浙江农业学报 ›› 2024, Vol. 36 ›› Issue (12): 2812-2822.DOI: 10.3969/j.issn.1004-1524.20231368
张永彬1(), 李想1, 满卫东1,2,3, 刘明月1,2,4,*(
), 樊继好5, 胡皓然5, 宋利杰1, 刘玮佳1
收稿日期:
2023-12-06
出版日期:
2024-12-25
发布日期:
2024-12-27
作者简介:
张永彬(1969—),男,河北衡水人,博士,教授,研究方向为3S技术在资源与环境中的应用与地理国情监测。E-mail:zyb063009@yeah.net
通讯作者:
*刘明月,E-mail:liumy917@ncst.edu.cn
基金资助:
ZHANG Yongbin1(), LI Xiang1, MAN Weidong1,2,3, LIU Mingyue1,2,4,*(
), FAN Jihao5, HU Haoran5, SONG Lijie1, LIU Weijia1
Received:
2023-12-06
Online:
2024-12-25
Published:
2024-12-27
摘要:
针对光学影像容易受到云雨天气影响,导致农作物产量估算精度低的问题,本研究融合冬小麦孕穗期Sentinel-2光谱信息和Sentinel-1后向散射系数,并采用极端梯度提升、随机森林和支持向量机3种机器学习回归方法建立唐山市冬小麦产量估算模型,选用最佳模型实现唐山市冬小麦产量反演。结果表明: 基于植被指数和后向散射系数的极端梯度提升模型的估产效果最好,决定系数(R2)为0.654,均方根误差(RMSE)为0.499 t·hm-2,归一化均方根误差(nRMSE)为10.02%。24个遥感特征变量中,NDMI、NDVIre3和NDVIre2的重要性远高于后向散射系数。基于最佳估产模型反演唐山市冬小麦产量空间分布,冬小麦产量范围主要集中在7.00~8.00 t·hm-2,所占比例达到40.75%,冬小麦产量分布总体上与地面真实情况相近。本研究提出Sentinel-1/2数据和机器学习算法相融合的冬小麦产量估算方法,有效提高了机器学习方法反演冬小麦产量的准确性,并加强了模型的解释性,该方法具有一定可行性。
中图分类号:
张永彬, 李想, 满卫东, 刘明月, 樊继好, 胡皓然, 宋利杰, 刘玮佳. 融合Sentinel-1/2数据和机器学习算法的冬小麦产量估算方法研究[J]. 浙江农业学报, 2024, 36(12): 2812-2822.
ZHANG Yongbin, LI Xiang, MAN Weidong, LIU Mingyue, FAN Jihao, HU Haoran, SONG Lijie, LIU Weijia. Research on yield estimation method of winter wheat based on Sentinel-1/2 data and machine learning algorithms[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2812-2822.
植被指数Vegetation index | 计算公式Calculation formula |
---|---|
差值植被指数Difference vegetation index (DVI) | ρNIR-ρR |
增强植被指数2 Enhanced vegetation index without a blue band (EVI2) | 2.5(ρNIR-ρR)/(ρNIR+2.4ρR+1) |
绿色归一化植被指数Green normalized difference vegetation index (GNDVI) | (ρNIR-ρG)/(ρNIR+ρG) |
比值植被指数Ratio vegetation index (RVI) | ρNIR/ρR |
重归一化植被指数Renormalized difference vegetation index (RDVI) | (ρNIR-ρR)/(ρNIR+ρR)0.5 |
修正三角植被指数1 Modified triangular vegetation index (MTVI1) | 1.2[1.2(ρNIR-ρG)-2.5(ρR-ρG)] |
改进简单植被指数Modified simple ratio (MSR) | (ρNIR/ρR-1)/(ρNIR/ρR+1)0.5 |
优化土壤调节植被指数Optimal soil adjusted vegetation index (OSAVI) | 1.16(ρNIR-ρR)/(ρNIR+ρR+0.16) |
结构加强色素植被指数Structure intensive pigment index (SIPI) | (ρNIR-ρB)/(ρNIR+ρB) |
归一化差值水汽指数Normalized difference moisture index (NDMI) | (ρNIR-ρSWIR11)/(ρNIR+ρSWIR11) |
绿色叶绿素指数Green chlorophyll vegetation index (CIg) | (ρNIR/ρR)-1 |
红边植被指数1 Red-edge chlorophyll index 1 (CIre1) | (ρNIR/ρRE1)-1 |
红边植被指数2 Red-edge chlorophyll index 2 (CIre2) | (ρNIR/ρRE2)-1 |
红边植被指数3 Red-edge chlorophyll index 3 (CIre3) | (ρNIR/ρRE3)-1 |
