浙江农业学报 ›› 2020, Vol. 32 ›› Issue (12): 2303-2312.DOI: 10.3969/j.issn.1004-1524.2020.12.22
• 综述 • 上一篇
收稿日期:2020-04-03
出版日期:2020-12-25
发布日期:2020-12-25
作者简介:*吕明芳, E-mail: lvmingfang309@163.com通讯作者:
吕明芳
基金资助:
GENG Yanfei1(
), LYU Mingfang2,*(
)
Received:2020-04-03
Online:2020-12-25
Published:2020-12-25
Contact:
LYU Mingfang
摘要:
在植物生长发育过程中,富含半胱氨酸类受体激酶(cysteine-rich receptor-like kinases,CRKs)作为上游信号分子,在感知胁迫信号和诱发免疫应答中起着重要作用。CRK主要由信号肽、DUF26(PF01657)、跨膜结构域和胞内激酶结构域组成,其中DUF26和激酶结构域在不同植物中高度保守。生物信息学分析发现,在单子叶和双子叶植物中含有37~170个CRK成员,它们在植物生长发育和胁迫应答中发挥不同的功能。文章综述了近年来国内外植物CRK基因结构及其在生长发育、胁迫应答中的功能研究进展,对于提高农作物抗逆境能力具有重要意义。
中图分类号:
耿艳飞, 吕明芳. 植物富含半胱氨酸类受体激酶家族研究进展[J]. 浙江农业学报, 2020, 32(12): 2303-2312.
GENG Yanfei, LYU Mingfang. Progress on cysteine-rich receptor-like kinase family in plants[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2303-2312.
| 植物 Plant | CRK数量/个 CRK number | 参考文献 References |
|---|---|---|
| 拟南芥Arabidopsis thaliana | 44 | [1] |
| 海岛棉Gossypium barbadense | 63 | [6] |
| 水稻Oryza sativa | 49 | [7] |
| 二穗短柄草Brachypodium distachyon | 43 | [7] |
| 大麦Hordeum vulgare | 37 | [7] |
| 高粱Sorghum bicolor | 38 | [7] |
| 小麦Triticum aestivum | 170 | [7] |
| 红花菜豆Phaseolus coccineus | 46 | [9] |
| 大豆Glycine max | 91 | [8] |
| 蒺藜苜蓿Medicago truncatula | 53 | [8] |
| 夏枯草Phaseolus vulgaris | 54 | [8] |
| 玉米Zea mays | 38 | [8] |
表1 不同植物中CRK的数目
Table 1 Number of CRK genes in different plants
| 植物 Plant | CRK数量/个 CRK number | 参考文献 References |
|---|---|---|
| 拟南芥Arabidopsis thaliana | 44 | [1] |
| 海岛棉Gossypium barbadense | 63 | [6] |
| 水稻Oryza sativa | 49 | [7] |
| 二穗短柄草Brachypodium distachyon | 43 | [7] |
| 大麦Hordeum vulgare | 37 | [7] |
| 高粱Sorghum bicolor | 38 | [7] |
| 小麦Triticum aestivum | 170 | [7] |
| 红花菜豆Phaseolus coccineus | 46 | [9] |
| 大豆Glycine max | 91 | [8] |
| 蒺藜苜蓿Medicago truncatula | 53 | [8] |
| 夏枯草Phaseolus vulgaris | 54 | [8] |
| 玉米Zea mays | 38 | [8] |
图2 水稻CRKs基因的系统发生树和在染色体上的分布 A,OsCRKs基因的系统发生树;B,OsCRKs基因在水稻染色体上的分布。
Fig.2 Phylogenetic tree and distribution on chromosomes of rice CRKs A, The phylogenetic tree of OsCRKs;B, OsCRKs distribution on chromosomes of rice.
