浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1141-1151.DOI: 10.3969/j.issn.1004-1524.2022.06.05
李文翔1(), 王芳1,2,3,4,5,6,*(
), 王舰1,2,3,4,5,6
收稿日期:
2022-02-22
出版日期:
2022-06-25
发布日期:
2022-06-30
通讯作者:
王芳
作者简介:
*王芳,E-mail: qhwf324@163.com基金资助:
LI Wenxiang1(), WANG Fang1,2,3,4,5,6,*(
), WANG Jian1,2,3,4,5,6
Received:
2022-02-22
Online:
2022-06-25
Published:
2022-06-30
Contact:
WANG Fang
摘要:
miR397广泛参与植物逆境胁迫响应。本研究从马铃薯叶片中分离出miR397的前体序列,克隆得到StmiR397基因,对潜在靶基因进行预测,采用实时荧光定量PCR(qRT-PCR)方法对低温不同表现型材料进行表达模式分析。结果表明:马铃薯miR397前体序列为81 bp,能形成稳定的茎环结构,成熟序列位于5′端,上游调控区含有温度响应等多种逆境应答作用元件。低温处理下,StmiR397在耐低温材料DR-2叶中上调表达,根中表达无差异,而在低温敏感材料费乌瑞它叶中表达无差异,根中上调表达。通过对预测的10个靶基因进行表达模式分析,初步筛选出反向抑制靶基因氧化还原酶结构域蛋白、锌指家族蛋白和正向激活靶基因磷酸果糖激酶家族蛋白、生长素诱导的β-葡萄糖苷酶,为进一步研究StmiR397与靶基因的调控网络提供了一定参考。
中图分类号:
李文翔, 王芳, 王舰. 马铃薯miR397的克隆及靶基因筛选[J]. 浙江农业学报, 2022, 34(6): 1141-1151.
LI Wenxiang, WANG Fang, WANG Jian. Cloning and target gene screening of miR397 in potato[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1141-1151.
引物名称 Primer name | 引物序列 Primer sequence(5’→3’) | |
---|---|---|
StmiR397-F | ATTGAGTGCAGCGTTGATGAC | |
StmiR397-R | TGATTGAGTGTAGCGTTGATGAAG | |
LAC7-F | CATTTGGATGTTCACTTGCCTTGGG | |
LAC7-R | CTGGTGGAGGAGGAGGTAGCATAG | |
M1C3Q2-F | ACAAGTCATTACTACTGCCGCTTCC | |
M1C3Q2-R | TAGTCCTGCTGCTCCTCCGTTATAC | |
ICE-F | GATGGACAGGGCTTCAATCTTAGGG | |
ICE-R | CGGCGTGGACTCCAGTTCATTATG | |
M1BIR1-F | TCGGCTACATTCACCAACAACACC | |
M1BIR1-R | ACCGCTGAAAGGATTGCTACACTG | |
M0ZH35-F | CGGTGGACAGTGATGGGACATTC | |
M0ZH35-R | AGCCTAAACGAGAACCAGCAAGATC | |
M1BHR0-F | GATCCAGATAACCGCCGCAAGAG | |
M1BHR0-R | TGCCCTTCCTGTCCACAATGTTTAC | |
LAC3-F LAC3-R | CACCACTACCACTGCCATACTTGAG TGGCTGTATCATTGAAGGCTGGAAG | |
M1CV13-F | TACCGAGCATCCAGCGAAGAGG | |
M1CV13-R | GAACCACCCAGAAAACCAAGCAAAG | |
M1C9X3-F | GACCATCCAGCGACTCTTCACTTG | |
M1C9X3-R | TGCCTTTCCAGTGCTTGTAGTTCTC | |
M1AZQ5-F | AGGGAAATGGGAGAGGACAAGAGAG | |
M1AZQ5-R | CTGTATTCGCTGGTCTGCTGATCTG | |
M0ZW04-F | AACCAATCTTCCTCATCGGCAACC | |
M0ZW04-R | GCAGCGAAATTACGGCTTGATGG | |
miR397-F | CGCGATTGAGTGCAGCGTT | |
StA F | AGATGCTTACGCTGGATGGAATGC | |
StA R | TTCCGGTGTGGTTGGATTCTGTTC |
表1 本研究使用引物
Table1 Primers used in this study
引物名称 Primer name | 引物序列 Primer sequence(5’→3’) | |
---|---|---|
StmiR397-F | ATTGAGTGCAGCGTTGATGAC | |
StmiR397-R | TGATTGAGTGTAGCGTTGATGAAG | |
LAC7-F | CATTTGGATGTTCACTTGCCTTGGG | |
LAC7-R | CTGGTGGAGGAGGAGGTAGCATAG | |
M1C3Q2-F | ACAAGTCATTACTACTGCCGCTTCC | |
M1C3Q2-R | TAGTCCTGCTGCTCCTCCGTTATAC | |
ICE-F | GATGGACAGGGCTTCAATCTTAGGG | |
ICE-R | CGGCGTGGACTCCAGTTCATTATG | |
M1BIR1-F | TCGGCTACATTCACCAACAACACC | |
M1BIR1-R | ACCGCTGAAAGGATTGCTACACTG | |
M0ZH35-F | CGGTGGACAGTGATGGGACATTC | |
M0ZH35-R | AGCCTAAACGAGAACCAGCAAGATC | |