归一化植被指数Normalized difference vegetation index (NDVI) | (ρNIR-ρR)/(ρNIR+ρR) |
红边归一化植被指数1 Red-edge normalized difference vegetation index 1 (NDVIre1) | (ρNIR-ρRE1)/(ρNIR+ρRE1) |
红边归一化植被指数2 Red-edge normalized difference vegetation index 2 (NDVIre2) | (ρNIR-ρRE2)/(ρNIR+ρRE2) |
红边归一化植被指数3 Red-edge normalized difference vegetation index 3 (NDVIre3) | (ρNIR-ρRE3)/(ρNIR+ρRE3) |
表1 植被指数与计算公式
Table 1 Vegetation indices and calculation formulas
植被指数Vegetation index | 计算公式Calculation formula |
---|---|
差值植被指数Difference vegetation index (DVI) | ρNIR-ρR |
增强植被指数2 Enhanced vegetation index without a blue band (EVI2) | 2.5(ρNIR-ρR)/(ρNIR+2.4ρR+1) |
绿色归一化植被指数Green normalized difference vegetation index (GNDVI) | (ρNIR-ρG)/(ρNIR+ρG) |
比值植被指数Ratio vegetation index (RVI) | ρNIR/ρR |
重归一化植被指数Renormalized difference vegetation index (RDVI) | (ρNIR-ρR)/(ρNIR+ρR)0.5 |
修正三角植被指数1 Modified triangular vegetation index (MTVI1) | 1.2[1.2(ρNIR-ρG)-2.5(ρR-ρG)] |
改进简单植被指数Modified simple ratio (MSR) | (ρNIR/ρR-1)/(ρNIR/ρR+1)0.5 |
优化土壤调节植被指数Optimal soil adjusted vegetation index (OSAVI) | 1.16(ρNIR-ρR)/(ρNIR+ρR+0.16) |
结构加强色素植被指数Structure intensive pigment index (SIPI) | (ρNIR-ρB)/(ρNIR+ρB) |
归一化差值水汽指数Normalized difference moisture index (NDMI) | (ρNIR-ρSWIR11)/(ρNIR+ρSWIR11) |
绿色叶绿素指数Green chlorophyll vegetation index (CIg) | (ρNIR/ρR)-1 |
红边植被指数1 Red-edge chlorophyll index 1 (CIre1) | (ρNIR/ρRE1)-1 |
红边植被指数2 Red-edge chlorophyll index 2 (CIre2) | (ρNIR/ρRE2)-1 |
红边植被指数3 Red-edge chlorophyll index 3 (CIre3) | (ρNIR/ρRE3)-1 |
归一化植被指数Normalized difference vegetation index (NDVI) | (ρNIR-ρR)/(ρNIR+ρR) |
红边归一化植被指数1 Red-edge normalized difference vegetation index 1 (NDVIre1) | (ρNIR-ρRE1)/(ρNIR+ρRE1) |
红边归一化植被指数2 Red-edge normalized difference vegetation index 2 (NDVIre2) | (ρNIR-ρRE2)/(ρNIR+ρRE2) |
红边归一化植被指数3 Red-edge normalized difference vegetation index 3 (NDVIre3) | (ρNIR-ρRE3)/(ρNIR+ρRE3) |
组合方式Combination | 特征变量Characteristic variable |
---|---|
A | Sentinel-1+Sentinel-2 |
B | Sentinel-2 |
C | Sentinel-1 |
表2 冬小麦产量不同特征的组合方式
Table 2 Statistical analysis of winter wheat yield
组合方式Combination | 特征变量Characteristic variable |
---|---|
A | Sentinel-1+Sentinel-2 |
B | Sentinel-2 |
C | Sentinel-1 |
回归模型 Regression model | 组合方式 Combination | R2 | RMSE/ (t·hm-2) | nRMSE/% |
---|---|---|---|---|
XGBoost | A | 0.654 | 0.499 | 10.02 |
B | 0.632 | 0.513 | 10.27 | |
C | 0.539 | 0.592 | 11.86 | |
RFR | A | 0.473 | 0.534 | 10.71 |
B | 0.517 | 0.521 | 10.44 | |
C | 0.311 | 0.673 | 13.49 | |