| 物种 Species | 基因名称 Gene name | 基因号 Gene ID | 调控途径 Regulatory pathways | 参考文献 References |
|---|---|---|---|---|
| 拟南芥 | CRK2 | At1g70520 | 花期、矮化、衰老、ABA应答 | [11] |
| Arabidopsis thaliana | Flowering time, dwarf, senescence and ABA response | |||
| CRK4 | At3g45860 | 花期、衰老、免疫应答 | [11,17,27] | |
| Flowering time, senescence, immune response | ||||
| CRK5 | At4g23130 | 发芽、矮化、衰老、免疫应答 | [11, 12] | |
| Germination, dwarf, senescence, immune response | ||||
| CRK6 | At4g23140 | 衰老、免疫应答 | [11,17,27] | |
| Senescence, immune response | ||||
| CRK7 | At4g23150 | 花期、ROS 信号途径 | [18] | |
| Flowering time, ROS signaling pathway | ||||
| CRK13 | At4g23210 | 衰老、免疫应答 | [30] | |
| Senescence, immune response | ||||
| CRK19 | At4g23270 | 花期、SA应答、免疫应答 | [11, 17] | |
| Flowering time, SA and immune response | ||||
| CRK20 | At4g23280 | 衰老、SA应答、免疫应答 | [11,17,32] | |
| Senescence, SA and immune response | ||||
| CRK28 | At4g21400 | 根毛、表皮毛、衰老、免疫应答 | [11,20,22] | |
| root architecture, trichome, senescence, immune response | ||||
| CRK29 | At4g21410 | 发芽、根长、衰老 | [11, 22] | |
| Germination, root length, senescence | ||||
| CRK36 | At4g04490 | ABA 应答、免疫应答 | [24,29,34] | |
| ABA and immune response | ||||
| CRK37 | At4g04500 | 发芽、衰老、ABA应答 | [11, 24] | |
| Germination, senescence, ABA response | ||||
| CRK38 | At4g04510 | 发芽、花期、衰老 | [11] | |
| Germination, flowering time and senescence | ||||
| CRK42 | At5g40380 | 根长、衰老 | [11] | |
| Root length, senescence | ||||
| CRK45 | At4g11890 | 抽薹、衰老、干旱、ABA及免疫应答 | [11,23,31] | |
| Bolting, senescence, drought, ABA and immune response | ||||
| 水稻 | Os07g0488400 | LOC_Os07g30510 | 免疫反应 | [36] |
| Oryza sativa | Immune response | |||
| CRK6 | LOC_Os07g35690 | 抗白叶枯 | [37] | |
| Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
| CRK10 | LOC_Os07g35700 | 抗白叶枯 | [37] | |
| Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
| 海岛棉 | GbCRK18 | GOBAR_DD09713 | 抗黄萎病 | [6] |
| Gossypium barbadense | Enhance resistance to Verticillium wilt | |||
| 蒺藜苜蓿 | SymCRK | XM_003601311 | 免疫应答 | [14] |
| Medicago truncatula | Immunity response | |||
| 大麦 | HvCRK1 | CBX51235 | 调控白粉病 | [38] |
| Hordeum vulgare | Enhanced resistance to powdery mildew | |||
| 小麦Triticum aestivum | TaCRK1 | KC818618 | ABA应答 | [10] |
| ABA response | ||||
| TaRLK-R1 | DQ270234 | 抗小麦条锈病 | [39] | |
| Resistance to stripe rust fungus infection | ||||
| TaCRK68-A | MK188517 | 高温、干旱、寒冷、盐胁迫 | [7] | |
| Heat, drought, cold and salinity stress | ||||
| 番茄 | SlCRK1 | KC736926 | 花药中特异表达、不受胁迫诱导 | [40] |
| Solanum lycopersicum | Specific expression in the flower, Not induced by stress treatment | |||
| 黄瓜Cucumis sativus | Csa1M064780 | XM_031889561 | 抗白粉病 | [41] |
| Resistance to powdery mildew | ||||
| Csa1M064790 | XM_031882195 | 抗白粉病 | [41] | |
| Resistance to powdery mildew |
表2 植物中已知的富含半胱氨酸类受体激酶功能
Table 2 Cysteine receptor-like kinase function has been reported in plants
| 物种 Species | 基因名称 Gene name | 基因号 Gene ID | 调控途径 Regulatory pathways | 参考文献 References |
|---|---|---|---|---|
| 拟南芥 | CRK2 | At1g70520 | 花期、矮化、衰老、ABA应答 | [11] |
