浙江农业学报 ›› 2021, Vol. 33 ›› Issue (5): 861-872.DOI: 10.3969/j.issn.1004-1524.2021.05.12
张矞勋1,2(
), 王磊1,2,*(
), 璩向宁1,2, 曹媛1,2, 吴梦瑶1,2, 于瑞鑫1,2, 孙源3
收稿日期:2020-09-25
出版日期:2021-05-25
发布日期:2021-05-25
作者简介:*王磊,E-mail:WL8999@163.com通讯作者:
王磊
基金资助:
ZHANG Yuxun1,2(
), WANG Lei1,2,*(
), QU Xiangning1,2, CAO Yuan1,2, WU Mengyao1,2, YU Ruixin1,2, SUN Yuan3
Received:2020-09-25
Online:2021-05-25
Published:2021-05-25
Contact:
WANG Lei
摘要:
叶面积指数(leaf area index,LAI)是植被冠层重要的结构参数之一,与冠层生理过程密切相关,也是植被遥感领域关注的重要参数之一。本研究对已在轨运行7年的高分一号卫星WFV传感器的植被监测性能进行评测,以吉林省农安县典型玉米分布区作为研究区域,结合地面同步观测的叶面积指数和冠层光谱等实测数据,借助归一化植被指数(NDVI)、比植被指数(RVI)、大气阻抗植被指数(ARVI)、土壤调节植被指数(SAVI)、修改性土壤调节植被指数(MSAVI)这5种植被指数,对比分析地面实测光谱与GF-1/WFV光谱对玉米冠层叶面积指数的估算能力。通过决定系数(R2)、均方根误差(RMSE)、相对误差(RE)和预测残差(RPD)等参数筛选最优模型。研究结果显示,各种植被指数与LAI之间的相关性均表现为地面实测光谱高于GF-1/WFV星载光谱;对比不同植被指数与LAI的相关性发现,地面光谱和星上光谱构造的植被指数中,均表现为MSAVI与LAI的相关性最高;基于地面光谱和星上光谱的MSAVI构建的估算模型中,R2最高值所对应的函数类型不同,基于地面光谱的函数中,R2最高值对应的是指数模型,而基于GF-1/WFV星上光谱的函数中,二项式的R2最高。
中图分类号:
张矞勋, 王磊, 璩向宁, 曹媛, 吴梦瑶, 于瑞鑫, 孙源. GF-1/WFV在玉米叶面积指数估算中的应用研究[J]. 浙江农业学报, 2021, 33(5): 861-872.
ZHANG Yuxun, WANG Lei, QU Xiangning, CAO Yuan, WU Mengyao, YU Ruixin, SUN Yuan. Application research of GF-1/WFV data in estimation of maize leaf area index[J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 861-872.