SVR | A | 0.340 | 0.866 | 17.36 |
B | 0.356 | 0.857 | 17.17 | |
C | 0.213 | 1.303 | 26.11 |
表3 模型综合评价
Table 3 Model comprehensive evaluation
回归模型 Regression model | 组合方式 Combination | R2 | RMSE/ (t·hm-2) | nRMSE/% |
---|---|---|---|---|
XGBoost | A | 0.654 | 0.499 | 10.02 |
B | 0.632 | 0.513 | 10.27 | |
C | 0.539 | 0.592 | 11.86 | |
RFR | A | 0.473 | 0.534 | 10.71 |
B | 0.517 | 0.521 | 10.44 | |
C | 0.311 | 0.673 | 13.49 | |
SVR | A | 0.340 | 0.866 | 17.36 |
B | 0.356 | 0.857 | 17.17 | |
C | 0.213 | 1.303 | 26.11 |
图2 冬小麦实测产量数据与预测产量数据散点图 A,A组合;B,B组合;C,C组合。
Fig.2 Scatter plot of measured production data and predicted production data of winter wheat yield A, Combination A; B, Combination B; C, Combination C.
图3 XGBoost模型的变量重要性排序图 A,A组合;B,B组合;C,C组合。NDMI,归一化差值水汽指数;NDVIre3,红边归一化植被指数3;NDVIre2,红边归一化植被指数2;GNDVI,绿色归一化植被指数;DVI,差值植被指数;RDVI,重归一化植被指数;SIPI,结构加强色素植被指数;NDVIre1,红边归一化植被指数1;MTVI1,修正三角植被指数1;EVI2,增强植被指数2;CIre2,红边植被指数2;CIre3,红边植被指数3;MSR,改进简单植被指数;OSAVI,优化土壤调节植被指数;RVI,比值植被指数;NDVI,归一化植被指数;CIg,绿色叶绿素指数;CIre1,红边植被指数1;VV,共极化;VH,交叉极化;VH+VV,求和;VH-VV,差值;VH*VV,乘积;VH/VV,求商。
Fig.3 Variable importance ranking chart of XGBoost model A, Combination A; B, Combination B; C, Combination C. NDMI, Normalized difference moisture index; NDVIre3, Red-edge normalized difference vegetation index 3; NDVIre2, Red-edge normalized difference vegetation index 2; GNDVI, Green normalized difference vegetation index; DVI, Difference vegetation index; RDVI, Renormalized difference vegetation index; SIPI, Structure intensive pigment index; NDVIre1, Red-edge normalized difference vegetation index 1; MTVI1, Modified triangular vegetation index; EVI2, Enhanced vegetation index without a blue band; CIre2, Red-edge chlorophyll index 2; CIre3, Red-edge chlorophyll index 3; MSR, Modified simple ratio; OSAVI, Optimal soil adjusted vegetation index; RVI, Ratio vegetation index; NDVI, Normalized difference vegetation index; CIg, Green chlorophyll vegetation index; CIre1, Red-edge chlorophyll index 1; VV, Co-polarization; VH, Cross polarization; VH+VV, Summation; VH-VV, Difference; VH*VV, Product; VH/VV, Quotient.
图4 冬小麦产量估算空间分布图 A,研究区冬小麦产量分布;B,红色区域放大图;C,绿色区域放大图;D,蓝色区域放大图。背景影像:研究区Sentinel-2灰度影像。
Fig.4 Spatial distribution map of winter wheat yield estimation A, Winter wheat yield distribution in study area; B, Zoom in on the red area; C, Zoom in on the green area; D, Zoom in on the blue area. Background imagery:Sentinel-2 grayscale image of the study area.
