浙江农业学报 ›› 2022, Vol. 34 ›› Issue (4): 746-755.DOI: 10.3969/j.issn.1004-1524.2022.04.11
刘同金1(
), 徐铭婕1, 汪精磊2, 刘良峰3, 崔群香1, 包崇来2,*(
), 王长义1,*(
)
收稿日期:2021-07-30
出版日期:2022-04-25
发布日期:2022-04-28
作者简介:包崇来,E-mail: baocl@mail.zaas.ac.cn通讯作者:
包崇来,王长义
基金资助:
LIU Tongjin1(
), XU Mingjie1, WANG Jinglei2, LIU Liangfeng3, CUI Qunxiang1, BAO Chonglai2,*(
), WANG Changyi1,*(
)
Received:2021-07-30
Online:2022-04-25
Published:2022-04-28
Contact:
BAO Chonglai,WANG Changyi
摘要:
为探究萝卜铝激活苹果酸转运蛋白(ALMT)家族成员对生物和非生物胁迫的响应,本研究通过生物信息学方法对萝卜ALMT家族成员进行鉴定,并利用转录组数据对其进行表达分析。结果显示,萝卜基因组中包含17个ALMT基因,分布于8条染色体。该家族成员外显子数量为5~7个,预测N-端含有5~6个跨膜结构,在染色体上的分布不均匀。萝卜ALMT基因家族成员启动子上有多种激素响应、胁迫响应、组织和器官生长发育与环境响应的顺式作用元件,表明萝卜ALMT基因家族成员的表达受多种条件的调控。对它们在不同组织和发育时期,以及对Agrobacterium tumefaciens的侵染和重金属(铅、镉和铬)胁迫的响应研究发现,RsALMT1和RsALMT13可能参与抵抗A. tumefaciens的侵染;RsALMT3可能调控叶片气孔的开放,而RsALMT7、RsALMT11和RsALMT14可能调控叶片气孔的关闭;RsALMT15可能参与绿肉萝卜根肉中叶绿素的积累;RsALMT16在抵御铅胁迫过程中发挥重要作用。以上结果将为进一步研究萝卜ALMT家族成员在生物和非生物胁迫响应中的功能与分子机制奠定基础。
中图分类号:
刘同金, 徐铭婕, 汪精磊, 刘良峰, 崔群香, 包崇来, 王长义. 萝卜ALMT基因家族的鉴定与表达[J]. 浙江农业学报, 2022, 34(4): 746-755.
LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755.
| 基因名称 Gene name | 登录号 Accession No. | 氨基酸数量 Number of amino acids/aa | 分子量 Molecular weight/u | 等电点 Isoeletric point | 不稳定指数 Instability index | 亲水性 GRAVY | 脂肪指数 Aliphatic index | 跨膜结构 Transmembrane domain | 拟南芥同源基因 Homologue of AtALMT |
|---|---|---|---|---|---|---|---|---|---|
| RsALMT1 | Rsa10013723 | 525 | 58 320.75 | 6.40 | 36.07 | 0.010 | 91.22 | 5 | AT2G17470 |
| RsALMT2 | Rsa10016259 | 542 | 60 681.27 | 8.99 | 42.72 | -0.072 | 96.88 | 5 | AT5G46600 |
| RsALMT3 | Rsa10035068 | 621 | 70 102.62 | 6.18 | 36.65 | -0.043 | 89.98 | 5 | AT3G18440 |
| RsALMT4 | Rsa10034640 | 491 | 54 643.38 | 8.77 | 32.83 | -0.027 | 99.61 | 5 | AT3G11680 |
| RsALMT5 | Rsa10021670 | 479 | 53 569.17 | 8.30 | 36.44 | 0.014 | 89.37 | 5 | AT4G00910 |
| RsALMT6 | Rsa10022591 | 481 | 53 733.47 | 9.04 | 32.19 | -0.020 | 90.58 | 6 | AT4G00910 |
| RsALMT7 | Rsa10025402 | 543 | 60 482.70 | 8.84 | 40.46 | -0.071 | 95.91 | 6 | AT4G17970 |
| RsALMT8 | Rsa10010851 | 618 | 68 136.96 | 7.59 | 38.48 | -0.174 | 90.95 | 5 | AT5G46610 |
| RsALMT9 | Rsa10020182 | 404 | 45 923.80 | 8.41 | 30.84 | -0.125 | 94.03 | 6 | AT2G27240 |
| RsALMT10 | Rsa10011190 | 489 | 54 469.32 | 9.10 | 32.90 | 0.032 | 104.03 | 5 | AT3G11680 |
| RsALMT11 | Rsa10039953 | 580 | 65 364.87 | 7.21 | 40.72 | -0.098 | 86.60 | 6 | AT1G25480 |
| RsALMT12 | Rsa10038217 | 603 | 67 587.76 | 6.32 | 46.06 | -0.036 | 90.10 | 6 | AT1G18420 |
| RsALMT13 | Rsa10037498 | 505 | 56 082.17 | 6.53 | 40.90 | -0.049 | 97.84 | 5 | AT1G08440 |
| RsALMT14 | Rsa10040558 | 515 | 58 157.37 | 6.11 | 41.97 | -0.104 | 88.62 | 5 | AT1G25480 |