M1BHR0-F | GATCCAGATAACCGCCGCAAGAG | |
M1BHR0-R | TGCCCTTCCTGTCCACAATGTTTAC | |
LAC3-F LAC3-R | CACCACTACCACTGCCATACTTGAG TGGCTGTATCATTGAAGGCTGGAAG | |
M1CV13-F | TACCGAGCATCCAGCGAAGAGG | |
M1CV13-R | GAACCACCCAGAAAACCAAGCAAAG | |
M1C9X3-F | GACCATCCAGCGACTCTTCACTTG | |
M1C9X3-R | TGCCTTTCCAGTGCTTGTAGTTCTC | |
M1AZQ5-F | AGGGAAATGGGAGAGGACAAGAGAG | |
M1AZQ5-R | CTGTATTCGCTGGTCTGCTGATCTG | |
M0ZW04-F | AACCAATCTTCCTCATCGGCAACC | |
M0ZW04-R | GCAGCGAAATTACGGCTTGATGG | |
miR397-F | CGCGATTGAGTGCAGCGTT | |
StA F | AGATGCTTACGCTGGATGGAATGC | |
StA R | TTCCGGTGTGGTTGGATTCTGTTC |
图1 StmiR397前体序列PCR扩增 M,Marker A(25~500 bp);1、2、3、4,均为基因片段。
Fig.1 PCR amplification of StmiR397 stem-loop sequence M, Marker A(25-500 bp);1, 2, 3, 4, PCR products of gene.
元件Element | 序列 Sequence | 功能Function |
---|---|---|
TGACG-motif | TGACG | 参与茉莉酸响应的顺式作用调节元件 cis-acting regulatory element involved in the MeJA-responsiveness |
TCA-element | CCATCTTTTT | 参与水杨酸响应的顺式作用元件 cis-acting element involved in salicylic acid responsiveness |
TATC-box | TATCCCA | 参与赤霉素响应的顺式作用元件 cis-acting element involved in gibberellin-responsiveness |
ABRE | ACGTG | 参与脱落酸响应的顺式作用元件 cis-acting element involved in the abscisic acid responsiveness |
TATA-box | ATATAT | 核心启动子元件Core promoter element |
TATA-box | TATA | 核心启动子元件Core promoter element |
TATA-box | TATAAA | 核心启动子元件Core promoter element |
TATA-box | TATAA | 核心启动子元件Core promoter element |
CGTCA-motif | CGTCA | 参与茉莉酸响应的顺式作用调节元件 cis-acting regulatory element involved in the MeJA-responsiveness |
P-box | CCTTTTG | 赤霉素响应元件Gibberellin-responsive element |
CAAT-box | CAAAT | 启动子和增强子区域的常见顺式作用元件 Common cis-acting element in promoter and enhancer regions |
MRE | AACCTAA | 参与光响应MYB结合位点MYB binding site involved in light responsiveness |
3-AF1 binding site | TAAGAGAGGAA | 光响应元件Light responsive element |
TCT-motif | TCTTAC | 光响应元件的一部分Part of a light responsive element |
I-box | gGATAAGGTG | 光响应元件的一部分Part of a light responsive element |
GT1-motif | GGTTAA | 光响应元件Light responsive element |
ARE | AAACCA | 厌氧诱导所必需的顺式作用调节元件 cis-acting regulatory element essential for the anaerobic induction |
G-Box | CACGTT | 参与光响应的顺式作用调节元件 cis-acting regulatory element involved in light responsiveness |
TC-rich repeats | GTTTTCTTAC | 参与防御和应激反应的顺式作用元件 cis-acting element involved in defense and stress responsiveness |
CCAAT-box | CAACGG | MYBHv1结合位点MYBHv1 binding site |
HSE | CTCC | 参与温度响应的顺式作用元件 cis-acting element involved in temperature responsiveness |
表2 StmiR397前体上游启动子顺式作用元件分析
Table 2 Analysis of cis-acting elements in the upstream promoter of StmiR397 precursor
元件Element | 序列 Sequence | 功能Function |
---|---|---|