| 植被指数 Vegetation index | 函数类型 Function type | 实测光谱数据Measured spectrum data | 高分一号GF-1 | ||
|---|---|---|---|---|---|
| R2 | 调整R2 Residual sum of squares | R2 | 调整R2 Residual sum of squares | ||
| NDVI | 线性Linear function | 0.738 | 0.722 | 0.625 | 0.609 |
| 对数Logarithmic function | 0.737 | 0.728 | 0.635 | 0.620 | |
| 二次Quadratic function | 0.737 | 0.708 | 0.685 | 0.657 | |
| 幂Power function | 0.747 | 0.734 | 0.613 | 0.579 | |
| 指数Exponential function | 0.757 | 0.740 | 0.602 | 0.585 | |
| RVI | 线性Linear function | 0.700 | 0.687 | 0.548 | 0.530 |
| 对数Logarithmic function | 0.736 | 0.722 | 0.592 | 0.576 | |
| 二次Quadratic function | 0.731 | 0.712 | 0.669 | 0.642 | |
| 幂Power function | 0.718 | 0.704 | 0.583 | 0.566 | |
| 指数Exponential function | 0.693 | 0.677 | 0.534 | 0.515 | |
| ARVI | 线性Linear function | 0.687 | 0.653 | 0.680 | 0.667 |
| 对数Logarithmic function | 0.649 | 0.636 | 0.682 | 0.669 | |
| 二次Quadratic function | 0.670 | 0.648 | 0.682 | 0.657 | |
| 幂Power function | 0.688 | 0.680 | 0.674 | 0.661 | |
| 指数Exponential function | 0.716 | 0.704 | 0.671 | 0.657 | |
| SAVI | 线性Linear function | 0.771 | 0.760 | 0.671 | 0.655 |
| 对数Logarithmic function | 0.765 | 0.754 | 0.682 | 0.667 | |
| 二次Quadratic function | 0.764 | 0.732 | 0.714 | 0.685 | |
| 幂Power function | 0.763 | 0.751 | 0.654 | 0.638 | |
| 指数Exponential function | 0.757 | 0.745 | 0.642 | 0.625 | |
| MSAVI | 线性Linear function | 0.808 | 0.798 | 0.676 | 0.650 |
| 对数Logarithmic function | 0.808 | 0.798 | 0.693 | 0.678 | |
| 二次Quadratic function | 0.808 | 0.787 | 0.742 | 0.716 | |
| 幂Power function | 0.812 | 0.802 | 0.665 | 0.639 | |
| 指数Exponential function | 0.814 | 0.804 | 0.656 | 0.619 | |
表1 植被指数不同函数类型相关性对比
Table 1 Correlation comparison of different function types of vegetation index
| 植被指数 Vegetation index | 函数类型 Function type | 实测光谱数据Measured spectrum data | 高分一号GF-1 | ||
|---|---|---|---|---|---|
| R2 | 调整R2 Residual sum of squares | R2 | 调整R2 Residual sum of squares | ||
| NDVI | 线性Linear function | 0.738 | 0.722 | 0.625 | 0.609 |
| 对数Logarithmic function | 0.737 | 0.728 | 0.635 | 0.620 | |
| 二次Quadratic function | 0.737 | 0.708 | 0.685 | 0.657 | |
| 幂Power function | 0.747 | 0.734 | 0.613 | 0.579 | |
| 指数Exponential function | 0.757 | 0.740 | 0.602 | 0.585 | |
| RVI | 线性Linear function | 0.700 | 0.687 | 0.548 | 0.530 |
| 对数Logarithmic function | 0.736 | 0.722 | 0.592 | 0.576 | |
| 二次Quadratic function | 0.731 | 0.712 | 0.669 | 0.642 | |
| 幂Power function | 0.718 | 0.704 | 0.583 | 0.566 | |
| 指数Exponential function | 0.693 | 0.677 | 0.534 | 0.515 | |
| ARVI | 线性Linear function | 0.687 | 0.653 | 0.680 | 0.667 |
| 对数Logarithmic function | 0.649 | 0.636 | 0.682 | 0.669 | |
| 二次Quadratic function | 0.670 | 0.648 | 0.682 | 0.657 | |
| 幂Power function | 0.688 | 0.680 | 0.674 | 0.661 | |
| 指数Exponential function | 0.716 | 0.704 | 0.671 | 0.657 | |
| SAVI | 线性Linear function | 0.771 | 0.760 | 0.671 | 0.655 |