等级 Level/ (t·hm-2) | 冬小麦产量空间分布 Spatial distribution of winter wheat yield | |
---|---|---|
像元个数Number of pixels | 所占比例Proportion/% | |
≤6 | 74 875 | 2.98 |
>6~7 | 447 252 | 17.78 |
>7~8 | 1 025 241 | 40.75 |
>8~9 | 891 461 | 35.43 |
>9 | 77 039 | 3.06 |
表4 唐山市冬小麦产量分级统计
Table 4 Classification statistics of winter wheat yield in Tangshan
等级 Level/ (t·hm-2) | 冬小麦产量空间分布 Spatial distribution of winter wheat yield | |
---|---|---|
像元个数Number of pixels | 所占比例Proportion/% | |
≤6 | 74 875 | 2.98 |
>6~7 | 447 252 | 17.78 |
>7~8 | 1 025 241 | 40.75 |
>8~9 | 891 461 | 35.43 |
>9 | 77 039 | 3.06 |
[1] | KHANAL S, KUSHAL K C, FULTON J P, et al. Remote sensing in agriculture:accomplishments, limitations, and opportunities[J]. Remote Sensing, 2020, 12(22):3783. |
[2] | 王汇涵, 张泽, 康孝岩, 等. 基于Sentinel-2A的棉花种植面积提取及产量预测[J]. 农业工程学报, 2022, 38(9):205-214. |
WANG H H, ZHANG Z, KANG X Y, et al. Cotton planting area extraction and yield prediction based on Sentinel-2A[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9):205-214. (in Chinese with English abstract) | |
[3] | 王莺, 巩垠熙. 遥感光谱技术在农作物估产中的应用研究进展[J]. 中国农学通报, 2019, 35(3):69-75. |
WANG Y, GONG Y X. Spectral remote sensing technology applied in crop yield estimation:research progress[J]. Chinese Agricultural Science Bulletin, 2019, 35(3):69-75. (in Chinese with English abstract) | |
[4] | CLAUSS K, OTTINGER M, LEINENKUGEL P, et al. Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:574-585. |
[5] | BATTUDE M, AL BITAR A, MORIN D, et al. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[J]. Remote Sensing of Environment, 2016, 184:668-681. |
[6] | TAŞAN S, CEMEK B, TAŞAN M, et al. Estimation of eggplant yield with machine learning methods using spectral vegetation indices[J]. Computers and Electronics in Agriculture, 2022, 202:107367. |
[7] | ZHANG J Q, TIAN H R, WANG P X, et al. Improving wheat yield estimates using data augmentation models and remotely sensed biophysical indices within deep neural networks in the Guanzhong Plain, PR China[J]. Computers and Electronics in Agriculture, 2022, 192:106616. |
[8] | MA Y C, ZHANG Z, KANG Y H, et al. Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach[J]. Remote Sensing of Environment, 2021, 259:112408. |
[9] | 刘红超, 梁燕, 张喜旺. 多时相影像的冬小麦种植面积提取及估产[J]. 遥感信息, 2017, 32(5):87-92. |
LIU H C, LIANG Y, ZHANG X W. Winter wheat area extraction and yield estimation using multi-temporal images[J]. Remote Sensing Information, 2017, 32(5):87-92. (in Chinese with English abstract) | |
[10] | WANG J J, DAI Q X, SHANG J L, et al. Field-scale rice yield estimation using sentinel-1A synthetic aperture radar (SAR) data in coastal saline region of Jiangsu province, China[J]. Remote Sensing, 2019, 11(19):2274. |
[11] | 王鹏新, 田惠仁, 张悦, 等. 基于深度学习的作物长势监测和产量估测研究进展[J]. 农业机械学报, 2022, 53(2):1-14. |
