浙江农业学报 ›› 2021, Vol. 33 ›› Issue (4): 678-687.DOI: 10.3969/j.issn.1004-1524.2021.04.13
吴佩聪1,2(
), 张鹏2,3, 单颖2, 邹刚华2, 丁哲利4, 朱治强1,*(
), 赵凤亮2,*(
)
收稿日期:2020-12-23
出版日期:2021-04-25
发布日期:2021-04-25
作者简介:赵凤亮,E-mail:zfl7409@163.com通讯作者:
朱治强,赵凤亮
基金资助:
WU Peicong1,2(
), ZHANG Peng2,3, SHAN Ying2, ZOU Ganghua2, DING Zheli4, ZHU Zhiqiang1,*(
), ZHAO Fengliang2,*(
)
Received:2020-12-23
Online:2021-04-25
Published:2021-04-25
Contact:
ZHU Zhiqiang,ZHAO Fengliang
摘要:
氨挥发是稻田氮肥的主要损失途径之一。作为改良土壤和提高农业可持续性发展的优良农艺措施,秸秆炭化还田对氨挥发减排具有良好的效果。本研究通过土柱试验,设置不施氮肥(ON)、单施化肥(CT)、施用生物炭(BI)、生物炭+化肥(CBI)、添加秸秆(ST)、秸秆+化肥(CST)6个处理,研究了水稻秸秆直接还田和炭化还田对热带土壤-水稻体系氨挥发的影响。结果表明:与秸秆直接还田相比,炭化还田降低了稻田氨挥发排放通量和累积氨挥发量;与CT相比,CBI处理的累积氨挥发量减少了4.1%。这主要是因为生物炭具有独特的理化性质,可通过吸附降低田面水中铵态氮(NH4+-N)的浓度。秸秆炭化还田是控制热带水稻种植系统氨挥发、减少农业面源污染的有效途径。
中图分类号:
吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687.
WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687.
| 处理 Treatment | 有机碳 SOC/ (g·kg-1) | 全氮 Total N/ (g·kg-1) | 全磷 Total P/ (g·kg-1) | 全钾 Total K/ (g·kg-1) | 速效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) | 阳离子交换量 CEC/ (cmol·kg-1) | pH |
|---|---|---|---|---|---|---|---|---|
| ON | 6.44 | 0.64 | 0.75 | 12.25 | 83.0 | 142.0 | 4.37 | 6.46 |
| CT | 7.31 | 0.77 | 0.82 | 12.06 | 94.6 | 136.2 | 3.36 | 5.41 |
| CST | 8.35 | 0.91 | 0.78 | 11.65 | 77.9 | 121.4 | 4.73 | 5.85 |
| CBI | 15.89 | 0.87 | 0.71 | 11.12 | 91.1 | 151.2 | 3.89 | 5.81 |
表1 土壤基本理化性质
Table 1 Basic physical and chemical properties of soil
| 处理 Treatment | 有机碳 SOC/ (g·kg-1) | 全氮 Total N/ (g·kg-1) | 全磷 Total P/ (g·kg-1) | 全钾 Total K/ (g·kg-1) | 速效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) | 阳离子交换量 CEC/ (cmol·kg-1) | pH |
|---|---|---|---|---|---|---|---|---|
| ON | 6.44 | 0.64 | 0.75 | 12.25 | 83.0 | 142.0 | 4.37 | 6.46 |
| CT | 7.31 | 0.77 | 0.82 | 12.06 | 94.6 | 136.2 | 3.36 | 5.41 |
| CST | 8.35 | 0.91 | 0.78 | 11.65 | 77.9 | 121.4 | 4.73 | 5.85 |
| CBI | 15.89 | 0.87 | 0.71 | 11.12 | 91.1 | 151.2 | 3.89 | 5.81 |
图2 不同施肥阶段的氨挥发排放通量 箭头所示分别为施入基肥、分蘖肥、穗肥的时候,对应日期分别为8月2日、8月23日、10月4日。下同。
Fig.2 Ammonia volatilization flux at different fertilization stages The arrows show the time when basal fertilizer, tiller fertilizer and panicle fertilizer was applied, respectively.The same as below.