| 对数Logarithmic function | 0.765 | 0.754 | 0.682 | 0.667 | |
| 二次Quadratic function | 0.764 | 0.732 | 0.714 | 0.685 | |
| 幂Power function | 0.763 | 0.751 | 0.654 | 0.638 | |
| 指数Exponential function | 0.757 | 0.745 | 0.642 | 0.625 | |
| MSAVI | 线性Linear function | 0.808 | 0.798 | 0.676 | 0.650 |
| 对数Logarithmic function | 0.808 | 0.798 | 0.693 | 0.678 | |
| 二次Quadratic function | 0.808 | 0.787 | 0.742 | 0.716 | |
| 幂Power function | 0.812 | 0.802 | 0.665 | 0.639 | |
| 指数Exponential function | 0.814 | 0.804 | 0.656 | 0.619 | |
| 数据 Data | 植被指数 Vegetation index | 函数类型 Function type | R2 | 调整R2 Residual sum of squares |
|---|---|---|---|---|
| 实测光谱数据 | NDVI | 指数Exponential function | 0.757 | 0.740 |
| Measured spectrum data | RVI | 对数Logarithmic function | 0.736 | 0.722 |
| ARVI | 指数Exponential function | 0.716 | 0.704 | |
| SAVI | 线性Linear function | 0.771 | 0.760 | |
| MSAVI | 指数Exponential function | 0.814 | 0.804 | |
| 高分一号 | NDVI | 二次Quadratic function | 0.684 | 0.657 |
| GF-1/WFV | RVI | 二次Quadratic function | 0.669 | 0.642 |
| ARVI | 对数Logarithmic function | 0.682 | 0.669 | |
| SAVI | 二次Quadratic function | 0.714 | 0.685 | |
| MSAVI | 二次Quadratic function | 0.742 | 0.716 |
表2 实测光谱数据和GF-1/WFV传感器数据植被指数模型的最优函数类型
Table 2 Optimal function type of vegetation index model based on measurement spectral data and GF-1/WFV sensor data
| 数据 Data | 植被指数 Vegetation index | 函数类型 Function type | R2 | 调整R2 Residual sum of squares |
|---|---|---|---|---|
| 实测光谱数据 | NDVI | 指数Exponential function | 0.757 | 0.740 |
| Measured spectrum data | RVI | 对数Logarithmic function | 0.736 | 0.722 |
| ARVI | 指数Exponential function | 0.716 | 0.704 | |
| SAVI | 线性Linear function | 0.771 | 0.760 | |
| MSAVI | 指数Exponential function | 0.814 | 0.804 | |
| 高分一号 | NDVI | 二次Quadratic function | 0.684 | 0.657 |
| GF-1/WFV | RVI | 二次Quadratic function | 0.669 | 0.642 |
| ARVI | 对数Logarithmic function | 0.682 | 0.669 | |
| SAVI | 二次Quadratic function | 0.714 | 0.685 | |
| MSAVI | 二次Quadratic function | 0.742 | 0.716 |
| 数据 Data | 植被指数 Vegetation index | 函数类型 Function type | 表达式 Expression |
|---|---|---|---|
| 实测光谱数据 | NDVI | 指数Exponential function | y =0.0493e4.7955x |
| Measured spectrum data | RVI | 对数Logarithmic function | y=1.9421ln(x)-1.9457 |
| ARVI | 指数Exponential function | y=0.1341e3.8751x | |
| SAVI | 线性Linear function | y =12.197x-12.596 | |
| MSAVI | 指数Exponential | y =0.0019e8.0142x | |
| 高分一号 | NDVI | 二次Polynomial function | y =-105.51x2+166.75x - 61.886 |
| GF-1/WFV | RVI | 二次Polynomial function | y=-0.1668x2+2.6269x-6.4054 |
| ARVI | 对数Logarithmic function | y=8.3808ln(x)+5.9208 | |
| SAVI | 二次Polynomial function | y=-116.16x2+123.92x - 28.995 | |
| MSAVI | 二次Polynomial function | y=-96.689x2+102.23x - 22.956 |
表3 实测光谱数据和GF-1/WFV传感器数据计算植被指数与LAI的拟合方程
Table 3 Fitting equation of LAI and vegetation index constructed by measured spectral data and GF-1/WFV sensor data
| 数据 Data | 植被指数 Vegetation index | 函数类型 Function type | 表达式 Expression |