WANG P X, TIAN H R, ZHANG Y, et al. Crop growth monitoring and yield estimation based on deep learning:state of the art and beyond[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2):1-14. (in Chinese with English abstract) | |
[12] | 孙少杰, 吴门新, 庄立伟, 等. 基于CNN卷积神经网络和BP神经网络的冬小麦县级产量预测[J]. 农业工程学报, 2022, 38(11):151-160. |
SUN S J, WU M X, ZHUANG L W, et al. Forecasting winter wheat yield at county level using CNN and BP neural networks[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11):151-160. (in Chinese with English abstract) | |
[13] | 严海军, 卓越, 李茂娜, 等. 基于机器学习和无人机多光谱遥感的苜蓿产量预测[J]. 农业工程学报, 2022, 38(11):64-71. |
YAN H J, ZHUO Y, LI M N, et al. Alfalfa yield prediction using machine learning and UAV multispectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11):64-71. (in Chinese with English abstract) | |
[14] | CHENG E H, ZHANG B, PENG D L, et al. Wheat yield estimation using remote sensing data based on machine learning approaches[J]. Frontiers in Plant Science, 2022, 13:1090970. |
[15] | HUNT M L, BLACKBURN G A, CARRASCO L, et al. High resolution wheat yield mapping using Sentinel-2[J]. Remote Sensing of Environment, 2019, 233:111410. |
[16] | 王恺宁, 王修信. 多植被指数组合的冬小麦遥感估产方法研究[J]. 干旱区资源与环境, 2017, 31(7):44-49. |
WANG K N, WANG X X. Research on winter wheat yield estimation with the multiply remote sensing vegetation index combination[J]. Journal of Arid Land Resources and Environment, 2017, 31(7):44-49. (in Chinese with English abstract) | |
[17] | 王耀民, 陈皓锐, 陈俊英, 等. 光谱指数筛选方法与统计回归算法结合的水稻估产模型对比[J]. 农业工程学报, 2021, 37(21):208-216. |
WANG Y M, CHEN H R, CHEN J Y, et al. Comparation of rice yield estimation model combining spectral index screening method and statistical regression algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21):208-216. (in Chinese with English abstract) | |
[18] | 郭力娜, 王奉林, 姜广辉, 等. 基于GIS的市域休闲农业园区距离分布特征:以唐山市为例[J]. 中国农业资源与区划, 2020, 41(7):248-254. |
GUO L N, WANG F L, JIANG G H, et al. Distance distribution characteristics of urban leisure agriculture parks based on GIS:a case study of Tangshan City[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(7):248-254. (in Chinese with English abstract) | |
[19] | 李蕊, 李国清, 卢小平, 等. 一种改进的时间序列下冬小麦遥感识别方法[J]. 测绘科学, 2022, 47(4):73-79. |
LI R, LI G Q, LU X P, et al. An improved method of winter wheat remote sensing recognition based on time series[J]. Science of Surveying and Mapping, 2022, 47(4):73-79. (in Chinese with English abstract) | |
[20] | 李粉玲, 王力, 刘京, 等. 基于高分一号卫星数据的冬小麦叶片SPAD值遥感估算[J]. 农业机械学报, 2015, 46(9):273-281. |
LI F L, WANG L, LIU J, et al. Remote sensing estimation of SPAD value for wheat leaf based on GF-1 data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9):273-281. (in Chinese with English abstract) | |
[21] | 周蔚, 吕延杰, 林起楠. 联合光学和合成孔径雷达数据的太平湖森林地上生物量反演研究[J]. 西北林学院学报, 2023, 38(2):193-200. |