TGACG-motif | TGACG | 参与茉莉酸响应的顺式作用调节元件 cis-acting regulatory element involved in the MeJA-responsiveness |
TCA-element | CCATCTTTTT | 参与水杨酸响应的顺式作用元件 cis-acting element involved in salicylic acid responsiveness |
TATC-box | TATCCCA | 参与赤霉素响应的顺式作用元件 cis-acting element involved in gibberellin-responsiveness |
ABRE | ACGTG | 参与脱落酸响应的顺式作用元件 cis-acting element involved in the abscisic acid responsiveness |
TATA-box | ATATAT | 核心启动子元件Core promoter element |
TATA-box | TATA | 核心启动子元件Core promoter element |
TATA-box | TATAAA | 核心启动子元件Core promoter element |
TATA-box | TATAA | 核心启动子元件Core promoter element |
CGTCA-motif | CGTCA | 参与茉莉酸响应的顺式作用调节元件 cis-acting regulatory element involved in the MeJA-responsiveness |
P-box | CCTTTTG | 赤霉素响应元件Gibberellin-responsive element |
CAAT-box | CAAAT | 启动子和增强子区域的常见顺式作用元件 Common cis-acting element in promoter and enhancer regions |
MRE | AACCTAA | 参与光响应MYB结合位点MYB binding site involved in light responsiveness |
3-AF1 binding site | TAAGAGAGGAA | 光响应元件Light responsive element |
TCT-motif | TCTTAC | 光响应元件的一部分Part of a light responsive element |
I-box | gGATAAGGTG | 光响应元件的一部分Part of a light responsive element |
GT1-motif | GGTTAA | 光响应元件Light responsive element |
ARE | AAACCA | 厌氧诱导所必需的顺式作用调节元件 cis-acting regulatory element essential for the anaerobic induction |
G-Box | CACGTT | 参与光响应的顺式作用调节元件 cis-acting regulatory element involved in light responsiveness |
TC-rich repeats | GTTTTCTTAC | 参与防御和应激反应的顺式作用元件 cis-acting element involved in defense and stress responsiveness |
CCAAT-box | CAACGG | MYBHv1结合位点MYBHv1 binding site |
HSE | CTCC | 参与温度响应的顺式作用元件 cis-acting element involved in temperature responsiveness |
图5 StmiR397在不同组织中的相对表达量 柱状图上不同小写字母表示差异显著(P <0.05)。下同。
Fig.5 Relative expression of StmiR397 in different tissues Different lowercase letters on the histogram indicate significant difference at P<0.05. The same as below.
名称Name | 基因描述Gene description | 靶向mRNA ID Target mRNA | 起始位置Target start | 终止位置Target end | 得分Score | 靶向比对序列Target aligned Fragment | 碱基配对Match | miRNA比对序列miRNA aligned fragment | 功能Function |
LAC7 | 漆酶7 Laccase-7-like | Soltu.DM.07G016640.1 | 676 | 696 | 1 | AUCAUCAACGCUGCACUCAAU | :::::::::::::::::::: | CAGUAGUUGCGACGUGAGUUA | 催化活性、结合Catalytic activity, binding |
LAC3 | 漆酶3 Laccase-3-like | Soltu.DM.06G032550.1 | 433 | 453 | 1 | GUGAUCAACGCUGCACUCAAU | :: :::::::::::::::::: | CAGUAGUUGCGACGUGAGUUA | 催化活性、结合Catalytic activity, binding |
M1BIR1(PPR) | 含五肽重复序列的蛋白质 Pentatricopeptide repeat-containing protein | Soltu.DM.09G030600.1 | 1021 | 1040 | 6 | GUCAUAACUGCUGCA-UCAAA | ::::: :.:::::: :::: | CAGUAGUUGCGACGUGAGUUA | 生物过程Biological process |