|---|---|---|---|
| 实测光谱数据 | NDVI | 指数Exponential function | y =0.0493e4.7955x |
| Measured spectrum data | RVI | 对数Logarithmic function | y=1.9421ln(x)-1.9457 |
| ARVI | 指数Exponential function | y=0.1341e3.8751x | |
| SAVI | 线性Linear function | y =12.197x-12.596 | |
| MSAVI | 指数Exponential | y =0.0019e8.0142x | |
| 高分一号 | NDVI | 二次Polynomial function | y =-105.51x2+166.75x - 61.886 |
| GF-1/WFV | RVI | 二次Polynomial function | y=-0.1668x2+2.6269x-6.4054 |
| ARVI | 对数Logarithmic function | y=8.3808ln(x)+5.9208 | |
| SAVI | 二次Polynomial function | y=-116.16x2+123.92x - 28.995 | |
| MSAVI | 二次Polynomial function | y=-96.689x2+102.23x - 22.956 |
图3 基于地面实测光谱模拟GF-1/WFV波段数据预测模型散点图及拟合曲线
Fig.3 Scatter plot map and curve fitting of predicted model based on measured spectral data of GF-1/WFV analog band
| 指标 Index | 数据来源 Data sources | NDVI | RVI | ARVI | SAVI | MSAVI |
|---|---|---|---|---|---|---|
| RE | 高分一号GF-1/WFV | 0.0614 | 0.0665 | 0.0709 | 0.0590 | 0.0581 |
| 实测光谱Measured spectrum | 0.0563 | 0.0560 | 0.0588 | 0.0548 | 0.0476 | |
| RPD | 高分一号GF-1/WFV | 1.6070 | 1.5471 | 1.4936 | 1.7035 | 1.7108 |
| 实测光谱Measured spectrum | 1.7379 | 1.7100 | 1.6533 | 1.7573 | 2.0986 | |
| RMSE | 高分一号GF-1/WFV | 0.2621 | 0.2675 | 0.2937 | 0.2508 | 0.2502 |
| 实测光谱Measured spectrum | 0.2372 | 0.2340 | 0.2561 | 0.2293 | 0.2082 |
表4 估算模型精度
Table 4 Accuracy of estimation models
| 指标 Index | 数据来源 Data sources | NDVI | RVI | ARVI | SAVI | MSAVI |
|---|---|---|---|---|---|---|
| RE | 高分一号GF-1/WFV | 0.0614 | 0.0665 | 0.0709 | 0.0590 | 0.0581 |
| 实测光谱Measured spectrum | 0.0563 | 0.0560 | 0.0588 | 0.0548 | 0.0476 | |
| RPD | 高分一号GF-1/WFV | 1.6070 | 1.5471 | 1.4936 | 1.7035 | 1.7108 |
| 实测光谱Measured spectrum | 1.7379 | 1.7100 | 1.6533 | 1.7573 | 2.0986 | |
| RMSE | 高分一号GF-1/WFV | 0.2621 | 0.2675 | 0.2937 | 0.2508 | 0.2502 |
| 实测光谱Measured spectrum | 0.2372 | 0.2340 | 0.2561 | 0.2293 | 0.2082 |
| 植被指数 Vegetation index | 高分一号 GF-1 | 实测光谱 Measured spectrum |
|---|---|---|
| NDVI | 0.833** | 0.854** |
| RVI | 0.806** | 0.858** |
| ARVI | 0.825** | 0.781** |
| SAVI | 0.853** | 0.862** |
| MSAVI | 0.857** | 0.894** |
表5 地面实测光谱和GF-1/WFV的LAI观测值与预测值相关性
Table 5 Correlation between LAI observed values and predicted values of ground measured spectral data and GF-1/WFV
| 植被指数 Vegetation index | 高分一号 GF-1 | 实测光谱 Measured spectrum |
|---|---|---|
| NDVI | 0.833** | 0.854** |
| RVI | 0.806** | 0.858** |
| ARVI | 0.825** | 0.781** |
| SAVI | 0.853** | 0.862** |
| MSAVI | 0.857** | 0.894** |
| [1] | 王枭轩, 孟庆岩, 张海香, 等. 基于粒子群神经网络模型反演玉米、小麦叶面积指数[J]. 浙江农业学报, 2019,31(7):1170-1176. |
| WANG X X, MENG Q Y, ZHANG H X, et al. Inversion of maize and wheat leaf area index based on particle swarm optimization neural network model[J]. Acta Agriculturae Zhejiangensis, 2019,31(7):1170-1176.(in Chinese with English abstract) | |
| [2] |
高林, 王晓菲, 顾行发, 等. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017,41(12):1273-1288.
