浙江农业学报 ›› 2021, Vol. 33 ›› Issue (3): 383-389.DOI: 10.3969/j.issn.1004-1524.2021.03.01
收稿日期:2020-11-13
出版日期:2021-03-25
发布日期:2021-03-25
作者简介:, 邱红波,E-mail: qhb001122@163.com通讯作者:
邱红波
基金资助:
YANG Mei, HU Xiaolan, SHEN Tao, TAN Kang, LIU Dailing, QIU Hongbo*(
)
Received:2020-11-13
Online:2021-03-25
Published:2021-03-25
Contact:
QIU Hongbo
摘要:
以贵州省常用玉米自交系T32为供体,J51为受体,通过连续多代回交并结合分子标记辅助选择,获得了23个玉米第8染色体单片段代换系。采用自然接种法对该群体进行灰斑病抗性鉴定,并选用在两亲本间均具明显多态性差异的65对SSR标记进行代换系的跟踪检测,通过第8染色体上的29个SSR标记对代换系供体片段进行遗传结构分析。结果表明,23个染色体单片段代换系中供体代换的位点不同,代换片段长度为10.40~129.70 cM,平均长度为36.99 cM,导入片段总长850.67 cM,对第8染色体的覆盖率为80.80%。自然接种灰斑病菌后产生了抗、中抗、感、高感4种表型,其中H3系和H17系发病程度较低,2年的病级均值分别为2.85、2.90,表现为抗病。研究筛选出的2个抗性株系可作为后续研究材料,为玉米灰斑病抗性基因挖掘与抗病育种创建基础。
中图分类号:
杨梅, 胡小兰, 申涛, 谭康, 刘代铃, 邱红波. 玉米第8染色体单片段代换系的构建与灰斑病抗性材料筛选[J]. 浙江农业学报, 2021, 33(3): 383-389.
YANG Mei, HU Xiaolan, SHEN Tao, TAN Kang, LIU Dailing, QIU Hongbo. Construction of single fragment substitution lines of maize 8th chromosome and sreening of resistant maize germplasm to gray leaf spot[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 383-389.
图1 构建染色体片段代换系群体试验方案 T32,供体亲本;J51,受体亲本;F1,两亲本杂交产生的杂种第一代;BC1F1,F1与受体亲本回交产生的回交1代;BC2F1,BC1F1与受体亲本回交产生的回交2代;BC5F1,BC4F1与受体亲本回交产生的回交5代;BC5F2,回交5次的自交2代;MAS,分子标记辅助选择。
Fig.1 Experimental program of constructing chromosome fragment substitution lines T32 was donor parent; J51 was recipient parent; F1 was the first generation of the hybrid produced by the cross between the two parents; BC1F1 was the first generation of backcross that F1 was backcrossed with the recipient parent; BC2F1 was the second generation of the backcross of BC1F1 and the recipient parent; BC5F1 was the backcross of BC4F1 and the recipient parent, resulting in the backcrossing of five generations; BC5F2 was the second generation of selfing that was backcrossed five times; MAS was molecular marker-assisted selection.
图2 代换片段长度计算示意图 X为标记;LMIN为代换片段的最小长度;LMAX为代换片段的最大长度;L为代换片段的估计长度。
Fig.2 Schematic diagram of calculating the length of the substitution segment X, Marker; LMIN, Minimum length of substitution segment; LMAX, Maximum length of substitution segment; L, Estimated length of substitution segment.