M0ZH35 (APs1) | 天冬氨酸蛋白酶1 Aspartic proteinase 1 | Soltu.DM.01G035170.1 | 674 | 694 | 6 | GUAAGAAAUGCUACACUCAAU | :: : ::.::: :::::::: | CAGUAGUUGCGACGUGAGUUA | 天冬氨酸型内肽酶活性、水解酶活性、非生物刺激响应Aspartic endopeptidase activity, hydrolase activity, abiotic stimulation response |
M1BHR0(CCHC) | 锌指家族蛋白 Zinc knuckle (CCHC-type) family protein | Soltu.DM.05G006320.2 | 18 | 37 | 4 | GUCAUCAAUGUUGC-CUCAAU | ::::::::.:.::: :::::: | CAGUAGUUGCGACGUGAGUUA | mRNA结合、翻译调节活性、锌离子结合、核酸结合mRNA binding, translation regulatory activity, zinc ion binding, nucleic acid binding |
M0ZW04 (Olp) | 氧化还原酶结构域蛋白 Oxidoreductase-like domain-containing protein | Soltu.DM.02G024460.1 | 304 | 323 | 4.5 | GUAAUUU-CGC UGCACUCAAA | :: ::. :::::::::::: | CAGUAGUUGCGACGUGAGUUA | 氧化还原酶活性Oxidoreductase activity |
M1AZQ5 (CTC7) | 含五肽重复序列的蛋白质 Pentatricopeptide repeat-containing protein | Soltu.DM.08G011800.1 | 455 | 476 | 5 | GUCAUCAACGUCUGCAGUUAAU | :::::::::: ::::: :.::: | CAGUAGUUGCGACGUGAGUUA | 蛋白质结合、mRNA结合Protein binding, mRNA binding |
M1C9X3 (MIS12) | 动力蛋白复合物MIS12 homologue | Soltu.DM.03G028560.1 | 177 | 197 | 5 | UUCAUCAACGAGGCACUCAAU | ::::::::: ::::::::: | CAGUAGUUGCGACGUGAGUUA | 细胞过程、细胞成分组织、细胞分裂Cell process, cell composition, tissue, cell division |
M1CV13 (PFP) | 磷酸果糖激酶家族蛋白6-phosphate 1-phosphotransferase subunit alpha | Soltu.DM.12G004610.1 | 1839 | 1859 | 6 | GUCCUGAAAGCUGCACUUAGU | ::: : :: ::::::::.:.: | CAGUAGUUGCGACGUGAGUUA | 6-磷酸果糖激酶活性、 ATP结合、激酶活性、 光合作用Fructokinase-6-phosphate activity, ATP binding, kinase activity, photosynthesis |
M1C3Q2(GHs1) | 生长素诱导的β-葡萄糖苷酶 Auxin-induced beta-glucosidase | Soltu.DM.11G017090.1 | 330 | 349 | 6 | GUGAACAAUGCUGCAC-CAGU | :: : :::.::::::: ::.: | CAGUAGUUGCGACGUGAGUUA | 水解酶活性、分解代谢过程、碳水化合物代谢过程Hydrolase activity, catabolic process, carbohydrate metabolism process |
表3 StmiR397靶基因预测结果
Table 3 Predicted target genes of StmiR397
名称Name | 基因描述Gene description | 靶向mRNA ID Target mRNA | 起始位置Target start | 终止位置Target end | 得分Score | 靶向比对序列Target aligned Fragment | 碱基配对Match | miRNA比对序列miRNA aligned fragment | 功能Function |
LAC7 | 漆酶7 Laccase-7-like | Soltu.DM.07G016640.1 | 676 | 696 | 1 | AUCAUCAACGCUGCACUCAAU | :::::::::::::::::::: | CAGUAGUUGCGACGUGAGUUA | 催化活性、结合Catalytic activity, binding |
LAC3 | 漆酶3 Laccase-3-like | Soltu.DM.06G032550.1 | 433 | 453 | 1 | GUGAUCAACGCUGCACUCAAU | :: :::::::::::::::::: | CAGUAGUUGCGACGUGAGUUA | 催化活性、结合Catalytic activity, binding |
M1BIR1(PPR) | 含五肽重复序列的蛋白质 Pentatricopeptide repeat-containing protein | Soltu.DM.09G030600.1 | 1021 | 1040 | 6 | GUCAUAACUGCUGCA-UCAAA | ::::: :.:::::: :::: | CAGUAGUUGCGACGUGAGUUA | 生物过程Biological process |
M0ZH35 (APs1) | 天冬氨酸蛋白酶1 Aspartic proteinase 1 | Soltu.DM.01G035170.1 | 674 | 694 | 6 | GUAAGAAAUGCUACACUCAAU | :: : ::.::: :::::::: | CAGUAGUUGCGACGUGAGUUA | 天冬氨酸型内肽酶活性、水解酶活性、非生物刺激响应Aspartic endopeptidase activity, hydrolase activity, abiotic stimulation response |