DOI |
| GAO L, WANG X F, GU X F, et al. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating[J]. Chinese Journal of Plant Ecology, 2017,41(12):1273-1288.(in Chinese with English abstract) | |
| [3] | 叶舒, 范文义, 孟庆岩. 基于高分一号数据的PROSAIL模型叶面积指数反演[J]. 森林工程, 2016,32(4):18-21. |
| YE S, FAN W Y, MENG Q Y. Leaf area index retrieval of GF-1 using PROSAIL[J]. Forest Engineering, 2016,32(4):18-21.(in Chinese with English abstract) | |
| [4] | 马磊, 闫浩文, 何毅, 等. 2001-2015年喜马拉雅南麓地区植被变化遥感监测[J]. 干旱区地理, 2017,40(2):405-414. |
| MA L, YAN H W, HE Y, et al. Vegetation changes in south Himalayas areas based on remote sensing monitoring during 2001-2015[J]. Arid Land Geography, 2017,40(2):405-414.(in Chinese with English abstract) | |
| [5] | 刘珺, 庞鑫, 李彦荣, 等. 夏玉米叶面积指数遥感反演研究[J]. 农业机械学报, 2016,47(9):309-317. |
| LIU J, PANG X, LI Y R, et al. Inversion study on leaf area index of summer maize using remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(9):309-317.(in Chinese with English abstract) | |
| [6] | 蒋丽伟, 张家琦, 赵一臣, 等. 北京山区典型林分生长季叶面积指数动态变化[J]. 林业资源管理, 2019(2):132-136. |
| JIANG L W, ZHANG J Q, ZHAO Y C, et al. Dynamic change of leaf area index in the growing season of typical forests in Beijing mountainous area[J]. Forest Resources Management, 2019(2):132-136.(in Chinese with English abstract) | |
| [7] | 倪衡, 李效顺, 鹿瑶, 等. 基于光谱特征的煤矿覆煤区遥感识别与监测方法研究: 以云南小龙潭矿区为例[J]. 生态与农村环境学报, 2019,35(1):9-15. |
| NI H, LI X S, LU Y, et al. Research on remote sensing recognition and monitoring method of coal-covered area based on spectral characteristics: a case study of Xiaolongtan mining area[J]. Journal of Ecology and Rural Environment, 2019,35(1):9-15.(in Chinese with English abstract) | |
| [8] | 刘婷, 陈晨, 范文义, 等. 基于不同空间尺度遥感影像估算森林叶面积指数的差异[J]. 应用生态学报, 2019,30(5):1687-1698. |
| LIU T, CHEN C, FAN W Y, et al. Variation of leaf area index estimation in forests based on remote sensing images of different spatial scales[J]. Chinese Journal of Applied Ecology, 2019,30(5):1687-1698.(in Chinese with English abstract) | |
| [9] | 李军玲, 彭记永. 不同生育时期冬小麦叶面积指数地面高光谱遥感模型研究[J]. 麦类作物学报, 2018,38(8):979-987. |
| LI J L, PENG J Y. Estimation of winter wheat LAI at different growth stages based on canopy hyperspectral remote sensing system[J]. Journal of Triticeae Crops, 2018,38(8):979-987.(in Chinese with English abstract) | |
| [10] |
CHEN J M, BLACK T A. Foliage area and architecture of plant canopies from sunfleck size distributions[J]. Agricultural and Forest Meteorology, 1992,60(3/4):249-266.