| 染色体片 段代换 CSILs | 病级Rating | 抗性评价 Resistance | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2018年 2018 year | 2019年2019 year | 平均 Average | |||||||||
| 勐嘎Mengga | 江东Jiangdong | 勐嘎Mengga | 江东Jiangdong | ||||||||
| 标准差s | 变异范围 Range of variation | 标准差s | 变异范围 Range of variation | 标准差s | 变异范围 Range of variation | 标准差s | 变异范围 Range of variation | ||||
| J51 | 0 | 9~9 | 0 | 9~9 | 0 | 9~9 | 0 | 9~9 | 9.00 | HS | |
| T32 | 0 | 1~1 | 0 | 1~1 | 0 | 1~1 | 0 | 1~1 | 1.00 | HR | |
| H1 | 1.00 | 5~7 | 1.34 | 5~7 | 0.98 | 5~7 | 0.98 | 5~7 | 5.90 | MR | |
| H2 | 1.00 | 7~9 | 1.33 | 5~9 | 0.92 | 7~9 | 0 | 9~9 | 8.30 | HS | |
| H3 | 1.08 | 1~5 | 0.80 | 1~3 | 1.50 | 1~3 | 1.40 | 1~7 | 2.85 | R | |
| H4 | 1.00 | 7~9 | 0.98 | 7~9 | 0.80 | 7~9 | 0.98 | 7~9 | 7.85 | HS | |
| H5 | 1.20 | 5~9 | 0.60 | 7~9 | 0.80 | 7~9 | 0.92 | 7~9 | 8.60 | HS | |
| H6 | 0.60 | 7~9 | 0.60 | 7~9 | 0.80 | 7~9 | 0.92 | 7~9 | 8.15 | HS | |
| H7 | 1.08 | 3~7 | 0.98 | 5~7 | 1.00 | 5~9 | 0.98 | 5~7 | 5.80 | MR | |
| H8 | 0.80 | 7~9 | 0 | 9~9 | 0 | 9~9 | 0.60 | 7~9 | 8.85 | HS | |
| H9 | 1.00 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 8.05 | HS | |
| H10 | 0.92 | 7~9 | 0 | 9~9 | 0.60 | 7~9 | 0.80 | 7~9 | 8.70 | HS | |
| H11 | 0.98 | 7~9 | 0.80 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 8.30 | HS | |
| H12 | 0 | 9~9 | 0.92 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 8.25 | HS | |
| H13 | 0.92 | 7~9 | 0.60 | 7~9 | 0.80 | 7~9 | 0.80 | 7~9 | 8.60 | HS | |
| H14 | 0.80 | 7~9 | 1.28 | 5~9 | 0.92 | 7~9 | 0.60 | 7~9 | 7.95 | HS | |
| H15 | 1.00 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 0.92 | 7~9 | 8.20 | HS | |
| H16 | 1.28 | 5~9 | 1.00 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 7.80 | HS | |
| H17 | 0.60 | 1~3 | 0.60 | 1~3 | 0 | 3~3 | 0 | 3~3 | 2.90 | R | |
| H18 | 0.60 | 7~9 | 0 | 7~7 | 1.20 | 5~9 | 0.98 | 5~7 | 6.75 | S | |
| H19 | 1.33 | 5~9 | 0.80 | 7~9 | 1.00 | 7~9 | 0.92 | 7~9 | 8.20 | HS | |
| H20 | 0.92 | 7~9 | 0.00 | 9~9 | 0.92 | 7~9 | 0.60 | 7~9 | 8.05 | HS | |
| H21 | 0.98 | 7~9 | 0.80 | 7~9 | 0.92 | 7~9 | 1.00 | 7~9 | 8.20 | HS | |
| H22 | 0.60 | 7~9 | 0.92 | 7~9 | 0.80 | 7~9 | 0.98 | 7~9 | 8.50 | HS | |
| H23 | 0.60 | 7~9 | 0.80 | 7~9 | 0.60 | 7~9 | 0.92 | 7~9 | 8.65 | HS | |
表1 染色体片段代换系玉米灰斑病的抗性鉴定
Table 1 Identification of gray spot disease resistance of chromosome segment substitution lines
| 染色体片 段代换 CSILs | 病级Rating | 抗性评价 Resistance | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2018年 2018 year | 2019年2019 year | 平均 Average | |||||||||
| 勐嘎Mengga | 江东Jiangdong | 勐嘎Mengga | 江东Jiangdong | ||||||||
| 标准差s | 变异范围 Range of variation | 标准差s | 变异范围 Range of variation | 标准差s | 变异范围 Range of variation | 标准差s | 变异范围 Range of variation | ||||
| J51 | 0 | 9~9 | 0 | 9~9 | 0 | 9~9 | 0 | 9~9 | 9.00 | HS | |