M1BHR0(CCHC) | 锌指家族蛋白 Zinc knuckle (CCHC-type) family protein | Soltu.DM.05G006320.2 | 18 | 37 | 4 | GUCAUCAAUGUUGC-CUCAAU | ::::::::.:.::: :::::: | CAGUAGUUGCGACGUGAGUUA | mRNA结合、翻译调节活性、锌离子结合、核酸结合mRNA binding, translation regulatory activity, zinc ion binding, nucleic acid binding |
M0ZW04 (Olp) | 氧化还原酶结构域蛋白 Oxidoreductase-like domain-containing protein | Soltu.DM.02G024460.1 | 304 | 323 | 4.5 | GUAAUUU-CGC UGCACUCAAA | :: ::. :::::::::::: | CAGUAGUUGCGACGUGAGUUA | 氧化还原酶活性Oxidoreductase activity |
M1AZQ5 (CTC7) | 含五肽重复序列的蛋白质 Pentatricopeptide repeat-containing protein | Soltu.DM.08G011800.1 | 455 | 476 | 5 | GUCAUCAACGUCUGCAGUUAAU | :::::::::: ::::: :.::: | CAGUAGUUGCGACGUGAGUUA | 蛋白质结合、mRNA结合Protein binding, mRNA binding |
M1C9X3 (MIS12) | 动力蛋白复合物MIS12 homologue | Soltu.DM.03G028560.1 | 177 | 197 | 5 | UUCAUCAACGAGGCACUCAAU | ::::::::: ::::::::: | CAGUAGUUGCGACGUGAGUUA | 细胞过程、细胞成分组织、细胞分裂Cell process, cell composition, tissue, cell division |
M1CV13 (PFP) | 磷酸果糖激酶家族蛋白6-phosphate 1-phosphotransferase subunit alpha | Soltu.DM.12G004610.1 | 1839 | 1859 | 6 | GUCCUGAAAGCUGCACUUAGU | ::: : :: ::::::::.:.: | CAGUAGUUGCGACGUGAGUUA | 6-磷酸果糖激酶活性、 ATP结合、激酶活性、 光合作用Fructokinase-6-phosphate activity, ATP binding, kinase activity, photosynthesis |
M1C3Q2(GHs1) | 生长素诱导的β-葡萄糖苷酶 Auxin-induced beta-glucosidase | Soltu.DM.11G017090.1 | 330 | 349 | 6 | GUGAACAAUGCUGCAC-CAGU | :: : :::.::::::: ::.: | CAGUAGUUGCGACGUGAGUUA | 水解酶活性、分解代谢过程、碳水化合物代谢过程Hydrolase activity, catabolic process, carbohydrate metabolism process |
图6 StmiR397靶基因相对表达量分析 a~j分别指示LAC7、LAC3、M1BIR1、MOZH35、MIBHR0、M0ZW04、M1AZQ5、M1C9X3、M1CV13、M1C3Q2。
Fig.6 Relative expression analysis of StmiR397 target genes a-j indicated LAC7, LAC3, M1BIR1, MOZH35, MIBHR0, M0ZW04, M1AZQ5, M1C9X3, M1CV13, M1C3Q2, respectively.
[1] | 刘峻呈, 汪芳, 冯晨, 等. 大豆microRNAs功能性研究进展[J]. 大豆科学, 2019, 38(6): 986-994. |
LIU J C, WANG F, FENG C, et al. Research progress in functions of soybean microRNAs[J]. Soybean Science, 2019, 38(6): 986-994. (in Chinese with English abstract) | |
[2] |
HAUSSER J, ZAVOLAN M. Identification and consequences of miRNA-target interactions: beyond repression of gene expression[J]. Nature Reviews Genetics, 2014, 15(9): 599-612.
DOI URL |
[3] | 吕帝瑾, 赵佳媛, 陈婧, 等. 植物microRNA的研究进展[J]. 植物生理学报, 2013, 49(9): 847-854. |
LÜ D J, ZHAO J Y, CHEN J, et al. Advances in the research of plant microRNA[J]. Plant Physiology Journal, 2013, 49(9): 847-854. (in Chinese with English abstract) | |
[4] |
LLAVE C, XIE Z X, KASSCHAU K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056.