| RsALMT15 | Rsa10041290 | 510 | 56 863.94 | 6.69 | 38.69 | -0.123 | 94.43 | 5 | AT1G08440 |
| RsALMT16 | Rsa10041291 | 471 | 52 544.32 | 6.11 | 42.05 | -0.020 | 98.09 | 5 | AT1G08430 |
| RsALMT17 | Rsa10003573 | 484 | 54 188.99 | 8.59 | 31.96 | 0.067 | 93.22 | 6 | AT4G00910 |
表1 萝卜ALMT家族成员基本信息
Table 1 Information of ALMT gene family members in radish
| 基因名称 Gene name | 登录号 Accession No. | 氨基酸数量 Number of amino acids/aa | 分子量 Molecular weight/u | 等电点 Isoeletric point | 不稳定指数 Instability index | 亲水性 GRAVY | 脂肪指数 Aliphatic index | 跨膜结构 Transmembrane domain | 拟南芥同源基因 Homologue of AtALMT |
|---|---|---|---|---|---|---|---|---|---|
| RsALMT1 | Rsa10013723 | 525 | 58 320.75 | 6.40 | 36.07 | 0.010 | 91.22 | 5 | AT2G17470 |
| RsALMT2 | Rsa10016259 | 542 | 60 681.27 | 8.99 | 42.72 | -0.072 | 96.88 | 5 | AT5G46600 |
| RsALMT3 | Rsa10035068 | 621 | 70 102.62 | 6.18 | 36.65 | -0.043 | 89.98 | 5 | AT3G18440 |
| RsALMT4 | Rsa10034640 | 491 | 54 643.38 | 8.77 | 32.83 | -0.027 | 99.61 | 5 | AT3G11680 |
| RsALMT5 | Rsa10021670 | 479 | 53 569.17 | 8.30 | 36.44 | 0.014 | 89.37 | 5 | AT4G00910 |
| RsALMT6 | Rsa10022591 | 481 | 53 733.47 | 9.04 | 32.19 | -0.020 | 90.58 | 6 | AT4G00910 |
| RsALMT7 | Rsa10025402 | 543 | 60 482.70 | 8.84 | 40.46 | -0.071 | 95.91 | 6 | AT4G17970 |
| RsALMT8 | Rsa10010851 | 618 | 68 136.96 | 7.59 | 38.48 | -0.174 | 90.95 | 5 | AT5G46610 |
| RsALMT9 | Rsa10020182 | 404 | 45 923.80 | 8.41 | 30.84 | -0.125 | 94.03 | 6 | AT2G27240 |
| RsALMT10 | Rsa10011190 | 489 | 54 469.32 | 9.10 | 32.90 | 0.032 | 104.03 | 5 | AT3G11680 |
| RsALMT11 | Rsa10039953 | 580 | 65 364.87 | 7.21 | 40.72 | -0.098 | 86.60 | 6 | AT1G25480 |
| RsALMT12 | Rsa10038217 | 603 | 67 587.76 | 6.32 | 46.06 | -0.036 | 90.10 | 6 | AT1G18420 |
| RsALMT13 | Rsa10037498 | 505 | 56 082.17 | 6.53 | 40.90 | -0.049 | 97.84 | 5 | AT1G08440 |
| RsALMT14 | Rsa10040558 | 515 | 58 157.37 | 6.11 | 41.97 | -0.104 | 88.62 | 5 | AT1G25480 |
| RsALMT15 | Rsa10041290 | 510 | 56 863.94 | 6.69 | 38.69 | -0.123 | 94.43 | 5 | AT1G08440 |
| RsALMT16 | Rsa10041291 | 471 | 52 544.32 | 6.11 | 42.05 | -0.020 | 98.09 | 5 | AT1G08430 |
| RsALMT17 | Rsa10003573 | 484 | 54 188.99 | 8.59 | 31.96 | 0.067 | 93.22 | 6 | AT4G00910 |
图3 萝卜(Rs)、拟南芥(AT)与甘蓝型油菜(Bna)ALMT基因家族成员编码的蛋白质进化树
Fig.3 Phylogenetic tree of proteins coded by ALMT gene family members in Raphanus sativus(Rs), Arabidopsis(AT) and Brassica napus(Bna)
图5 萝卜ALMT基因家族成员的组织表达模式 ESS、SS、EES、RES和MS分别为芽期、破肚期、膨大前期、膨大盛期和成熟期。
Fig.5 Expression profiles of RsALMT genes in various tissues ESS, seedling stage; SS, splitting stage; EES, early expanding stage; RES, rapid expanding stage; MS, mature stage.