| T32 | 0 | 1~1 | 0 | 1~1 | 0 | 1~1 | 0 | 1~1 | 1.00 | HR | |
| H1 | 1.00 | 5~7 | 1.34 | 5~7 | 0.98 | 5~7 | 0.98 | 5~7 | 5.90 | MR | |
| H2 | 1.00 | 7~9 | 1.33 | 5~9 | 0.92 | 7~9 | 0 | 9~9 | 8.30 | HS | |
| H3 | 1.08 | 1~5 | 0.80 | 1~3 | 1.50 | 1~3 | 1.40 | 1~7 | 2.85 | R | |
| H4 | 1.00 | 7~9 | 0.98 | 7~9 | 0.80 | 7~9 | 0.98 | 7~9 | 7.85 | HS | |
| H5 | 1.20 | 5~9 | 0.60 | 7~9 | 0.80 | 7~9 | 0.92 | 7~9 | 8.60 | HS | |
| H6 | 0.60 | 7~9 | 0.60 | 7~9 | 0.80 | 7~9 | 0.92 | 7~9 | 8.15 | HS | |
| H7 | 1.08 | 3~7 | 0.98 | 5~7 | 1.00 | 5~9 | 0.98 | 5~7 | 5.80 | MR | |
| H8 | 0.80 | 7~9 | 0 | 9~9 | 0 | 9~9 | 0.60 | 7~9 | 8.85 | HS | |
| H9 | 1.00 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 8.05 | HS | |
| H10 | 0.92 | 7~9 | 0 | 9~9 | 0.60 | 7~9 | 0.80 | 7~9 | 8.70 | HS | |
| H11 | 0.98 | 7~9 | 0.80 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 8.30 | HS | |
| H12 | 0 | 9~9 | 0.92 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 8.25 | HS | |
| H13 | 0.92 | 7~9 | 0.60 | 7~9 | 0.80 | 7~9 | 0.80 | 7~9 | 8.60 | HS | |
| H14 | 0.80 | 7~9 | 1.28 | 5~9 | 0.92 | 7~9 | 0.60 | 7~9 | 7.95 | HS | |
| H15 | 1.00 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 0.92 | 7~9 | 8.20 | HS | |
| H16 | 1.28 | 5~9 | 1.00 | 7~9 | 0.98 | 7~9 | 0.98 | 7~9 | 7.80 | HS | |
| H17 | 0.60 | 1~3 | 0.60 | 1~3 | 0 | 3~3 | 0 | 3~3 | 2.90 | R | |
| H18 | 0.60 | 7~9 | 0 | 7~7 | 1.20 | 5~9 | 0.98 | 5~7 | 6.75 | S | |
| H19 | 1.33 | 5~9 | 0.80 | 7~9 | 1.00 | 7~9 | 0.92 | 7~9 | 8.20 | HS | |
| H20 | 0.92 | 7~9 | 0.00 | 9~9 | 0.92 | 7~9 | 0.60 | 7~9 | 8.05 | HS | |
| H21 | 0.98 | 7~9 | 0.80 | 7~9 | 0.92 | 7~9 | 1.00 | 7~9 | 8.20 | HS | |
| H22 | 0.60 | 7~9 | 0.92 | 7~9 | 0.80 | 7~9 | 0.98 | 7~9 | 8.50 | HS | |
| H23 | 0.60 | 7~9 | 0.80 | 7~9 | 0.60 | 7~9 | 0.92 | 7~9 | 8.65 | HS | |
| 株系编号 Lines number | 供体片段位点 Donor fragment site | 最短长度 Minimum length/cM | 最长长度 Maximum length/cM | 估计长度 Estimated length/cM |
|---|---|---|---|---|
| H1 | umc2356 | 0 | 63.20 | 31.60 |
| H2 | umc2356-bnlg1607-umc1607-umc266d-bnlg1828 | 93.90 | 165.50 | 129.70 |
| H3 | umc1034-csu329 | 1.87 | 62.40 | 32.13 |
| H4 | umc1487 | 0 | 67.99 | 33.00 |
| H5 | umc2354 | 0 | 39.90 | 19.95 |
| H6 | umc1130-umc2367 | 14.40 | 51.60 | 33.00 |
| H7 | umc2218 | 0 | 64.70 | 32.35 |
| H8 | umc226d | 0 | 40.30 | 20.15 |
| H9 | umc1414 | 0 | 80.50 | 40.25 |
| H10 | umc2352a-bnlg1073-umc1304 | 0 | 21.30 | 10.65 |
| H11 | bnlg1828-umc1807 | 14.80 | 36.81 | 25.81 |
| H12 | bnlg1828 | 0 | 31.01 | 15.51 |
| H13 | bnlg2046 | 0 | 25.90 | 12.95 |
| H14 | umc2354-bnlg1863-bnlg1460-umc1302 | 44.20 | 62.58 | 53.39 |
| H15 | phi080 | 0 | 24.30 | 12.15 |
| H16 | bnlg1607-umc1607 | 21.60 | 77.73 | 49.67 |
| H17 | umc1034-csu329-bnlg1828-umc1807-umc2354 | 38.68 | 87.60 | 63.14 |
| H18 | umc1384 | 0 | 56.67 | 28.34 |