| Arabidopsis thaliana | Flowering time, dwarf, senescence and ABA response | |||
| CRK4 | At3g45860 | 花期、衰老、免疫应答 | [11,17,27] | |
| Flowering time, senescence, immune response | ||||
| CRK5 | At4g23130 | 发芽、矮化、衰老、免疫应答 | [11, 12] | |
| Germination, dwarf, senescence, immune response | ||||
| CRK6 | At4g23140 | 衰老、免疫应答 | [11,17,27] | |
| Senescence, immune response | ||||
| CRK7 | At4g23150 | 花期、ROS 信号途径 | [18] | |
| Flowering time, ROS signaling pathway | ||||
| CRK13 | At4g23210 | 衰老、免疫应答 | [30] | |
| Senescence, immune response | ||||
| CRK19 | At4g23270 | 花期、SA应答、免疫应答 | [11, 17] | |
| Flowering time, SA and immune response | ||||
| CRK20 | At4g23280 | 衰老、SA应答、免疫应答 | [11,17,32] | |
| Senescence, SA and immune response | ||||
| CRK28 | At4g21400 | 根毛、表皮毛、衰老、免疫应答 | [11,20,22] | |
| root architecture, trichome, senescence, immune response | ||||
| CRK29 | At4g21410 | 发芽、根长、衰老 | [11, 22] | |
| Germination, root length, senescence | ||||
| CRK36 | At4g04490 | ABA 应答、免疫应答 | [24,29,34] | |
| ABA and immune response | ||||
| CRK37 | At4g04500 | 发芽、衰老、ABA应答 | [11, 24] | |
| Germination, senescence, ABA response | ||||
| CRK38 | At4g04510 | 发芽、花期、衰老 | [11] | |
| Germination, flowering time and senescence | ||||
| CRK42 | At5g40380 | 根长、衰老 | [11] | |
| Root length, senescence | ||||
| CRK45 | At4g11890 | 抽薹、衰老、干旱、ABA及免疫应答 | [11,23,31] | |
| Bolting, senescence, drought, ABA and immune response | ||||
| 水稻 | Os07g0488400 | LOC_Os07g30510 | 免疫反应 | [36] |
| Oryza sativa | Immune response | |||
| CRK6 | LOC_Os07g35690 | 抗白叶枯 | [37] | |
| Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
| CRK10 | LOC_Os07g35700 | 抗白叶枯 | [37] | |
| Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
| 海岛棉 | GbCRK18 | GOBAR_DD09713 | 抗黄萎病 | [6] |
| Gossypium barbadense | Enhance resistance to Verticillium wilt | |||
| 蒺藜苜蓿 | SymCRK | XM_003601311 | 免疫应答 | [14] |
| Medicago truncatula | Immunity response | |||
| 大麦 | HvCRK1 | CBX51235 | 调控白粉病 | [38] |
| Hordeum vulgare | Enhanced resistance to powdery mildew | |||
| 小麦Triticum aestivum | TaCRK1 | KC818618 | ABA应答 | [10] |
| ABA response | ||||
| TaRLK-R1 | DQ270234 | 抗小麦条锈病 | [39] | |
| Resistance to stripe rust fungus infection | ||||
| TaCRK68-A | MK188517 | 高温、干旱、寒冷、盐胁迫 | [7] | |
| Heat, drought, cold and salinity stress | ||||
| 番茄 | SlCRK1 | KC736926 | 花药中特异表达、不受胁迫诱导 | [40] |
| Solanum lycopersicum | Specific expression in the flower, Not induced by stress treatment | |||
| 黄瓜Cucumis sativus | Csa1M064780 | XM_031889561 | 抗白粉病 | [41] |
| Resistance to powdery mildew | ||||
| Csa1M064790 | XM_031882195 | 抗白粉病 | [41] | |
| Resistance to powdery mildew |
| [1] | WRZACZEK M, BROSCHÉ M, SALOJÄRVI J, et al. Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis[J]. BMC Plant Biology, 2010,10(1):1-19. |
| [2] | SHIU S H, BLEECKER A B. Plant receptor-like kinase gene family: diversity, function, and signaling[J]. Science’s STKE, 2001, 2001(113): re22. |
| [3] |
WALKER J C, ZHANG R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica[J]. Nature, 1990,345(6277):743-746.