图6 绿肉萝卜与白肉萝卜不同发育时期肉质根ALMT基因家族成员的表达 S1,9月25日,S2,10月2日,S3,10月9日,S4,10月16日,S5,10月23日。
Fig.6 Expression profiles of RsALMT genes in different growing stage of taproot of white and green flesh S1, September 25th; S2, October 2nd; S3, October 9th; S4, October 16th; S5, October 23th.
图7 抗和感根癌病萝卜接种A. tumefaciens 7 d后下胚轴ALMT基因家族成员的表达 Line_18和Line_19分别为抗和感根癌病萝卜株系;CK为接种LB培养基7 d,T为接种A. tumefaciens处理7 d。
Fig.7 Expression profiles of ALMT gene family members in 7 d after incubated with A. tumefaciens of hypocotyls Line_18 and Line_19 was resistance and susceptible radish inbred lines to A. tumefaciens, respectively. CK, 7 d after incubated with LB medium; T, 7 d after incubated with A. tumefaciens.
图8 重金属(铅、镉和铬)胁迫萝卜根中ALMT基因家族成员的表达
Fig.8 Expression profiles of ALMT gene family members in radish root with heavy metal (lead, cadmium and chromium) stress treatment
| [1] | SHARMA T, DREYER I, KOCHIAN L, et al. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security[J]. Frontiers in Plant Science, 2016, 7: 1488. |
| [2] |
BARBIER-BRYGOO H, DE ANGELI A, FILLEUR S, et al. Anion channels/transporters in plants: from molecular bases to regulatory networks[J]. Annual Review of Plant Biology, 2011, 62: 25-51.
DOI URL |
| [3] |
LIU J, ZHOU M X. The ALMT gene family performs multiple functions in plants[J]. Agronomy, 2018, 8(2): 20.
DOI URL |
| [4] |
XU M Y, GRUBER B D, DELHAIZE E, et al. The barley anion channel, HvALMT 1, has multiple roles in guard cell physiology and grain metabolism[J]. Physiologia Plantarum, 2015, 153(1): 183-193.
DOI URL |
| [5] | MOTODA H, SASAKI T, KANO Y, et al. The membrane topology of ALMT1, an aluminum-activated malate transport protein in wheat (Triticum aestivum)[J]. Plant Signaling & Behavior, 2007, 2(6): 467-472. |
| [6] |
PENG W T, WU W W, PENG J C, et al. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation[J]. Journal of Integrative Plant Biology, 2018, 60(3): 216-231.
DOI URL |
| [7] |
SASAKI T, YAMAMOTO Y, EZAKI B, et al. A wheat gene encoding an aluminum-activated malate transporter[J]. The Plant Journal, 2004, 37(5): 645-653.
DOI URL |
| [8] |
KOVERMANN P, MEYER S, HÖRTENSTEINER S, et al. The Arabidopsis vacuolar malate channel is a member of the ALMT family[J]. The Plant Journal, 2007, 52(6): 1169-1180.
DOI URL |
| [9] |
KOBAYASHI Y, KOBAYASHI Y, SUGIMOTO M, et al. Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers[J]. Plant Physiology, 2013, 162(2): 732-740.
DOI URL |
| [10] | HOEKENGA O A, MARON L G, PIÑEROS M A, et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(25): 9738-9743. |
| [11] | LIGABA A, MARON L, SHAFF J, et al. Maize ZmALMT2 is a is a root anion transporter that mediates constitutive root malate efflux[J]. Plant, Cell & Environment, 2012, 35(7): 1185-1200. |
| [12] | CHEN Z C, YOKOSHO K, KASHINO M, et al. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus[J]. The Plant Journal, 2013, 76(1): 10-23. |
| [13] |
LIANG C Y, PIÑEROS M A, TIAN J, et al. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils[J]. Plant Physiology, 2013, 161(3): 1347-1361.