DOI URL |
[5] |
REINHART B J, WEINSTEIN E G, RHOADES M W, et al. microRNAs in plants[J]. Genes & Development, 2002, 16(13): 1616-1626.
DOI URL |
[6] |
PASQUINELLI A E. microRNAs and their targets: recognition, regulation and an emerging reciprocal relationship[J]. Nature Reviews Genetics, 2012, 13(4): 271-282.
DOI URL |
[7] |
LEE D, SHIN C. microRNA-target interactions: new insights from genome-wide approaches[J]. Annals of the New York Academy of Sciences, 2012, 1271(1): 118-128.
DOI URL |
[8] | 李瑞雪, 赵卫国, 章玉萍, 等. 植物microRNA的研究进展[J]. 蚕业科学, 2020, 46(2): 239-247. |
LI R X, ZHAO W G, ZHANG Y P, et al. Research progress on microRNAs in plant[J]. Science of Sericulture, 2020, 46(2): 239-247. (in Chinese with English abstract) | |
[9] | 李世鹏. 玉米自交系苗期冷胁迫miRNA表达谱比较研究[D]. 长春: 吉林大学, 2016. |
LI S P. Comparative analysis on MiRNAome profiles of different maize inbred lines seedling with cold stress[D]. Changchun: Jilin University, 2016. (in Chinese with English abstract) | |
[10] | 周玉飞. 木薯低温诱导miRNA及靶基因的功能分析[D]. 海口: 海南大学, 2011. |
ZHOU Y F. microRNA induced by low temperature and the function analysis of target genes in cassava[D]. Haikou: Hainan University, 2011. (in Chinese with English abstract) | |
[11] | 王健飞. 低温下外源ABA对冬小麦microRNA表达模式影响的研究[D]. 哈尔滨: 东北农业大学, 2014. |
WANG J F. Effects of exogenous abscisic acid on microRNA expression pattern of winter wheat at low temperatures[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract) | |
[12] | 刘彦英, 倪珊珊, 项蕾蕾, 等. 香蕉漆酶基因家族鉴定及低温胁迫下的表达分析[J]. 园艺学报, 2020, 47(5): 837-852. |
LIU Y Y, NI S S, XIANG L L, et al. Genome-wide identification of the laccase gene family and its expression analysis under low temperature stress in Musa accuminata[J]. Acta Horticulturae Sinica, 2020, 47(5): 837-852. (in Chinese with English abstract) | |
[13] | 王静毅, 刘菊华, 金志强, 等. 香蕉冷胁迫相关microRNA差异表达分析[J]. 中国农学通报, 2019, 35(5): 49-57. |
WANG J Y, LIU J H, JIN Z Q, et al. Expression profiling of cold-responsive microRNA in banana[J]. Chinese Agricultural Science Bulletin, 2019, 35(5): 49-57. (in Chinese with English abstract) | |
[14] | 王莹, 龙亮华. 豌豆中抗寒相关性miRNAs功能特异性验证及其克隆的研究[J]. 辽宁师范大学学报(自然科学版), 2010, 33(2): 231-236. |
WANG Y, LONG L H. Identification and isolation of the cold-resistance related miRNAs in Pisum sativum Linn[J]. Journal of Liaoning Normal University (Natural Science Edition), 2010, 33(2): 231-236. (in Chinese with English abstract) | |
[15] | 王丽丽, 赵韩生, 孙化雨, 等. 毛竹miR397和miR1432的克隆及其逆境胁迫响应表达分析[J]. 林业科学, 2015, 51(6): 63-70. |
WANG L L, ZHAO H S, SUN H Y, et al. Cloning and expression analysis of miR397 and miR1432 in Phyllostachys edulis under stresses[J]. Scientia Silvae Sinicae, 2015, 51(6): 63-70. (in Chinese with English abstract) | |
[16] | 赵先炎, 庞明利, 赵强, 等. 番茄漆酶基因LeLACmiR397的克隆与表达分析[J]. 园艺学报, 2015, 42(7): 1285-1298. |
ZHAO X Y, PANG M L, ZHAO Q, et al. Cloning and expression analysis of tomato LeLACmiR397 gene[J]. Acta Horticulturae Sinica, 2015, 42(7): 1285-1298. (in Chinese with English abstract) | |
[17] |
YAN C C, ZHANG N, WANG Q Q, et al. The effect of low temperature stress on the leaves and microRNA expression of potato seedlings[J]. Frontiers in Ecology and Evolution, 2021, 9: 727081.