DOI URL PMID |
| [4] |
SHIU S H, BLEECKER A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis[J]. Plant Physiology, 2003,132(2):530-543.
URL PMID |
| [5] | VAATTOVAARA A, BRANDT B, RAJARAMAN S, et al. Mechanistic insights into the evolution of DUF26-containing proteins in land plants[J]. Communications Biology, 2019,2(1):56-74. |
| [6] |
LI T G, ZHANG D D, ZHOU L, et al. Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers Verticillium wilt resistance in Gossypium barbadense[J]. Frontiers in Plant Science, 2018,9:1266-1282.
DOI URL PMID |
| [7] |
SHARMA A, TYAGI S, SINGH K, et al. Genomic dissection and transcriptional profiling of cysteine-rich receptor-like kinases in five cereals and functional characterization of TaCRK68-A[J]. International Journal of Biological Macromolecules, 2019,134:316-329.
DOI URL PMID |
| [8] |
DELGADO-CERRONE L, ALVAREZ A, MENA E, et al. Genome wide analysis of the soybean CRK-family and transcriptional regulation by biotic stress signals triggering plant immunity[J]. PLoS One, 2018,13(11):e0207438.
DOI URL PMID |
| [9] | QUEZADA E, GARCIA G, ARTHIKALA M, et al. Cysteine-rich receptor-like kinase gene family identification in the Phaseolus genome and comparative analysis of their expression profiles specific to mycorrhizal and rhizobial symbiosis[J]. Genes, 2019,10(1):59. |
| [10] | YANG K, RONG W, QI L, et al. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis[J]. Scientific Reports, 2013,3(1):3021. |
| [11] |
BOURDAIS G, BURDIAK P, GAUTHIER A, et al. Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress[J]. PLos Genetics, 2015,11:e1005373.
URL PMID |
| [12] |
CHEN K G, DU L Q, CHEN Z X. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis[J]. Plant Molecular Biology, 2003,53(1/2):61-74.
DOI URL |
| [13] |
DYKEMA P E, SIPES P R, MARIE A, et al. A new class of proteins capable of binding transition metals[J]. Plant Molecular Biology, 1999,41(1):139-150.
DOI URL PMID |
| [14] | BERRABAH F, BOURCY M, ESCHSTRUTH A, et al. A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis[J]. New Phytologist, 2014,203(4):1305-1314. |
| [15] |
NEMOTO K, TAKEMORI N, SEKI M, et al. Members of the plant CRK superfamily are capable of trans-and autophosphorylation of tyrosine residues[J]. The Journal of Biological Chemistry, 2015,290(27):16665-16677.
DOI URL PMID |
| [16] |
ADAMS J A. Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model?[J]. Biochemistry, 2003,42(3):601-607.
DOI URL PMID |
| [17] |
CHEN K G, FAN B F, DU L Q, et al. Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis[J]. Plant Molecular Biology, 2004,56(2):271-283.
DOI URL PMID |
| [18] |
IDÄNHEIMO N, GAUTHIER A, SALOJÄRVI J, et al. The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress[J]. Biochemical and Biophysical Research Communications, 2014,445(2):457-462.
DOI URL |
| [19] |
FERRO M, BRUGIÈRE S, SALVI D, et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins[J]. Molecular & Cellular Proteomics, 2010,9(6):1063-1084.