DOI URL |
| [14] |
LIGABA A, KATSUHARA M, RYAN P R, et al. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells[J]. Plant Physiology, 2006, 142(3): 1294-1303.
DOI URL |
| [15] |
CHEN Q, WU K H, WANG P, et al. Overexpression of MsALMT1, from the aluminum-sensitive Medicago sativa, enhances malate exudation and aluminum resistance in tobacco[J]. Plant Molecular Biology Reporter, 2013, 31(3): 769-774.
DOI URL |
| [16] |
EISENACH C, BAETZ U, HUCK N V, et al. ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis[J]. The Plant Cell, 2017, 29(10): 2552-2569.
DOI URL |
| [17] |
DE ANGELI A, ZHANG J, MEYER S, et al. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis[J]. Nature Communications, 2013, 4: 1804.
DOI URL |
| [18] |
MEYER S, SCHOLZ-STARKE J, DE ANGELI A, et al. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation[J]. The Plant Journal, 2011, 67(2): 247-257.
DOI URL |
| [19] | SASAKI T, MORI I C, FURUICHI T, et al. Closing plant stomata requires a homolog of an aluminum-activated malate transporter[J]. Plant & Cell Physiology, 2010, 51(3): 354-365. |
| [20] |
DE ANGELI A, BAETZ U, FRANCISCO R, et al. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera[J]. Planta, 2013, 238(2): 283-291.
DOI URL |
| [21] | MA B Q, LIAO L, ZHENG H Y, et al. Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple[J/OL]. The Plant Genome, 2015, 8(3):1-14.[2021-07-20]. https://acsess.onlinelibrary.wiley.com/doi/10.3835/plantgenome2015.03.0016. |
| [22] |
XU M Y, GRUBER B D, DELHAIZE E, et al. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism[J]. Physiologia Plantarum, 2015, 153(1): 183-193.
DOI URL |
| [23] |
XU L L, QIAO X, ZHANG M Y, et al. Genome-Wide analysis of aluminum-activated malate transporter family genes in six Rosaceae species, and expression analysis and functional characterization on malate accumulation in Chinese white pear[J]. Plant Science, 2018, 274: 451-465.
DOI URL |
| [24] |
MA B Q, YUAN Y Y, GAO M, et al. Genome-wide identification, molecular evolution, and expression divergence of aluminum-activated malate transporters in apples[J]. International Journal of Molecular Sciences, 2018, 19(9): 2807.
DOI URL |
| [25] |
MA X W, AN F, WANG L F, et al. Genome-wide identification of aluminum-activated malate transporter (ALMT) gene family in rubber trees (Hevea brasiliensis) highlights their involvement in aluminum detoxification[J]. Forests, 2020, 11(2): 142.
DOI URL |
| [26] | 张慧, 李泽锋, 徐国云, 等. 普通烟草ALMT基因家族的鉴定与表达分析[J]. 烟草科技, 2020, 53(5): 1-9. |
| ZHANG H, LI Z F, XU G Y, et al. Identification and expression analysis of ALMT gene family in Nicotiana tabacum[J]. Tobacco Science & Technology, 2020, 53(5): 1-9. (in Chinese with English abstract) | |
| [27] |
DIN I, ULLAH I, WANG W, et al. Genome-wide analysis, evolutionary history and response of ALMT family to phosphate starvation in Brassica napus[J]. International Journal of Molecular Sciences, 2021, 22(9): 4625.
DOI URL |
| [28] | ZHANG X H, YUE Z, MEI S Y, et al. A de novo genome of a Chinese radish cultivar[J]. Horticultural Plant Journal, 2015, 1(3): 155-164. |
| [29] |
HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2014, 31(8): 1296-1297.
DOI URL |
| [30] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
DOI URL |
| [31] |
WANG J, QIU Y, WANG X, et al. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis[J]. Scientific Reports, 2017, 7: 16040.
DOI URL |
| [32] | 刘同金, 张晓雪, 张晓辉, 等. 萝卜全基因组中LBD基因家族成员的鉴定与分析[J]. 植物遗传资源学报, 2019, 20(1): 168-178. |
| LIU T J, ZHANG X X, ZHANG X H, et al. Genome-wide characterization of the LBD gene family in radish[J]. Journal of Plant Genetic Resources, 2019, 20(1): 168-178. (in Chinese with English abstract) | |
| [33] |
LI Y Y, HAN M, WANG R H, et al. Comparative transcriptome analysis identifies genes associated with chlorophyll levels and reveals photosynthesis in green flesh of radish taproot[J]. PLoS One, 2021, 16(5): e0252031.