DOI URL |
[18] |
OU Y B, LIU X, XIE C H, et al. Genome-wide identification of microRNAs and their targets in cold-stored potato tubers by deep sequencing and degradome analysis[J]. Plant Molecular Biology Reporter, 2015, 33(3): 584-597.
DOI URL |
[19] | 谢洁, 王明, 丁红映, 等. 马铃薯低温响应的ScmiR390-5p及其靶基因表达与结构分析[J]. 中国农业科学, 2019, 52(13): 2295-2308. |
XIE J, WANG M, DING H Y, et al. Expression and structural analysis of SC MI390-5 p and its target genes in potato response to low temperature[J]. Scientia Agricultura Sinica, 2019, 52(13): 2295-2308. (in Chinese with English abstract) | |
[20] |
BEAUCLAIR L, YU A, BOUCHÉ N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J]. The Plant Journal: for Cell and Molecular Biology, 2010, 62(3): 454-462.
DOI URL |
[21] |
SCHWAB R, PALATNIK J F, RIESTER M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Developmental Cell, 2005, 8(4): 517-527.
DOI URL |
[22] |
FLOYD S K, BOWMAN J L. Gene regulation: ancient microRNA target sequences in plants[J]. Nature, 2004, 428(6982): 485-486.
DOI URL |
[23] | 袁慧, 曾超珍, 董旭杰, 等. miR397调控植物生长发育和胁迫响应的分子机制[J]. 植物遗传资源学报, 2021, 22(3): 583-592. |
YUAN H, ZENG C Z, DONG X J, et al. Molecular mechanism of miR397 regulating plant growth, development and stress responses[J]. Journal of Plant Genetic Resources, 2021, 22(3): 583-592. (in Chinese with English abstract) | |
[24] | MENG Y J, SHAO C G, MA X X, et al. Expression-based functional investigation of the organ-specific microRNAs in Arabidopsis[J]. PLoS One, 2012, 7(11): e50870. |
[25] | DAS R, MUKHERJEE A, BASAK S, et al. Plant miRNA responses under temperature stress[J]. Plant Gene, 2021, 28: 100317. |
[26] |
MARTINS L, KNUESTING J, BARIAT L, et al. Redox modification of the iron-sulfur glutaredoxin GRXS17 activates holdase activity and protects plants from heat stress[J]. Plant Physiology, 2020, 184(2): 676-692.
DOI URL |
[27] | KIM J Y, KIM W Y, KWAK K J, et al. Zinc finger-containing Glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions[J]. Plant, Cell & Environment, 2010, 33(5): 759-768. |
[28] | 周开明, 赵白杨, 张丙林, 等. 玉米锌指蛋白基因ZmLSD1的生物信息学及表达特性分析[J]. 辽宁农业科学, 2020(2): 1-6. |
ZHOU K M, ZHAO B Y, ZHANG B L, et al. Bioinformatics and expression analysis of zinc finger protein gene ZmLSD1 in maize[J]. Liaoning Agricultural Sciences, 2020(2): 1-6. (in Chinese with English abstract) | |
[29] | 何炜, 周平, 张建福, 等. 甘蔗果糖-6-磷酸, 2-激酶/果糖-2, 6-二磷酸酯酶基因(F2KP)的克隆及其功能研究[J]. 农业生物技术学报, 2012, 20(4): 347-355. |
HE W, ZHOU P, ZHANG J F, et al. Cloning and function analysis of the fructose-6-phosphate, 2-kinase/fructose-2, 6-bisphosphatase gene (F2KP) from sugarcane(Saccharum officinarum L.)[J]. Journal of Agricultural Biotechnology, 2012, 20(4): 347-355. (in Chinese with English abstract) | |