| 处理 Treatment | 基肥期 Basal fertilizer stage | 分蘖肥期 Tiller fertilizer stage | 穗肥期 Panicle fertilizer stage | 全生长期 Whole growth period |
|---|---|---|---|---|
| BI | 18.20±0.36 Ac | 2.22±0.13 Be | 0.58±0.03 Cc | 21.00±0.52 e |
| ST | 18.18±0.32 Ac | 2.37±0.16 Bde | 0.89±0.03 Ca | 21.44±0.51 d |
| CBI | 20.36±0.28 Ab | 2.84±0.22 Bc | 0.69±0.09 Cbc | 23.89±0.59 c |
| CST | 22.33±0.3 Aa | 3.22±0.18 Bb | 0.60±0.16 Cc | 26.15±0.65 a |
| CT | 20.43±0.54 Ab | 3.66±0.31 Ba | 0.80±0.09 Cab | 24.90±0.94 b |
| ON | 20.36±0.29 Ab | 2.43±0.27 Bd | 0.77±0.11 Cab | 21.01±0.67 e |
表2 不同处理下累积氨挥发量的动态变化
Table 2 Dynamic change of accumulated ammonia volatilization under different treatments kg·hm-2·d-1
| 处理 Treatment | 基肥期 Basal fertilizer stage | 分蘖肥期 Tiller fertilizer stage | 穗肥期 Panicle fertilizer stage | 全生长期 Whole growth period |
|---|---|---|---|---|
| BI | 18.20±0.36 Ac | 2.22±0.13 Be | 0.58±0.03 Cc | 21.00±0.52 e |
| ST | 18.18±0.32 Ac | 2.37±0.16 Bde | 0.89±0.03 Ca | 21.44±0.51 d |
| CBI | 20.36±0.28 Ab | 2.84±0.22 Bc | 0.69±0.09 Cbc | 23.89±0.59 c |
| CST | 22.33±0.3 Aa | 3.22±0.18 Bb | 0.60±0.16 Cc | 26.15±0.65 a |
| CT | 20.43±0.54 Ab | 3.66±0.31 Ba | 0.80±0.09 Cab | 24.90±0.94 b |
| ON | 20.36±0.29 Ab | 2.43±0.27 Bd | 0.77±0.11 Cab | 21.01±0.67 e |
| 处理 Treatment | 基肥期 Basal fertilizer stage | 分蘖肥期 Tiller fertilizer stage | 穗肥期 Panicle fertilizer stage |
|---|---|---|---|
| BI | 6.72±0.08 b | 7.38±0.04 b | 7.23±0.07 a |
| ST | 7.18±0.11 a | 7.59±0.06 a | 7.38±0.05 a |
| CBI | 6.74±0.06 b | 6.92±0.06 c | 7.48±0.03 a |
| CST | 7.08±0.08 a | 7.51±0.05 ab | 7.44±0.04 a |
| CT | 6.62±0.09 bc | 6.88±0.08 c | 7.08±0.05 b |
| ON | 6.49±0.07 c | 7.01±0.04 c | 7.49±0.02 a |
表3 田面水pH
Table 3 pH of surface water
| 处理 Treatment | 基肥期 Basal fertilizer stage | 分蘖肥期 Tiller fertilizer stage | 穗肥期 Panicle fertilizer stage |
|---|---|---|---|
| BI | 6.72±0.08 b | 7.38±0.04 b | 7.23±0.07 a |
| ST | 7.18±0.11 a | 7.59±0.06 a | 7.38±0.05 a |
| CBI | 6.74±0.06 b | 6.92±0.06 c | 7.48±0.03 a |
| CST | 7.08±0.08 a | 7.51±0.05 ab | 7.44±0.04 a |
| CT | 6.62±0.09 bc | 6.88±0.08 c | 7.08±0.05 b |
| ON | 6.49±0.07 c | 7.01±0.04 c | 7.49±0.02 a |
图5 不同处理土壤NH4+-N含量变化 同一时期柱上无相同小写字母表示不同处理间差异显著。下同。
Fig.5 Changes of NH4+-N content in soil treated with different treatments Different lowercase letters indicated significant differences between different treatments in the same period. The same as below.