| H19 | bnlg1828-umc1807-umc1377-bnlg1460 | 29.68 | 88.00 | 58.84 |
| H20 | umc1139 | 0 | 26.80 | 13.40 |
| H21 | umc2367-bnlg2181-umc1889-umc1316 | 37.20 | 82.80 | 60.00 |
| H22 | umc1807-umc2354-bnlg1863-bnlg1828-umc1807-umc1377 | 54.60 | 84.38 | 69.49 |
| H23 | umc1377 | 0 | 10.40 | 5.20 |
表2 代换片段系的遗传分析
Table 2 Genetic analysis of substitution lines
| 株系编号 Lines number | 供体片段位点 Donor fragment site | 最短长度 Minimum length/cM | 最长长度 Maximum length/cM | 估计长度 Estimated length/cM |
|---|---|---|---|---|
| H1 | umc2356 | 0 | 63.20 | 31.60 |
| H2 | umc2356-bnlg1607-umc1607-umc266d-bnlg1828 | 93.90 | 165.50 | 129.70 |
| H3 | umc1034-csu329 | 1.87 | 62.40 | 32.13 |
| H4 | umc1487 | 0 | 67.99 | 33.00 |
| H5 | umc2354 | 0 | 39.90 | 19.95 |
| H6 | umc1130-umc2367 | 14.40 | 51.60 | 33.00 |
| H7 | umc2218 | 0 | 64.70 | 32.35 |
| H8 | umc226d | 0 | 40.30 | 20.15 |
| H9 | umc1414 | 0 | 80.50 | 40.25 |
| H10 | umc2352a-bnlg1073-umc1304 | 0 | 21.30 | 10.65 |
| H11 | bnlg1828-umc1807 | 14.80 | 36.81 | 25.81 |
| H12 | bnlg1828 | 0 | 31.01 | 15.51 |
| H13 | bnlg2046 | 0 | 25.90 | 12.95 |
| H14 | umc2354-bnlg1863-bnlg1460-umc1302 | 44.20 | 62.58 | 53.39 |
| H15 | phi080 | 0 | 24.30 | 12.15 |
| H16 | bnlg1607-umc1607 | 21.60 | 77.73 | 49.67 |
| H17 | umc1034-csu329-bnlg1828-umc1807-umc2354 | 38.68 | 87.60 | 63.14 |
| H18 | umc1384 | 0 | 56.67 | 28.34 |
| H19 | bnlg1828-umc1807-umc1377-bnlg1460 | 29.68 | 88.00 | 58.84 |
| H20 | umc1139 | 0 | 26.80 | 13.40 |
| H21 | umc2367-bnlg2181-umc1889-umc1316 | 37.20 | 82.80 | 60.00 |
| H22 | umc1807-umc2354-bnlg1863-bnlg1828-umc1807-umc1377 | 54.60 | 84.38 | 69.49 |
| H23 | umc1377 | 0 | 10.40 | 5.20 |
| [1] | 曹国辉 . 玉米灰斑病及抗性研究[J]. 玉米科学, 2009,17(5):152-155. |
| CAO G H . The research advance on resistance to grey leaf spot in maize[J]. Journal of Maize Sciences, 2009,17(5):152-155. (in Chinese with English abstract) | |
| [2] | 刘庆奎 . 玉米灰斑病致病菌鉴定及其遗传多样性研究[D]. 北京: 中国农业科学院, 2013. |
| LIU Q K . Identification and genetic diversty of Cercospora species causing gray leaf spot in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese with English abstract) | |
| [3] | 赵立萍, 王晓鸣, 段灿星 , 等. 中国玉米灰斑病发生现状与未来扩散趋势分析[J]. 中国农业科学, 2015,48(18):3612-3626. |
| ZHAO L P, WANG X M, DUAN C X , et al. Occurrence status and future spreading areas of maize gray leaf spot in China[J]. Scientia Agricultura Sinica, 2015,48(18):3612-3626.(in Chinese with English abstract) | |
| [4] | 宋军锋, 陈华, 田志强 , 等. 玉米灰斑病抗病QTL鉴定和效应分析[J]. 河南农业大学学报, 2019,53(5):677-682. |
| SONG J F, CHEN H, TIAN Z Q , et al. QTL identification and effect analysis of resistance to gray leaf spot in maize[J]. Journal of Henan Agricultural University, 2019,53(5):677-682.(in Chinese with English abstract) | |
| [5] | 段灿星, 董怀玉, 李晓 , 等. 玉米种质资源大规模多年多点多病害的自然发病抗性鉴定[J]. 作物学报, 2020,46(8):1135-1145. |