DOI URL |
| [11] | 覃泽林, 谢国雪, 李宇翔, 等. 多时相高分一号影像在丘陵地区大宗农作物提取中的应用[J]. 南方农业学报, 2017,48(1):181-188. |
| QIN Z L, XIE G X, LI Y X, et al. Application of multi-temporal GF-1 image in extraction of staple crops in hilly region[J]. Journal of Southern Agriculture, 2017,48(1):181-188.(in Chinese with English abstract) | |
| [12] | 郭燕, 武喜红, 程永政, 等. 用高分一号数据提取玉米面积及精度分析[J]. 遥感信息, 2015,30(6):31-36. |
| GUO Y, WU X H, CHENG Y Z, et al. Maize recognition and accuracy evaluation based on high resolution remote sensing(GF-1)data[J]. Remote Sensing Information, 2015,30(6):31-36.(in Chinese with English abstract) | |
| [13] | 邱鹏勋, 汪小钦, 茶明星, 等. 基于TWDTW的时间序列GF-1 WFV农作物分类[J]. 中国农业科学, 2019,52(17):2951-2961. |
| QIU P X, WANG X Q, CHA M X, et al. Crop identification based on TWDTW method and time series GF-1 WFV[J]. Scientia Agricultura Sinica, 2019,52(17):2951-2961.(in Chinese with English abstract) | |
| [14] | 王磊, 耿君, 杨冉冉, 等. 高分一号卫星影像特征及其在草地监测中的应用[J]. 草地学报, 2015,23(5):1093-1100. |
| WANG L, GENG J, YANG R R, et al. Characteristics and application of GF-1 image in grassland monitoring[J]. Acta Agrestia Sinica, 2015,23(5):1093-1100.(in Chinese with English abstract) | |
| [15] | 李晓彤, 覃先林, 刘树超, 等. 基于GF-1 WFV数据森林叶面积指数估算[J]. 国土资源遥感, 2019,31(3):80-86. |
| LI X T, QIN X L, LIU S C, et al. Estimation of forest leaf area index based on GF-1 WFV data[J]. Remote Sensing for Land & Resources, 2019,31(3):80-86.(in Chinese with English abstract) | |
| [16] | CHEN Q C, ZHANG Z L, LIU P F, et al. Monitoring of growth parameters of sweet corn using CGMD302 spectrometer[J]. Agricultural Science & Technology, 2015,16(2):364-368. |
| [17] | 刘明, 冯锐, 纪瑞鹏, 等. 基于MODIS-NDVI的春玉米叶面积指数和地上生物量估算[J]. 中国农学通报, 2015,31(6):80-87. |
| LIU M, FENG R, JI R P, et al. Estimation of leaf area index and aboveground biomass of spring maize by MODIS-NDVI[J]. Chinese Agricultural Science Bulletin, 2015,31(6):80-87.(in Chinese with English abstract) | |
| [18] | 易秋香. 基于Sentinel-2多光谱数据的棉花叶面积指数估算[J]. 农业工程学报, 2019,35(16):189-197. |
| YI Q X. Remote estimation of cotton LAI using Sentinel-2 multispectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(16):189-197.(in Chinese with English abstract) | |
| [19] | 孙华林, 耿石英, 王小燕, 等. 晚播条件下基于高光谱的小麦叶面积指数估算方法[J]. 光谱学与光谱分析, 2019,39(4):1199-1206. |
| SUN H L, GENG S Y, WANG X Y, et al. Estimation method of wheat leaf area index based on hyperspectral under late sowing conditions[J]. Spectroscopy and Spectral Analysis, 2019,39(4):1199-1206.(in Chinese with English abstract) | |
| [20] | 郭建彪, 马新明, 时雷, 等. 冬小麦叶面积指数的品种差异性与高光谱估算研究[J]. 麦类作物学报, 2018,38(3):340-347. |
| GUO J B, MA X M, SHI L, et al. Variety variation and hyperspectral estimate model of leaf area index of winter wheat[J]. Journal of Triticeae Crops, 2018,38(3):340-347.(in Chinese with English abstract) | |