DOI URL |
| [34] |
TKACHENKO A A, GANCHEVA M S, TVOROGOVA V E, et al. Transcriptome analysis of crown gall in radish (Raphanus sativus L.) inbred lines[J]. Annals of Applied Biology, 2021, 178(3): 527-548.
DOI URL |
| [35] |
XU L, WANG Y, LIU W, et al. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.)[J]. Plant Science, 2015, 236: 313-323.
DOI URL |
| [36] | XIE Y, YE S, WANG Y, et al. Transcriptome-based gene profiling provides novel insights into the characteristics of radish root response to Cr stress with next-generation sequencing[J]. Frontiers in Plant Science, 2015, 6: 202. |
| [37] |
WANG Y, XU L, CHEN Y L, et al. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing[J]. PLoS One, 2013, 8(6): e66539.
DOI URL |
| [38] |
LIGABA A, KOCHIAN L, PIÑEROS M. Phosphorylation at S 384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat[J]. The Plant Journal, 2009, 60(3): 411-423.
DOI URL |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 祁英吉, 刘舒亚, 兰寒韵, 王雪梅, 孙甜甜, 李书含, 黎秋男, 黄小丽, 耿毅, 陈德芳, 欧阳萍. 四川地区1株鲤春病毒血症病毒的分离鉴定与全基因组分析[J]. 浙江农业学报, 2025, 37(7): 1430-1440. |
| [3] | 何昌熙, 郑建波, 马建波, 贾永义, 刘士力, 蒋文枰, 迟美丽, 程顺, 李飞. 翘嘴鲌Runx2b基因的克隆与表达特征分析[J]. 浙江农业学报, 2024, 36(5): 1024-1031. |
| [4] | 李亚东, 罗小波, 彭潇, 杨光乾, 金月月, 祖贵东, 田欢, 张万萍. 萝卜SNP和InDel分子标记开发及与表型性状关联分析[J]. 浙江农业学报, 2024, 36(5): 1055-1066. |
| [5] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
| [6] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
| [7] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. |
| [8] | 赵凌吉, 廖香娇, 刘德春, 胡威, 匡柳青, 宋杰, 易明亮, 刘勇, 杨莉. 桃溪蜜柚果实贮藏期有机酸含量变化及相关基因表达分析[J]. 浙江农业学报, 2024, 36(11): 2510-2520. |
| [9] | 宁文楷, 李静, 沈晓东, 吴鑫, 李臻锋. 南瓜干燥过程中β-胡萝卜素的多源融合预测[J]. 浙江农业学报, 2023, 35(8): 1876-1887. |
| [10] | 陈国户, 李广, 温宏伟, 尹倩, 吴思文, 王英, 刘雪晴, 赵龙龙, 桂尚枝, 唐小燕, 汪承刚. 萝卜春化响应相关基因鉴定及表达模式分析[J]. 浙江农业学报, 2023, 35(7): 1626-1637. |
| [11] | 李崇娟, 吕凤仙, 杨鼎, 张丽琴, 兰梅, 杨红丽, 徐学忠, 胡靖锋, 申时品, 吴毓飞, 和江明, 董相书. 萝卜胞质雄性不育(Ogura CMS)芥菜材料的创制[J]. 浙江农业学报, 2023, 35(5): 1058-1068. |
| [12] | 吴娇, 龚成宇, 陈超群, 陈红旭, 刘俊宏, 唐文静, 初元琦, 杨文龙, 张瑶, 龚荣高. 不同海拔黄果柑果实有机酸代谢的生态响应[J]. 浙江农业学报, 2023, 35(4): 853-861. |
| [13] | 张祯, 崔媛媛, 陈春霞, 冯丽丹, 赵勇, 李霁昕, 把灵珍, 孔祥锦, 张煜, 蒋玉梅. 霞多丽葡萄果实降异戊二烯香气物质积累及代谢酶活变化分析[J]. 浙江农业学报, 2023, 35(4): 931-941. |
| [14] | 刘林雨, 张扬, 刘威, 包强, 翁恺麒, 徐欣磊, 张钰, 徐琪, 陈国宏. 国内外5个典型鹅品种线粒体DNA遗传多样性与系统进化分析[J]. 浙江农业学报, 2023, 35(11): 2525-2532. |
| [15] | 李虹仪, 周润盛, 梁笑玲, 张楚玥, 吕祺欣, 杨长华, 张茂. 日粮钙磷水平对马岗鹅生长性能及肝脏基因表达的影响[J]. 浙江农业学报, 2023, 35(11): 2533-2542. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||