| DUAN C X, DONG H Y, LI X , et al. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition[J]. Acta Agronomica Sinica, 2020,46(8):1135-1145. | |
| ( (in Chinese with English abstract) | |
| [6] | 董怀玉, 姜钰, 王丽娟 , 等. 玉米种质资源抗灰斑病鉴定与评价[J]. 植物遗传资源学报, 2005,6(4):441-443. |
| DONG H Y, JIANG Y, WANG L J , et al. Evaluation on maize germplasm resources for resistance to gray leaf spot[J]. Journal of Plant Genetic Resources, 2005,6(4):441-443.(in Chinese with English abstract) | |
| [7] | 吕香玲, 李新海, 陈阳 , 等. 玉米种质抗灰斑病鉴定与评价[J]. 玉米科学, 2011,19(6):125-128. |
| LYU X L, LI X H, CHEN Y , et al. Evaluation and identification of resistance to gray leaf spot (GLS) in maize germplasm[J]. Journal of Maize Sciences, 2011,19(6):125-128. (in Chinese with English abstract) | |
| [8] | 谭静, 罗吉, 孙彩梅 , 等. 玉米灰斑病抗性种质与基因位点的研究进展[J]. 种子, 2019,38(8):57-60. |
| TAN J, LUO J, SUN C M , et al. Research progress on resistant germplasm and gene locus to gray leaf spot of maize[J]. Seed, 2019,38(8):57-60.(in Chinese) | |
| [9] | 钟涛 . 玉米灰斑病和茎腐病抗病基因克隆及抗病机理研究[D]. 北京: 中国农业大学, 2019. |
| ZHONG T . Cloning and resistance mechanism of genes for gray leaf spot and stalk rot resistance in maize[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract) | |
| [10] |
LI Z K, FU B Y, GAO Y M , et al. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.)[J]. Plant Molecular Biology, 2005,59(1):33-52.
DOI URL PMID |
| [11] |
LIU S B, ZHOU R H, DONG Y C , et al. Development, utilization of introgression lines using a synthetic wheat as donor[J]. Theoretical and Applied Genetics, 2006,112(7):1360-1373.
DOI URL PMID |
| [12] |
ESHED Y, ZAMIR D . An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL[J]. Genetics, 1995,141(3):1147-1162.
URL PMID |
| [13] |
KORFF M V, WANG H, LÉON J, et al. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum)[J]. Theoretical and Applied Genetics, 2006,112(7):1221-1231.
DOI URL PMID |
| [14] | 杨雯竹 . 玉米抗灰斑病的QTL分析[D]. 贵阳: 贵州大学, 2016. |
| YANG W Z . QTL analysis of resistance to gray leaf spot in maize[D]. Guiyang: Guizhou University, 2016. (in Chinese with English abstract) | |
| [15] | 黄必华, 张晓梅, 肖卫华 , 等. 云南省德宏州玉米灰斑病发生规律及防治技术研究[J]. 作物杂志, 2009(4):80-82. |
| HUANG B H, ZHANG X M, XIAO W H , et al. Occurrence and control techniques of gray leaf soot of maize in Yunnan Province[J]. Crops, 2009(4):80-82. (in Chinese with English abstract) | |
| [16] | SAGHAI-MAROOF M A, BIYASHEV R M, YANG G P , et al. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics[J]. Proceedings of the National Academy of Science, 1994,91(12):5466-5470. |
| [17] | 王晓鸣, 石洁, 晋齐鸣 , 等. 玉米病虫害田间手册[M]. 北京: 中国农业科技出版社, 2010. |
| [18] |
YOUNG N D, TANKSLEY S D . Restriction fragment length polymorphism maps and the concept of graphical genotypes[J]. Theoretical and Applied Genetics, 1989,77(1):95-101.