| [21] | 李正国, 杨鹏, 唐华俊, 等. 近20年来东北三省春玉米物候期变化趋势及其对温度的时空响应[J]. 生态学报, 2013,33(18):5818-5827. |
| LI Z G, YANG P, TANG H J, et al. Trends of spring maize phenophases and spatio-temporal responses to temperature in three provinces of Northeast China during the past 20 years[J]. Acta Ecologica Sinica, 2013,33(18):5818-5827.(in Chinese with English abstract) | |
| [22] | 淮贺举, 李存军, 李奇峰, 等. 东北地区春玉米物候期时空动态变化特征[J]. 玉米科学, 2019,27(1):81-86. |
| HUAI H J, LI C J, LI Q F, et al. Changes of spring maize phenology from 1981 to 2012 in the northeast plain of China[J]. Journal of Maize Sciences, 2019,27(1):81-86.(in Chinese with English abstract) | |
| [23] | 蔡亮红, 丁建丽. 基于改进植被指数土壤水分遥感反演[J]. 干旱区地理, 2017,40(6):1248-1255. |
| CAI L H, DING J L. Remote sensing inversion of soil moisture based on modified vegetation index[J]. Arid Land Geography, 2017,40(6):1248-1255.(in Chinese with English abstract) | |
| [24] | 朱绪超, 袁国富, 易小波, 等. 基于Landsat 8 OLI影像的塔里木河下游河岸林叶面积指数反演[J]. 干旱区地理, 2014,37(6):1248-1256. |
| ZHU X C, YUAN G F, YI X B, et al. Leaf area index inversion of riparian forest in the lower basin of Tarim River based on Landsat 8 OLI images[J]. Arid Land Geography, 2014,37(6):1248-1256.(in Chinese with English abstract) | |
| [25] |
HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988,25(3):295-309.
DOI URL |
| [26] |
ALMEIDA A Q, MELLO A A, DÓRIA NETO A L, et al. Empíricas entre características dendrométricas da caatinga brasileira e dados TM Landsat 5.[J]. Pesquisa Agropecuaria Brasileira, 2014,49(4):306-315.
DOI URL |
| [27] | 亚森江·喀哈尔, 茹克亚·萨吾提, 尼加提·卡斯木, 等. 优化光谱指数的露天煤矿区土壤重金属含量估算[J]. 光谱学与光谱分析, 2019,39(8):2486-2494. |
| YASENJIANG K, RUKEYA S, NIJAT K, et al. Estimation of heavy metal contents in soil around open pit coal mine area based on optimized spectral index[J]. Spectroscopy and Spectral Analysis, 2019,39(8):2486-2494.(in Chinese with English abstract) | |
| [28] | 李喆, 胡蝶, 赵登忠, 等. 宽波段遥感植被指数研究进展综述[J]. 长江科学院院报, 2015,32(1):125-130. |
| LI Z, HU D, ZHAO D Z, et al. Research advance of broadband vegetation index using remotely sensed images[J]. Journal of Yangtze River Scientific Research Institute, 2015,32(1):125-130.(in Chinese with English abstract) | |
| [29] | 郑踊谦, 董恒, 张城芳, 等. 植被指数与作物叶面积指数的相关关系研究[J]. 农机化研究, 2019,41(10):1-6. |
| ZHENG Y Q, DONG H, ZHANG C F, et al. Study on the relationship between vegetation indices and leaf area index of crop[J]. Journal of Agricultural Mechanization Research, 2019,41(10):1-6.(in Chinese) | |
| [30] |
WANG L, YANG R R, TIAN Q J, et al. Comparative analysis of GF-1 WFV, ZY-3 MUX, and HJ-1 CCD sensor data for grassland monitoring applications[J]. Remote Sensing, 2015,7(2):2089-2108.
