵金彩, 刘玉霞, 杨佳鑫, 徐兴龙, 张启翔, 李庆卫. 盐胁迫对蜡梅种子萌发及幼苗生长的影响[J]. 浙江农业学报, 2017, 29(7): 1139-1143. |
[8] | 尤方芳1,赵铭钦1,*,陈发元1,孙翠红1,许跃奇1,李慧2,金洪石3,金江华3. 生物炭与不同肥料配施对镉胁迫下烟株生长的影响[J]. 浙江农业学报, 2016, 28(3): 489-. |
[9] | 曹莎, 刘冰, 周泓, 夏宜平. 激素处理对杜鹃花自交与杂交种子萌发的影响[J]. 浙江农业学报, 2016, 28(10): 1695-1703. |
[10] | 舒英杰1,周玉丽2,胡能兵1,时侠清1. 硝酸铈对低温和亚适温下苦瓜种子萌发及幼苗部分生理指标的影响[J]. 浙江农业学报, 2015, 27(9): 1575-. |
[11] | 郭晓静1,2,胡承孝1,2,赵小虎1,2,*,谭启玲1,2,孙学成1,2. 不同种植模式下蔬菜吸收积累镉的差异[J]. 浙江农业学报, 2015, 27(8): 1387-. |
[12] | 周芳如,杨友才*,兰时乐. 高效去除镉污染真菌的筛选与鉴定[J]. 浙江农业学报, 2015, 27(4): 636-. |
[13] | 朱强,邹梦辉,安黎,田曾元,郭予琦*. 6种园林树种水浸液对作物的化感作用 [J]. 浙江农业学报, 2014, 26(5): 1252-. |
[14] | 孙洪助;王虹;沈建华;郭世荣;朱为民;*;许爽. 不同比例红蓝光对生菜种子萌发及幼苗生长的影响[J]. , 2014, 26(3): 0-603608. |
[15] | 郭江波;唐炳;王建英;蔡禄;辛翠花*. 镉胁迫对烟草生理特性的影响[J]. , 2013, 25(6): 0-1283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||