DOI URL PMID |
| [19] | 吴雯雯, 欧杨虹, 张振良 , 等. 玉米自交系灰斑病抗性配合力及遗传分析[J]. 南方农业学报, 2016,47(8):1313-1317. |
| WU W W, OU Y H, ZHANG Z L , et al. Analysis on combining ability and genetics of resistance to grey leaf spot of maize inbred lines[J]. Journal of Southern Agriculture, 2016,47(8):1313-1317. (in Chinese with English abstract) | |
| [20] |
ZHANG Y, XU L, FAN X M , et al. QTL mapping of resistance to gray leaf spot in maize[J]. Theoretical and Applied Genetics, 2012,125(8):1797-1808.
DOI URL PMID |
| [21] | 曹国辉 . 玉米抗灰斑病种质鉴定与QTL定位的初步研究[D]. 北京: 中国农业科学院, 2008. |
| CAO G H . Preliminary studies on germplasm evaluation and QTL mapping for resistance to gray leaf spot in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese with English abstract) |
| [1] | 许卫猛, 徐妍, 陈国立. 基于多种分析方法的糯玉米品质综合评价[J]. 浙江农业学报, 2025, 37(9): 1840-1848. |
| [2] | 闫沛中, 陈亮, 张生银, 刘斌. 水肥耦合对景电灌区膜下滴灌玉米产量及水肥利用效率的影响[J]. 浙江农业学报, 2025, 37(9): 1849-1859. |
| [3] | 关秀生, 刘铁山, 王娟, 张茂林, 刘春晓, 董瑞, 关海英, 刘强, 徐扬, 何春梅. 玉米NF-YA家族基因的生物信息学分析与克隆[J]. 浙江农业学报, 2025, 37(8): 1605-1614. |
| [4] | 咸若彤, 缪青梅, 彭城, 陈笑芸, 杨蕾, 徐晓丽, 魏巍, 徐俊锋, 李玥莹, 汪小福. 转基因玉米WYN17132转化体特异性实时荧光PCR检测方法的建立与应用[J]. 浙江农业学报, 2025, 37(7): 1397-1406. |
| [5] | 王闻琦, 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲. 玉米生物钟基因ZmPRR1-2互作蛋白质的筛选[J]. 浙江农业学报, 2025, 37(5): 977-986. |
| [6] | 王晓阳, 李强, 赵武云, 戴飞, 严兆荣, 王久鑫. 铲式青贮玉米起茬及残膜回收联合作业机设计与试验[J]. 浙江农业学报, 2024, 36(9): 2132-2145. |
| [7] | 李清超, 杨珊, 张登峰, 刘建新, 孙开利, 吴迅. 四百八十七份玉米地方种质资源穗部性状的表型多样性[J]. 浙江农业学报, 2024, 36(7): 1481-1491. |
| [8] | 柴荣耀, 游雨欣, 邱海萍, 郭峻宁, 张震, 李斌, 沈升法, 王艳丽. 甘薯抗茎腐病鉴定技术的建立及种质资源抗性分析[J]. 浙江农业学报, 2024, 36(3): 569-578. |
| [9] | 周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31. |
| [10] | 冷益丰, 罗樊, 陈从顺, 丁鑫, 蔡光泽. 基于GBS测序的全基因组SNP揭示大凉山玉米地方品种资源的亲缘关系与遗传分化[J]. 浙江农业学报, 2024, 36(1): 32-47. |
| [11] | 马启良, 杨小明, 胡水星, 黄子鸿, 祁亨年. 基于Mask RCNN和视觉技术的玉米种子发芽自动检测方法[J]. 浙江农业学报, 2023, 35(8): 1927-1936. |
| [12] | 雷联. 膜下滴灌调亏对制种玉米植株生长、产量和水分利用的影响[J]. 浙江农业学报, 2023, 35(7): 1542-1549. |
| [13] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
| [14] | 王宁柯, 张瑞, 章胜勇. 机械化服务程度和农地经营规模对玉米生产效率的影响[J]. 浙江农业学报, 2023, 35(3): 698-707. |
| [15] | 郑冉, 吕丹, 武清贵, 邸晓红, 朱通通, 邱冠杰, 罗红兵. 玉米C型胞质不育系S37-2败育的生物学与生理生化机制分析[J]. 浙江农业学报, 2023, 35(2): 259-265. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||