浙江农业学报 ›› 2024, Vol. 36 ›› Issue (12): 2812-2822.DOI: 10.3969/j.issn.1004-1524.20231368

• 生物系统工程 • 上一篇    下一篇

融合Sentinel-1/2数据和机器学习算法的冬小麦产量估算方法研究

张永彬1(), 李想1, 满卫东1,2,3, 刘明月1,2,4,*(), 樊继好5, 胡皓然5, 宋利杰1, 刘玮佳1   

  1. 1.华北理工大学 矿业工程学院,河北 唐山 063210
    2.唐山市资源与环境遥感重点实验室,河北 唐山 063210
    3.河北省矿区生态修复产业技术研究院,河北 唐山 063210
    4.矿产资源绿色开发与生态修复协同创新中心,河北 唐山 063210
    5.高分辨率对地观测系统河北唐山数据应用中心,河北 唐山 063210
  • 收稿日期:2023-12-06 出版日期:2024-12-25 发布日期:2024-12-27
  • 作者简介:张永彬(1969—),男,河北衡水人,博士,教授,研究方向为3S技术在资源与环境中的应用与地理国情监测。E-mail:zyb063009@yeah.net
  • 通讯作者: *刘明月,E-mail:liumy917@ncst.edu.cn
  • 基金资助:
    河北省自然科学基金项目(D2019209322);河北省自然科学基金项目(D2022209005);河北省高等学校科学技术研究项目青年拔尖人才项目(BJ2020058);唐山市科技计划重点研发项目(22150221J);河北省引进留学人员资助项目(C20200103)

Research on yield estimation method of winter wheat based on Sentinel-1/2 data and machine learning algorithms

ZHANG Yongbin1(), LI Xiang1, MAN Weidong1,2,3, LIU Mingyue1,2,4,*(), FAN Jihao5, HU Haoran5, SONG Lijie1, LIU Weijia1   

  1. 1. College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
    2. Tangshan Key Laboratory of Resources and Environmental Remote Sensing, Tangshan 063210, Hebei, China
    3. Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan 063210, Hebei, China
    4. Collaborative Innovation Center of Green Development and Ecological Restoration of Mineral Resources, Tangshan 063210, Hebei, China
    5. Hebei Tangshan High Resolution Earth Observation System Data and Application Center, Tangshan 063210, Hebei, China
  • Received:2023-12-06 Online:2024-12-25 Published:2024-12-27

摘要:

针对光学影像容易受到云雨天气影响,导致农作物产量估算精度低的问题,本研究融合冬小麦孕穗期Sentinel-2光谱信息和Sentinel-1后向散射系数,并采用极端梯度提升、随机森林和支持向量机3种机器学习回归方法建立唐山市冬小麦产量估算模型,选用最佳模型实现唐山市冬小麦产量反演。结果表明: 基于植被指数和后向散射系数的极端梯度提升模型的估产效果最好,决定系数(R2)为0.654,均方根误差(RMSE)为0.499 t·hm-2,归一化均方根误差(nRMSE)为10.02%。24个遥感特征变量中,NDMI、NDVIre3和NDVIre2的重要性远高于后向散射系数。基于最佳估产模型反演唐山市冬小麦产量空间分布,冬小麦产量范围主要集中在7.00~8.00 t·hm-2,所占比例达到40.75%,冬小麦产量分布总体上与地面真实情况相近。本研究提出Sentinel-1/2数据和机器学习算法相融合的冬小麦产量估算方法,有效提高了机器学习方法反演冬小麦产量的准确性,并加强了模型的解释性,该方法具有一定可行性。

关键词: 遥感, 产量, 冬小麦, Sentinel-1/2数据, 机器学习算法

Abstract:

Aiming at the problem that optical images are easily affected by cloud and rain weather, resulting in low accuracy of crop yield estimation, in this study, the Sentinel-1/2 spectral information and backscattering coefficient at winter wheat heading stage were combined, and three machine learning regression methods of extreme gradient boosting, random forest and support vector machine were used to establish the winter wheat yield estimation model in Tangshan, the best model was selected to realize the winter wheat yield inversion in Tangshan. The results show that:the extreme gradient boosting model based on vegetation index and backscattering coefficient had the best estimation effect, with the determination coefficient (R2) of 0.654, the root mean square error (RMSE) of 0.499 t·hm-2, and the normalized root mean square error (nRMSE) of 10.02%. Among the 24 remote sensing feature variables, the importance of NDMI, NDVIre3 and NDVIre2 was much higher than that of the backscattering coefficient. Inverse spatial distribution of winter wheat yield in Tangshan based on optimal yield estimation model, the yield range of winter wheat was mainly concentrated in 7.00-8.00 t·hm-2, accounting for 40.75%, the distribution of winter wheat yield was generally similar to the ground truth. This study proposed Sentinel-1/2 data and integration of machine learning algorithms of winter wheat yield estimation method, effectively improve the inversion accuracy of winter wheat yield and machine learning method to strengthen the explanatory of the model, the method has certain feasibility.

Key words: remote sensing, yield, winter wheat, Sentinel-1/2 data, machine learning algorithm

中图分类号: