浙江农业学报 ›› 2019, Vol. 31 ›› Issue (12): 2120-2130.DOI: 10.3969/j.issn.1004-1524.2019.12.21
葛艺, 徐绍辉, 徐艳*
收稿日期:2019-07-24
出版日期:2019-12-25
发布日期:2019-12-25
作者简介:葛艺(1992-),女,山东日照人,硕士研究生,主要从事土壤微生物学研究。E-mail:15610047992@163.com
通讯作者:
徐艳,E-mail:yanxu@qdu.edu.cn
基金资助:GE Yi, XU Shaohui, XU Yan*
Received:2019-07-24
Online:2019-12-25
Published:2019-12-25
摘要: 基于根际微生物调控作物生长发育已成为生态健康和农业发展研究的热点。综述了国内外关于植物根际微生物组构建影响因素的相关研究进展,探讨了根际周边微生物从土壤进入植物根系内部的定殖选择过程,重点关注植物本体、土壤类型、地理位置、生长环境等因素对植物根际微生物组的调控作用,揭示国内外研究中发现的影响根际微生物组构建的主控因素,阐明根际微生物组-宿主复杂的互作关系,以期为绿色农业、环境生态保护等研究提供新的思路。
中图分类号:
葛艺, 徐绍辉, 徐艳. 根际微生物组构建的影响因素研究进展[J]. 浙江农业学报, 2019, 31(12): 2120-2130.
GE Yi, XU Shaohui, XU Yan. Review on influencing factors of rhizosphere microbiome assemblage[J]. , 2019, 31(12): 2120-2130.
| [1] 李鸿波, 吴朝晖. 水稻根际微生物的影响因素研究进展[J]. 杂交水稻, 2018, 33(4): 1-6. LI H B, WU Z H.Research progress on factors influencing rhizosphere microorganisms of rice[J]. [2] MORGAN J A W, BENDING G D, WHITE P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere[J]. Journal of Experimental Botany, 2005, 56(417): 1729-1739. [3] PEIFFER J A, SPOR A, KOREN O, et al.Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16): 6548-6553. [4] SESSITSCH A, MITTER B.21st century agriculture: integration of plant microbiomes for improved crop production and food security[J]. Microbial Biotechnology, 2015, 8(1): 32-33. [5] SCHLAEPPI K, BULGARELLI D.The plant microbiome at work[J]. Molecular Plant-Microbe Interactions, 2015, 28(3): 212-217. [6] GRAY E J, SMITH D L.Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes[J]. Soil Biology and Biochemistry, 2005, 37(3): 395-412. [7] LAKSHMANAN V, KITTO S L, CAPLAN J L, et al.Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in [8] DODD I C, ZINOVKINA N Y, SAFRONOVA V I, et al.Rhizobacterial mediation of plant hormone status[J]. Annals of Applied Biology, 2010, 157(3): 361-379. [9] XU Y X, WANG G H, JIN J, et al.Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage[J]. Soil Biology and Biochemistry, 2009, 41(5): 919-925. [10] FINKEL O M, CASTRILLO G, HERRERA PAREDES S, et al.Understanding and exploiting plant beneficial microbes[J]. Current Opinion in Plant Biology, 2017, 38: 155-163. [11] TIKHONOVICH I A, PROVOROV N A.Microbiology is the basis of sustainable agriculture: an opinion[J]. Annals of Applied Biology, 2011, 159(2): 155-168. [12] HACQUARD S.Disentangling the factors shaping microbiota composition across the plant holobiont[J]. New Phytologist, 2016, 209(2): 454-457. [13] CHOI O, KIM J, KIM J, et al.Pyrroloquinoline quinone is a plant growth promotion factor produced by [14] 宋芳芳, 任萍, 徐建良, 等. 水稻秸秆在旱作土壤中的降解过程及降解菌剂施用效果[J]. 中国土壤与肥料, 2015(2): 103-110. SONG F F, REN P, XU J L, et al.Decomposition process of rice straw in upland soil and effects of stalk-degradable microbial preparation[J]. [15] 管凤贞, 邱宏端, 陈济琛, 等. 根瘤菌菌剂的研究与开发现状[J]. 生态学杂志, 2012, 31(3): 755-759. GUAN F Z, QIU H D, CHEN J C, et al.Rhizobium inoculants: research progress and development status[J]. [16] 祝虹钰, 刘闯, 李蓬勃, 等. 微生物菌剂的应用及其研究进展[J]. 湖北农业科学, 2017, 56(5): 805-808. ZHU H Y, LIU C, LI P B, et al.Application and progress of research of microorganisms agents[J]. [17] HU J, WEI Z, FRIMAN V, et al.Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6): e01790. [18] BAAS P, BELL C, MANCINI L M, et al.Phosphorus mobilizing consortium Mammoth P(TM) enhances plant growth[J]. PeerJ, 2016, 4: e2121. [19] BUSBY P E, SOMAN C, WAGNER M R, et al.Research priorities for harnessing plant microbiomes in sustainable agriculture[J]. PLoS Biology, 2017, 15(3): e2001793. [20] TKACZ A, POOLE P.Role of root microbiota in plant productivity[J]. Journal of Experimental Botany, 2015, 66(8): 2167-2175. [21] SLOAN S S, LEBEIS S L.Exercising influence: distinct biotic interactions shape root microbiomes[J]. Current Opinion in Plant Biology, 2015, 26: 32-36. [22] REINHOLD-HUREK B, BÜNGER W, BURBANO C S, et al. Roots shaping their microbiome: global hotspots for microbial activity[J]. Annual Review of Phytopathology, 2015, 53(1): 403-424. [23] OH Y M, KIM M, LEE-CRUZ L, et al.Distinctive bacterial communities in the rhizoplane of four tropical tree species[J]. Microbial Ecology, 2012, 64(4): 1018-1027. [24] EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): 911-920. [25] GOTTEL N R, CASTRO H F, KERLEY M, et al.Distinct microbial communities within the endosphere and rhizosphere of [26] BULGARELLI D, ROTT M, SCHLAEPPI K, et al.Revealing structure and assembly cues for [27] LUNDBERG D S, LEBEIS S L, PAREDES S H, et al.Defining the core [28] 丁新景, 敬如岩, 黄雅丽, 等. 黄河三角洲刺槐根际与非根际细菌结构及多样性[J]. 土壤学报, 2017, 54(5): 1293-1302. DING X J, JING R Y, HUANG Y L, et al.Bacterial structure and diversity of rhizosphere and bulk soil of [29] OFEK-LALZAR M, SELA N, GOLDMAN-VORONOV M, et al.Niche and host-associated functional signatures of the root surface microbiome[J]. Nature Communications, 2014, 5: 4950. [30] LEBEIS S L.The potential for give and take in plant-microbiome relationships[J]. Frontiers in Plant Science, 2014, 5: 287. [31] VANDENKOORNHUYSE P, QUAISER A, DUHAMEL M, et al.The importance of the microbiome of the plant holobiont[J]. New Phytologist, 2015, 206(4): 1196-1206. [32] PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al.Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11): 789-799. [33] HARDOIM P R, VAN OVERBEEK L S, VAN ELSAS J D. Properties of bacterial endophytes and their proposed role in plant growth[J]. Trends in Microbiology, 2008, 16(10): 463-471. [34] ROSIER A, BISHNOI U, LAKSHMANAN V, et al.A perspective on inter-kingdom signaling in plant-beneficial microbe interactions[J]. Plant Molecular Biology, 2016, 90(6): 537-548. [35] LEBEIS S L, ROTT M, DANGL J L, et al.Culturing a plant microbiome community at the cross-Rhodes[J]. New Phytologist, 2012, 196(2): 341-344. [36] BAI Y, MÜLLER D B, SRINIVAS G, et al. Functional overlap of the [37] COLEMAN-DERR D, DESGARENNES D, FONSECA-GARCIA C, et al.Plant compartment and biogeography affect microbiome composition in cultivated and native [38] SCHLAEPPI K, DOMBROWSKI N, OTER R G, et al.Quantitative divergence of the bacterial root microbiota in [39] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, et al.Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64: 807-838. [40] HACQUARD S, SCHADT C W.Towards a holistic understanding of the beneficial interactions across the [41] DOMBROWSKI N, SCHLAEPPI K, AGLER M T, et al.Root [42] BONITO G, REYNOLDS H, ROBESON M S II, et al. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants[J]. Molecular Ecology, 2014, 23(13): 3356-3370. [43] LAUBER C L, HAMADY M, KNIGHT R, et al.Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. [44] SOUSSI A, FERJANI R, MARASCO R, et al.Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential[J]. Plant and Soil, 2016, 405(1/2): 357-370. [45] SALLES J F, VAN VEEN J A, VAN ELSAS J D. Multivariate analyses of [46] OSBORNE C A, ZWART A B, BROADHURST L M, et al.The influence of sampling strategies and spatial variation on the detected soil bacterial communities under three different land-use types[J]. FEMS Microbiology Ecology, 2011, 78(1): 70-79. [47] ZARRAONAINDIA I, OWENS S M, WEISENHORN P, et al.The soil microbiome influences grapevine-associated microbiota[J]. mBio, 2015, 6(2): e02527. [48] CUCIO C, ENGELEN A H, COSTA R, et al. Rhizosphere microbiomes of European seagrasses are selected by the plant, but are not species specific[J]. Frontiers in Microbiology, 2016, 7: 440. [49] COSTA R, GÖTZ M, MROTZEK N, et al. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds[J]. FEMS Microbiology Ecology, 2006, 56(2): 236-249. [50] PÉREZ-JARAMILLO J E, MENDES R, RAAIJMAKERS J M. Impact of plant domestication on rhizosphere microbiome assembly and functions[J]. Plant Molecular Biology, 2016, 90(6): 635-644. [51] BOUFFAUD M, POIRIER M, MULLER D, et al.Root microbiome relates to plant host evolution in maize and other Poaceae[J]. Environmental Microbiology, 2014, 16(9): 2804-2814. [52] TURNER T R, RAMAKRISHNAN K, WALSHAW J, et al.Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants[J]. The ISME Journal, 2013, 7(12): 2248-2258. [53] OFEK M, VORONOV-GOLDMAN M, HADAR Y, et al.Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities[J]. Environmental Microbiology, 2014, 16(7): 2157-2167. [54] UROZ S, OGER P, TISSERAND E, et al.Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities[J]. Scientific Reports, 2016, 6: 27756. [55] WEINERT N, PICENO Y, DING G C, et al.PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa[J]. FEMS Microbiology Ecology, 2011, 75(3): 497-506. [56] MARQUES J M, DA SILVA T F, VOLLU R E, et al. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants[J]. FEMS Microbiology Ecology, 2014, 88(2): 424-435. [57] 李增强, 赵炳梓, 张佳宝. 玉米品种对根际微生物利用光合碳的影响[J]. 土壤学报, 2016, 53(5): 1286-1295. LI Z Q, ZHAO B Z, ZHANG J B.Effects of maize variety on rhizospheric microbe utilizing photosynthetic carbon[J]. [58] BULGARELLI D, GARRIDO-OTER R, MÜNCH P C, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host & Microbe, 2015, 17(3): 392-403. [59] KIM D H, KAASHYAP M, RATHORE A, et al.Phylogenetic diversity of [60] ZACHOW C, MÜLLER H, TILCHER R, et al. Differences between the rhizosphere microbiome of [61] BURKE C, STEINBERG P, RUSCH D, et al.Bacterial community assembly based on functional genes rather than species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(34): 14288-14293. [62] ZGADZAJ R, GARRIDO-OTER R, JENSEN D B, et al.Root nodule symbiosis in [63] INCEOGLU Ö, AL-SOUD W A, SALLES J F, et al. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing[J]. PLoS One, 2011, 6(8): e23321. [64] YUAN J, CHAPARRO J M, MANTER D K, et al.Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors[J]. Soil Biology and Biochemistry, 2015, 89: 206-209. [65] WAGNER M R, LUNDBERG D S, DEL RIO T G, et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant[J]. Nature Communications, 2016, 7: 12151. [66] LI X Z, RUI J P, MAO Y J, et al.Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar[J]. Soil Biology and Biochemistry, 2014, 68: 392-401. [67] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298-310. WU L K, LIN X M, LIN W X.Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310.(in Chinese with English abstract) [68] 李春俭, 马玮, 张福锁. 根际对话及其对植物生长的影响[J]. 植物营养与肥料学报, 2008, 14(1): 178-183. LI C J, MA W, ZHANG F S.Rhizosphere talk and its impacts on plant growth[J]. [69] BACILIO-JIMÉNEZ M, AGUILAR-FLORES S, VENTURA-ZAPATA E, et al. Chemical characterization of root exudates from rice ( [70] NEAL A L, AHMAD S, GORDON-WEEKS R, et al.Benzoxazinoids in root exudates of maize attract [71] LING N, RAZA W, MA J H, et al.Identification and role of organic acids in watermelon root exudates for recruiting [72] ZHANG N, WANG D D, LIU Y P, et al.Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains[J]. Plant and Soil, 2014, 374(1/2): 689-700. [73] COLE B J, FELTCHER M E, WATERS R J, et al.Genome-wide identification of bacterial plant colonization genes[J]. PLoS Biology, 2017, 15(9): e2002860. [74] SESSITSCH A, HARDOIM P, DÖRING J, et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis[J]. Molecular Plant-Microbe Interactions, 2012, 25(1): 28-36. [75] CHAPARRO J M, BADRI D V, VIVANCO J M.Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal, 2014, 8(4): 790-803. [76] 熊国胜, 李家洋, 王永红. 植物激素调控研究进展[J]. 科学通报, 2009, 54(18):2718-2733. XIONG G S, LI J Y, WANG Y H.Advances in the regulation and crosstalks of phytohomones[J]. [77] TURNER T R, JAMES E K, POOLE P S.The plant microbiome[J]. Genome Biology, 2013, 14(6): 209. [78] LEBEIS S L, PAREDES S H, LUNDBERG D S, et al.Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J]. Science, 2015, 349(6250): 860-864. [79] CARVALHAIS L C, DENNIS P G, BADRI D V, et al.Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities[J]. PLoS One, 2013, 8(2): e56457. [80] CARVALHAIS L C, DENNIS P G, BADRI D V, et al.Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes[J]. Molecular Plant-Microbe Interactions, 2015, 28(9): 1049-1058. [81] 高旭辉. 茶树根际微生物与根际效应[J].