DOI URL PMID |
| [20] |
PELAGIO-FLORES R, MUÑOZ-PARRA E, BARRERA-ORTIZ S, et al. The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses[J]. Planta, 2019,251(1):1-12.
DOI URL PMID |
| [21] |
LU K, LIANG S, WU Z, et al. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance[J]. Journal of Experimental Botany, 2016,67(17):5009-5027.
DOI URL PMID |
| [22] |
YADETA K A, ELMORE J M, CREER A Y, et al. A cysteine-rich protein kinase associates with a membrane immune complex and the cysteine residues are required for cell death[J]. Plant Physiology, 2017,173(1):771-787.
URL PMID |
| [23] |
ZHANG X J, YANG G Y, SHI R, et al. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses[J]. Plant Physiology and Biochemistry, 2013,67:189-198.
DOI URL PMID |
| [24] |
BURDIAK P, RUSACZONEK A, WITOŃ D, et al. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana [J]. Journal of Experimental Botany, 2015,66(11):3325-3337.
DOI URL PMID |
| [25] |
CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006,124(4):803-814.
DOI URL PMID |
| [26] |
KIMURA S, WASZCZAK C, HUNTER K, et al. Bound by fate: the role of reactive oxygen species in receptor-like kinase signaling[J]. The Plant Cell, 2017,29(4):638-654.
DOI URL PMID |
| [27] |
YEH Y H, CHANG Y H, HUANG P Y, et al. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases[J]. Frontiers in Plant Science, 2015,6:322.
DOI URL PMID |
| [28] |
ZHOU Q, ZHANG Z F, LIU T T, et al. Identification and map-based cloning of the light-induced lesion mimic mutant 1 (LIL1) gene in rice[J]. Frontiers in Plant Science, 2017,8:2122.
DOI URL PMID |
| [29] |
LEE D S, KIM Y C, KWON S J, et al. The Arabidopsis cysteine-rich receptor-like kinase CRK36 regulates immunity through interaction with the cytoplasmic kinase BIK1[J]. Frontiers in Plant Science, 2017,8:1856.
DOI URL PMID |
| [30] |
ACHARYA B R, RAINA S, MAQBOOL S B, et al. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae[J]. The Plant Journal, 2007,50(3):488-499.
DOI URL PMID |
| [31] |
ZHANG X J, HAN X M, SHI R, et al. Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae[J]. Plant Physiology and Biochemistry, 2013,73:383-391.
URL PMID |
| [32] |
EDERLI L, MADEO L, CALDERINI O, et al. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection[J]. Journal of Plant Physiology, 2011,168(15):1784-1794.
URL PMID |
| [33] |
NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development[J]. Plant Cell Reports, 2013,32(7):959-970.
URL PMID |
| [34] |
TANAKA H, OSAKABE Y, KATSURA S, et al. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis[J]. The Plant Journal, 2012,70(4):599-613.
URL PMID |
| [35] | CHEN D H, WU J, ZHAO M, et al. A novel wheat cysteine-rich receptor-like kinase gene CRK41 is involved in the regulation of seed germination under osmotic stress in Arabidopsis thaliana[J]. Journal of Plant Biology, 2017,60(6):571-581. |
| [36] |
DU D, LIU M, XING Y, et al. Semi-dominant mutation in the cysteine-rich receptor-like kinase gene, ALS1, conducts constitutive defence response in rice[J]. Plant Biology, 2019,21(1):25-34.
DOI URL PMID |
| [37] |
CHERN M, XU Q F, BART R S, et al. A genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity[J]. PLoS Genetics, 2016,12(5):e1006049.
DOI URL PMID |
| [38] |
RAYAPURAM C, JENSEN M K, MAISER F, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley[J]. Molecular Plant Pathology, 2012,13(2):135-147.
URL PMID |
| [39] |
ZHOU H B, LI S F, DENG Z Y, et al. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection[J]. The Plant Journal, 2007,52(3):420-434.
URL PMID |
| [40] | KIM W B, YI S Y, OH S K, et al. Identification of a pollen-specific gene, SlCRK1 (RFK2) in tomato[J]. Genes & Genomics, 2014,36(3):303-311. |
| [41] |
XU X W, YU T, XU R X, et al. Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes[J]. Theoretical and Applied Genetics, 2016,129(3):507-516.
URL PMID |
| [1] | 胡莹洁, 杜晨琪, 王鎏帆, 寿建昕, 王超, 徐梅, 严旭. 囊泡运输调控植物盐胁迫响应的研究进展[J]. 浙江农业学报, 2025, 37(9): 2003-2011. |
| [2] | 师阳阳, 吕丽霞, 脱登峰. 低温弱光胁迫下AMF和PGPR对紫罗兰生长及营养吸收的影响[J]. 浙江农业学报, 2025, 37(8): 1694-1705. |
| [3] | 陈敏, 张巧艳, 王夏君, 王顺利, 郑蔚然. 固相萃取-高效液相色谱法测定植物源性产品中的熊果苷[J]. 浙江农业学报, 2025, 37(8): 1776-1784. |
| [4] | 赵泓雨, 周宇杰, 李建忠, 郑涵, 毕继安, 余初浪, 周宇航, 侯凡, 戴彬凤, 钟列权, 严成其, 张海鹏, 杨勇, 陈剑平, 王成雨. 微塑料对植物影响的研究现状、未来展望与植物激素抵抗微塑料的分子生物学机制[J]. 浙江农业学报, 2025, 37(7): 1595-1604. |
| [5] | 邹俊燕, 王筠竹, 赵婉秋, 尹志浩, 杜建科, 孙崇波. 兰科植物原球茎和类原球茎研究进展[J]. 浙江农业学报, 2025, 37(6): 1372-1389. |
| [6] | 胡心柔, 王梅, 张雅芬, 蔡为明, 金群力. 非生物胁迫对灵芝生长发育及其响应机制的影响[J]. 浙江农业学报, 2025, 37(5): 1182-1190. |
| [7] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [8] | 夏思, 房祥军, 吴伟杰, 刘瑞玲, 陈慧芝, 牛犇, 郜海燕. 发酵型杨梅果浆的制备及其功能风味品质研究[J]. 浙江农业学报, 2025, 37(3): 667-678. |
| [9] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
| [10] | 白健, 罗来聪, 李爱新, 赖晓琴, 申展, 刘亮英, 郭圣茂, 张令. 不同生境入侵植物喜旱莲子草碳排放对氮磷输入的响应[J]. 浙江农业学报, 2024, 36(9): 2070-2078. |
| [11] | 展梦琪, 苏傲雪, 侯倩, 张皓宇, 姜欣蕊, 徐艳. 水稻对林丹的吸收累积与代谢组学研究[J]. 浙江农业学报, 2024, 36(9): 2110-2121. |
| [12] | 高国际, 龙玲, 宋晓云, 李彦彤, 刘高强, 丁功涛. 亮斑扁角水虻幼虫代替豆粕对北京鸭生长发育和血清生化指标的影响[J]. 浙江农业学报, 2024, 36(8): 1764-1772. |
| [13] | 傅志强, 刘祯, 马春花, 温梦玲, 奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响[J]. 浙江农业学报, 2024, 36(7): 1634-1645. |
| [14] | 朱学慧, 谢辉, 韩守安, 王敏, 白世践, 马云龙, 王艳蒙, 麦斯乐, 潘明启, 张雯. 两种植物生长调节剂对无核白鸡心葡萄果实品质的影响[J]. 浙江农业学报, 2024, 36(6): 1309-1319. |
| [15] | 赵黎明, 王亚新, 蒋文鑫, 段绍彪, 沈雪峰, 郑殿峰, 冯乃杰. 植物生长调节剂对优质粳稻产量、品质与光合特性的影响[J]. 浙江农业学报, 2024, 36(5): 1003-1014. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||