[30] | 赵建华, 尹跃, 李浩霞, 等. 枸杞果糖激酶基因LbFRK7的克隆及表达分析[J]. 西北植物学报, 2018, 38(5): 816-822. |
ZHAO J H, YIN Y, LI H X, et al. Cloning and expression analysis of fructokinase gene(LbFRK7)from wolfberry(Lycium barbarum linn.)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(5): 816-822. (in Chinese with English abstract) | |
[31] | 谭照国, 李艳梅, 白建芳, 等. 小麦TaBG的克隆及其在花药开裂中的潜在功能[J]. 中国农业科学, 2021, 54(13): 2710-2723. |
TAN Z G, LI Y M, BAI J F, et al. Cloning of TaBG and analysis of its function in anther dehiscence in wheat[J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723. (in Chinese with English abstract) | |
[32] | 陈慧清. 拟南芥β-葡糖苷酶19基因启动子的克隆及功能初析[D]. 曲阜: 曲阜师范大学, 2016. |
CHEN H Q. Cloning and functional analysis of β-glucosidase 19 gene promoter in Arabidopsis thaliana[D]. Qufu: Qufu Normal University, 2016. (in Chinese with English abstract) | |
[33] | 白淼, 王舰, 王芳. 低温胁迫下马铃薯组培苗生理变化及抗寒性评定[J]. 浙江农业科学, 2021, 62(3): 549-552. |
BAI M, WANG J, WANG F. Physiological change and cold resistance evaluation of potato tissue culture seedling under low temperature stress[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(3): 549-552. (in Chinese) |
[1] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[2] | 丁燕玲, 王鹏飞, 杨朝云, 周小南, 赵志艳, 张岩峰, 史远刚, 康晓龙. 牛miR-144靶基因预测与组织表达分析[J]. 浙江农业学报, 2022, 34(3): 471-479. |
[3] | 袁文雅, 康益晨, 杨昕宇, 张茹艳, 周春涛, 王勇, 陈喜鹏, 余慧芳, 秦舒浩. 清水苜蓿土壤浸提液对连作马铃薯根际土壤环境酶活性和微生物群落的影响[J]. 浙江农业学报, 2022, 34(2): 240-247. |
[4] | 叶靖, 杨元玲, 史庆秋, 吴龙飞, 宋国涛. 杜仲miR172基因家族的生物信息学分析与功能预测[J]. 浙江农业学报, 2022, 34(1): 70-78. |
[5] | 黄长兵, 程培蕾, 杨绍宗, 张焕朝, 姜正之, 金立敏. 萱草根茎低温胁迫转录组分析[J]. 浙江农业学报, 2021, 33(8): 1445-1460. |
[6] | 陈雯, 张伟伟, 邵淑丽, 付学鹏, 黄鑫, 李铁. miR-423-5p在牛肌肉组织中表达及其靶基因预测[J]. 浙江农业学报, 2021, 33(5): 785-793. |
[7] | 王海翼, 张兆国, IBRAHIM Issa, 解开婷, Wael EL-KOLALY, 曹钦洲. 丘陵山区小型马铃薯收获机设计与试验[J]. 浙江农业学报, 2021, 33(4): 724-738. |
[8] | 梁丽琴, 杨瑞, 郜刚. 马铃薯StUOXs基因家族的生物信息学分析[J]. 浙江农业学报, 2020, 32(9): 1523-1532. |
[9] | 王伟, 滚双宝, 王鹏飞, 黄晓宇, 谢开会, 雒瑞瑞, 高小莉, 张博, 闫尊强, 杨巧丽, 马艳萍. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 2020, 32(9): 1564-1573. |
[10] | 许建民, 史和娣, 史培华, 张泽洋, 徐志刚. 不同光质条件下马铃薯光响应曲线拟合模型的比较[J]. 浙江农业学报, 2020, 32(5): 753-761. |
[11] | 刘紫英, 袁斌, 肖花美, 吴永飞, 刘小林, 胡祥飞. 马铃薯致病疫霉及其拮抗菌的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 840-848. |
[12] | 韩悌倩, 刘震, 刘玉汇, 张小静, 王丽, 张俊莲. 减氮及有机替代对马铃薯根系形态和产量的影响[J]. 浙江农业学报, 2020, 32(12): 2111-2118. |
[13] | 张淑文, 梁森苗, 朱婷婷, 任海英, 郑锡良, 戚行江. 不同杨梅品种的耐低温能力比较[J]. 浙江农业学报, 2020, 32(10): 1772-1779. |
[14] | 马杰, 郑好, 周平, 陈春艳, 吴瑞, 马维, 宋雷, 孙勃. 马铃薯油菜素内酯信号激酶基因StBSKs的克隆与序列分析[J]. 浙江农业学报, 2019, 31(8): 1224-1230. |
[15] | 杨亚亚, 吴娜, 刘吉利, 杨娜娜, 蔡明, 何海锋. 马铃薯-燕麦间作对马铃薯氮含量和土壤氮素的影响[J]. 浙江农业学报, 2019, 31(12): 1955-1962. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||