茶叶通讯,2000(1):35-38. GAO X H.Rhizosphere microorganism and rhizosphere effect of tea tree[J]. [82] FAUST K, RAES J.Microbial interactions: from networks to models[J]. Nature Reviews Microbiology, 2012, 10(8): 538-550. [83] 廖继佩, 林先贵, 曹志洪, 等. 丛枝菌根真菌与重金属的相互作用对玉米根际微生物数量和磷酸酶活性的影响[J]. 应用与环境生物学报, 2002, 8(4): 408-413. LIAO J P, LIN X G, CAO Z H, et al.Effect of interactions between arbuscular mycorrhizal fungi and heavy metals on microbial populations and phosphatase activities in the maize rhizosphere[J]. [84] 吴佳徽. 黄栌林土壤微生物多样性研究[D]. 北京: 北京林业大学, 2011. WU J H.Study on soil microorganism diversity of [85] 苗则彦, 赵奎华, 刘长远, 等. 不同抗、感枯萎病黄瓜品种不同生育时期根际微生物数量消长动态分析[J]. 沈阳农业大学学报, 2004, 35(1): 13-15. MIAO Z Y, ZHAO K H, LIU C Y, et al.Analysis on the population fluctuation of rhizosphere microorganism of different disease resistant cucumber varieties[J]. [86] LI C J, GAO J H, NAN Z B.Interactions of [87] QIN Y, DRUZHININA I S, PAN X Y, et al.Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances, 2016, 34(7): 1245-1259. [88] BELL T H, CLOUTIER-HURTEAU B, AL-OTAIBI F, et al.Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill[J]. Environmental Microbiology, 2015, 17(8): 3025-3038. [89] BELL T H, EL-DIN HASSAN S, LAURON-MOREAU A, et al. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny[J]. The ISME Journal, 2014, 8(2): 331-343. [90] MENDES R, KRUIJT M, DE BRUIJN I, et al.Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033): 1097-1100. |
| [1] | 吴菊, 杨飞, 吴国泉, 傅贤, 徐晨光. 砂培和土壤栽培对黄瓜生长、产量与品质的影响[J]. 浙江农业学报, 2025, 37(9): 1905-1913. |
| [2] | 朱为静, 吴佳, 洪春来, 朱凤香, 洪磊东, 张涛, 张硕, 诸惠芬. 秸秆覆盖对土壤水热肥及蟠桃产量和品质的影响[J]. 浙江农业学报, 2025, 37(9): 1924-1932. |
| [3] | 韦庆翠, 姜娜英, 沈骏扬, 张焕朝, 张衡锋. 化肥减量配施生物质炭对高沙土氮磷淋失及土壤性质的影响[J]. 浙江农业学报, 2025, 37(9): 1943-1950. |
| [4] | 胡莹洁, 杜晨琪, 王鎏帆, 寿建昕, 王超, 徐梅, 严旭. 囊泡运输调控植物盐胁迫响应的研究进展[J]. 浙江农业学报, 2025, 37(9): 2003-2011. |
| [5] | 师阳阳, 吕丽霞, 脱登峰. 低温弱光胁迫下AMF和PGPR对紫罗兰生长及营养吸收的影响[J]. 浙江农业学报, 2025, 37(8): 1694-1705. |
| [6] | 谭海霞, 彭红丽, 王连龙, 魏建梅. 马铃薯健康株与疮痂病株根区土壤微生物群落多样性差异分析[J]. 浙江农业学报, 2025, 37(8): 1743-1754. |
| [7] | 高扬, 张瑜昕, 卜爱爱, 徐佳怡, 马嘉伟, 叶正钱, 柳丹, 方先芝. 基于改进的内梅罗综合指数法的浙江省典型“非粮化”土壤肥力质量评价[J]. 浙江农业学报, 2025, 37(8): 1755-1765. |
| [8] | 严福林, 郎云虎, 简应权, 陈雄飞, 魏巍, 王志威, 安江勇, 任得强, 丁宁, 魏升华. 八爪金龙药材产量与品质对土壤理化性状的响应[J]. 浙江农业学报, 2025, 37(8): 1766-1775. |
| [9] | 陈敏, 张巧艳, 王夏君, 王顺利, 郑蔚然. 固相萃取-高效液相色谱法测定植物源性产品中的熊果苷[J]. 浙江农业学报, 2025, 37(8): 1776-1784. |
| [10] | 耿锐梅, 赵清海, 曹长代, 李峰, 王大海, 贺鹏霖, 刘洋, 李军民, 徐蕊, 宋志美, 胡海洲, 张玉. 烤烟品种中川208和CV87根际细菌群落分析[J]. 浙江农业学报, 2025, 37(7): 1512-1520. |
| [11] | 江振蓝, 陈付勋, 罗双飞, 罗烨琴, 沙晋明. 基于多光谱变换和主成分分析的土壤全铁含量随机森林模型反演[J]. 浙江农业学报, 2025, 37(7): 1521-1532. |
| [12] | 赵泓雨, 周宇杰, 李建忠, 郑涵, 毕继安, 余初浪, 周宇航, 侯凡, 戴彬凤, 钟列权, 严成其, 张海鹏, 杨勇, 陈剑平, 王成雨. 微塑料对植物影响的研究现状、未来展望与植物激素抵抗微塑料的分子生物学机制[J]. 浙江农业学报, 2025, 37(7): 1595-1604. |
| [13] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [14] | 何昕昀, 邓碧纯, 胡清钰, 冯宏, 郭彦彪. 基于土壤溶液中硝态氮浓度的香蕉氮肥施用研究[J]. 浙江农业学报, 2025, 37(6): 1319-1326. |
| [15] | 任宁, 俞国红, 郑航, 陈志东. 基于离散元法的茶园土壤参数标定[J]. 浙江农业学报, 2025, 37(6): 1353-1359. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||