ZHOU W, LÜ Y J, LIN Q N. Retrieval of above ground biomass in Taiping Lake forests using optical and SAR dataset[J]. Journal of Northwest Forestry University, 2023, 38(2):193-200. (in Chinese with English abstract) | |
[22] | 杨靖雅, 胡琼, 魏浩东, 等. 基于Sentinel-1/2数据的中国南方单双季稻识别结果一致性分析[J]. 中国农业科学, 2022, 55(16):3093-3109. |
YANG J Y, HU Q, WEI H D, et al. Consistency analysis of classification results for single and double cropping rice in Southern China based on sentinel-1/2 imagery[J]. Scientia Agricultura Sinica, 2022, 55(16):3093-3109. (in Chinese with English abstract) | |
[23] | HUBER F, YUSHCHENKO A, STRATMANN B, et al. Extreme gradient boosting for yield estimation compared with deep learning approaches[J]. Computers and Electronics in Agriculture, 2022, 202:107346. |
[24] | LI Y C, ZENG H W, ZHANG M, et al. A county-level soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118:103269. |
[25] | 王腾军, 方珂, 杨耘, 等. 随机森林回归模型用于土壤重金属含量多光谱遥感反演[J]. 测绘通报, 2021(11):92-95. |
WANG T J, FANG K, YANG Y, et al. Multi-spectral remote sensing inversion of soil heavy metal content using random forest regression model[J]. Bulletin of Surveying and Mapping, 2021(11):92-95. (in Chinese with English abstract) | |
[26] | 兰铭, 费帅鹏, 禹小龙, 等. 多光谱与热红外数据融合在冬小麦产量估测中的应用[J]. 麦类作物学报, 2021, 41(12):1564-1572. |
LAN M, FEI S P, YU X L, et al. Application of multispectral and thermal infrared data fusion in estimation of winter wheat yield[J]. Journal of Triticeae Crops, 2021, 41(12):1564-1572. (in Chinese with English abstract) | |
[27] | 甄佳宁, 蒋侠朋, 赵德梅, 等. 利用Sentinel-2影像超分辨率重建的红树林冠层氮含量反演[J]. 遥感学报, 2022, 26(6):1206-1219. |
ZHEN J N, JIANG X P, ZHAO D M, et al. Retrieving canopy nitrogen content of mangrove forests from Sentinel-2 super-resolution reconstruction data[J]. National Remote Sensing Bulletin, 2022, 26(6):1206-1219. (in Chinese with English abstract) | |
[28] | 王淑婷, 孔雨光, 张赞, 等. 基于星-机光谱融合的棉花叶片SPAD值反演[J]. 中国农业科学, 2022, 55(24):4823-4839. |
WANG S T, KONG Y G, ZHANG Z, et al. SPAD value inversion of cotton leaves based on satellite-UAV spectral fusion[J]. Scientia Agricultura Sinica, 2022, 55(24):4823-4839. (in Chinese with English abstract) | |
[29] | NYÉKI A, KEREPESI C, DARÓCZY B, et al. Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods[J]. Precision Agriculture, 2021, 22(5):1397-1415. |
[30] | CHEN S, LIU W H, FENG P Y, et al. Improving spatial disaggregation of crop yield by incorporating machine learning with multisource data:a case study of Chinese maize yield[J]. Remote Sensing, 2022, 14(10):2340. |
[31] | HAN J C, ZHANG Z, CAO J, et al. Prediction of winter wheat yield based on multi-source data and machine learning in China[J]. Remote Sensing, 2020, 12(2):236. |
[32] | TRAMONTANA G, ICHⅡ K, CAMPS-VALLS G, et al. Uncertainty analysis of gross primary production upscaling using Random Forests, remote sensing and eddy covariance data[J]. Remote Sensing of Environment, 2015, 168:360-373. |