DOI URL |
| [31] | 胡古月, 李少达, 杨容浩. 叶面积指数遥感估算的三种回归模型分析[J]. 测绘科学, 2018,43(10):46-50. |
| HU G Y, LI S D, YANG R H. Comparison of three regression models for remote sensing estimation of leaf area index[J]. Science of Surveying and Mapping, 2018,43(10):46-50.(in Chinese with English abstract) |
| [1] | 许卫猛, 徐妍, 陈国立. 基于多种分析方法的糯玉米品质综合评价[J]. 浙江农业学报, 2025, 37(9): 1840-1848. |
| [2] | 闫沛中, 陈亮, 张生银, 刘斌. 水肥耦合对景电灌区膜下滴灌玉米产量及水肥利用效率的影响[J]. 浙江农业学报, 2025, 37(9): 1849-1859. |
| [3] | 关秀生, 刘铁山, 王娟, 张茂林, 刘春晓, 董瑞, 关海英, 刘强, 徐扬, 何春梅. 玉米NF-YA家族基因的生物信息学分析与克隆[J]. 浙江农业学报, 2025, 37(8): 1605-1614. |
| [4] | 咸若彤, 缪青梅, 彭城, 陈笑芸, 杨蕾, 徐晓丽, 魏巍, 徐俊锋, 李玥莹, 汪小福. 转基因玉米WYN17132转化体特异性实时荧光PCR检测方法的建立与应用[J]. 浙江农业学报, 2025, 37(7): 1397-1406. |
| [5] | 王闻琦, 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲. 玉米生物钟基因ZmPRR1-2互作蛋白质的筛选[J]. 浙江农业学报, 2025, 37(5): 977-986. |
| [6] | 王晓阳, 李强, 赵武云, 戴飞, 严兆荣, 王久鑫. 铲式青贮玉米起茬及残膜回收联合作业机设计与试验[J]. 浙江农业学报, 2024, 36(9): 2132-2145. |
| [7] | 李清超, 杨珊, 张登峰, 刘建新, 孙开利, 吴迅. 四百八十七份玉米地方种质资源穗部性状的表型多样性[J]. 浙江农业学报, 2024, 36(7): 1481-1491. |
| [8] | 周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31. |
| [9] | 冷益丰, 罗樊, 陈从顺, 丁鑫, 蔡光泽. 基于GBS测序的全基因组SNP揭示大凉山玉米地方品种资源的亲缘关系与遗传分化[J]. 浙江农业学报, 2024, 36(1): 32-47. |
| [10] | 王宇, 汪泓, 肖玖军, 李可相, 邢丹, 张永亮, 陈阳, 张蓝月. 基于优化植被指数组合的多品种辣椒叶片叶绿素数值估测[J]. 浙江农业学报, 2023, 35(9): 2109-2120. |
| [11] | 马启良, 杨小明, 胡水星, 黄子鸿, 祁亨年. 基于Mask RCNN和视觉技术的玉米种子发芽自动检测方法[J]. 浙江农业学报, 2023, 35(8): 1927-1936. |
| [12] | 雷联. 膜下滴灌调亏对制种玉米植株生长、产量和水分利用的影响[J]. 浙江农业学报, 2023, 35(7): 1542-1549. |
| [13] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
| [14] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
| [15] | 王宁柯, 张瑞, 章胜勇. 机械化服务程度和农地经营规模对玉米生产效率的影响[J]. 浙江农业学报, 2023, 35(3): 698-707. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||