[33] | 赵龙才, 李粉玲, 常庆瑞. 农作物遥感识别与单产估算研究综述[J]. 农业机械学报, 2023, 54(2):1-19. |
ZHAO L C, LI F L, CHANG Q R. Review on crop type identification and yield forecasting using remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2):1-19. (in Chinese with English abstract) | |
[34] | 郭晗, 陆洲, 徐飞飞, 等. 基于全局敏感性分析与机器学习的冬小麦叶面积指数估算[J]. 浙江农业学报, 2022, 34(9):2020-2031. |
GUO H, LU Z, XU F F, et al. Leaf area index estimation of winter wheat based on global sensitivity analysis and machine learning[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9):2020-2031. (in Chinese with English abstract) | |
[35] | LI C X, CHIMIMBA E G, KAMBOMBE O, et al. Maize yield estimation in intercropped smallholder fields using satellite data in southern Malawi[J]. Remote Sensing, 2022, 14(10):2458. |
[36] | 卢佶, 张国威, 吴昊. 基于多时相光学和雷达遥感的太平湖生态保护区森林地上生物量反演[J]. 浙江农林大学学报, 2023, 40(5):1082-1092. |
LU J, ZHANG G W, WU H. Inversion study of above-ground biomass in Taiping Lake Ecological Reserve forests using multi-temporal optical and radar data[J]. Journal of Zhejiang A & F University, 2023, 40(5):1082-1092. (in Chinese with English abstract) | |
[37] | BALENZANO A, SATALINO G, LOVERGINE F P, et al. Sentinel-1 and sentinel-2 data to detect irrigation events:riaza irrigation district (Spain) case study[J]. Water, 2022, 14(19):3046. |
[1] | 陈宇眺, 闫川, 洪晓富, 宋佳谕. 分蘖期淹水对常规粳稻生长特性、产量形成与钾素吸收的影响[J]. 浙江农业学报, 2024, 36(9): 1990-1999. |
[2] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
[3] | 程嘉瑜, 陈妙金, 李彤, 孙奇男, 张小斌, 赵懿滢, 朱怡航, 顾清. 基于改进Faster-RCNN网络的无人机遥感影像桃树检测[J]. 浙江农业学报, 2024, 36(8): 1909-1919. |
[4] | 潘志军, 吴小文, 吴晨阳, 程驭, 陈龙, 张晓红, 张进山, 周兵, 江波, 张文静, 车钊, 宋贺. 皖中不同类型再生稻品种产量与温光资源利用特征分析[J]. 浙江农业学报, 2024, 36(7): 1492-1501. |
[5] | 李慧, 谭晓琴, 唐茜, 杨洋, 陈玮. 疏花对紫嫣茶树产量及品质成分的影响[J]. 浙江农业学报, 2024, 36(7): 1602-1615. |
[6] | 胡铁军. 化肥减量配施微生物肥对西蓝花产量品质与土壤性质的影响[J]. 浙江农业学报, 2024, 36(7): 1657-1665. |
[7] | 许立婷, 齐广平, 康燕霞, 银敏华, 马彦麟, 贾琼, 汪精海, 姜渊博. 调亏灌溉对苜蓿产量品质效应的荟萃分析[J]. 浙江农业学报, 2024, 36(6): 1256-1269. |
[8] | 赵黎明, 王亚新, 蒋文鑫, 段绍彪, 沈雪峰, 郑殿峰, 冯乃杰. 植物生长调节剂对优质粳稻产量、品质与光合特性的影响[J]. 浙江农业学报, 2024, 36(5): 1003-1014. |
[9] | 高虎, 穆晓国, 李海俊, 高富成, 张莹, 李建设, 叶林. 粉垄耕作对坝地土壤特性及甘蓝产量的影响[J]. 浙江农业学报, 2024, 36(5): 1113-1123. |
[10] | 陈俊霖, 蒋娜, 刘鑫, 卓红, 田昌, 韩永亮, 张玉平, 荣湘民. 控释氮肥减量对作物产量、氮素吸收与径流损失的影响[J]. 浙江农业学报, 2024, 36(4): 846-858. |
[11] | 廖雪环, 张坷塬, 阿尔力色, 周林, 杨尔倮, 邓俊, 张荣萍. 柯杈肥与功能肥复配对杂交稻生长与产量的影响[J]. 浙江农业学报, 2024, 36(11): 2447-2455. |
[12] | 许辰一, 杨佳欣, 金忠煜, 于丰华. 偏振光谱在大田作物农学参量反演中的研究进展[J]. 浙江农业学报, 2024, 36(11): 2596-2604. |
[13] | 张旭娟, 周历萍, 俞可欣, 柴伟国, 潘念, 傅潇霞, 施建军. 绿芦笋品种间产量及主要营养成分周年变化测定[J]. 浙江农业学报, 2024, 36(10): 2238-2246. |
[14] | 刘智成, 严良文, 陈瑶瑶, 欧雪婷. 福建地区不同栽培模式下百香果的产量与品质特征[J]. 浙江农业学报, 2024, 36(1): 134-147. |
[15] | 张博, 刘泽慈, 汪洁, 李兆壮, 李录山, 胡琳莉, 郁继华. 不同农业废弃物肥料化配方对露地甘蓝生长、产量及品质的影响[J]. 浙江农业学报, 2023, 35(8): 1782-1792. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||