| 指标 Index | 氨挥发排放通量 Ammonia volatilization flux | 田面水pH pH of surface water | 田面水NH4+-N NH4+-N of surface water | 田面水NO3--N NO3--N of surface water | 土壤NH4+-N Soil NH4+-N |
|---|---|---|---|---|---|
| 田面水pH | -0.135* | ||||
| pH of surface water | |||||
| 田面水NH4+-N | 0.344** | -0.213** | |||
| NH4+-N of surface water | |||||
| 田面水NO3--N | 0.324** | -0.307** | 0.328** | ||
| NO3--N of surface water | |||||
| 土壤NH4+-N | 0.741** | -0.429* | 0.683** | 0.482** | |
| Soil NH4+-N | |||||
| 土壤NO3--N | 0.541** | -0.501** | 0.556** | 0.452** | 0.802** |
| Soil NO3--N |
表4 土壤氨挥发通量与土壤、田面水理化指标之间的相关性
Table 4 Correlation analysis between soil ammonia volatilization and physic-chemical indexes of soil and surface water
| 指标 Index | 氨挥发排放通量 Ammonia volatilization flux | 田面水pH pH of surface water | 田面水NH4+-N NH4+-N of surface water | 田面水NO3--N NO3--N of surface water | 土壤NH4+-N Soil NH4+-N |
|---|---|---|---|---|---|
| 田面水pH | -0.135* | ||||
| pH of surface water | |||||
| 田面水NH4+-N | 0.344** | -0.213** | |||
| NH4+-N of surface water | |||||
| 田面水NO3--N | 0.324** | -0.307** | 0.328** | ||
| NO3--N of surface water | |||||
| 土壤NH4+-N | 0.741** | -0.429* | 0.683** | 0.482** | |
| Soil NH4+-N | |||||
| 土壤NO3--N | 0.541** | -0.501** | 0.556** | 0.452** | 0.802** |
| Soil NO3--N |
| [1] | ZHU Z L, CHEN D L. Nitrogen fertilizer use in China: contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002,63(2/3):117-127. |
| [2] | 王桂良. 中国三大粮食作物农田活性氮损失与氮肥利用率的定量分析[D]. 北京: 中国农业大学, 2014. |
| WANG G L. Quantitative analysis of reactive nitrogen losses and nitrogen use efficiency of three major grain crops in china[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract) | |
| [3] | 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000,9(1):1-6. |
| ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Scieces, 2000,9(1):1-6.(in Chinese) | |
| [4] | BEUSEN A H W, BOUWMAN A F, HEUBERGER P S C, et al. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems[J]. Atmospheric Environment, 2008,42(24):6067-6077. |
| [5] | SYLVAIN P HAYO M G V D W, FRANCOISE V. Evaluation of an operational method for the estimation of emissions of nitrogen compounds for a group of farms[J]. International Journal of Agricultural Resources Governance & Ecology, 2006(5):541-549. |
| [6] | FAO. FAO statistical pocketbook 2012: world food and agriculture[J]. FAO Statistical Pocketbook World Food & Agriculture, 2012,79(7102):572-574. |
| [7] | 白志刚. 氮肥运筹对水稻氮代谢及稻田氮肥利用率的影响[D]. 北京: 中国农业科学院, 2019. |
| BAI Z G. Effects of N management strategy on N metabolism in rice plant and N use efficiency in paddy soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract) | |
| [8] | 钟婷. 秸秆炭化还田对稻田土壤氨挥发的影响及其机理研究[D]. 杭州: 浙江大学, 2017. |
| ZHONG T. Influence of biochar application on NH3 volatilization from paddy soil[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract) | |
| [9] | WANG J, WANG D J, ZHANG G, et al. Effect of wheat straw application on ammonia volatilization from urea applied to a paddy field[J]. Nutrient Cycling in Agroecosystems, 2012,94(1):73-84. |
| [10] | SUN L S, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China-ScienceDirect[J]. Atmospheric Environment, 2018,181:97-105. |
| [11] | 汪军, 王德建, 张刚, 等. 麦秸全量还田下太湖地区两种典型水稻土稻季氨挥发特性比较[J]. 环境科学, 2013,34(1):27-33. |
| WANG J, WANG D J, ZHANG G, et al. Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region[J]. Chinese Journal of Environmental Science, 2013,34(1):27-33. (in Chinese with English abstract) | |
| [12] | 车庆博. 施用有机物料对尿素氨挥发影响的研究[D]. 长春: 吉林农业大学, 2008. |
| CHE Q B. Study on the effects of organic material on urea ammonia volatilization[D]. Changchun: Jilin Agricultural University, 2008. (in Chinese with English abstract) | |
| [13] |
TIAN G, CAI Z, CAO J, et al. Factors affecting ammonia volatilization from a rice-wheat rotation system[J]. Chemosphere, 2001,42(2):123-129.
DOI URL PMID |
| [14] | HE T H, LIU D Y, YUAN J J, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field[J]. Agriculture, Ecosystems & Environment, 2018,264:44-53. |
| [15] |
FENG Y F, SUN H J, XUE L H, et al. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil[J]. Chemosphere, 2017,168:1277-1284.
URL PMID |
| [16] |
SUN H J, MIN J, ZHANG H L, et al. Biochar application mode influences nitrogen leaching and NH3 volatilization losses in a rice paddy soil irrigated with N-rich wastewater[J]. Environmental Technology, 2018,39(16):2090-2096.
URL PMID |
| [17] |
SUN H J, LU H Y, CHU L, et al. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil[J]. The Science of the Total Environment, 2017,575:820-825.
URL PMID |
| [18] | WANG S W, SHAN J, XIA Y Q, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons[J]. Science of the total environment, 2017(593/594):347-356. |
| [19] |
MANDAL S, THANGARAJAN R, BOLAN N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016,142:120-127.
DOI URL PMID |
| [20] | PALANIVELL P, AHMED O H, AB MAJID N M. Minimizing ammonia volatilization from urea in waterlogged condition using chicken litter biochar[J]. Communications in Soil Science and Plant Analysis, 2017,48(17):2083-2092. |
| [21] | THANGARAJAN R, BOLAN N S, KUNHIKRISHNAN A, et al. The potential value of biochar in the mitigation of gaseous emission of nitrogen[J]. Science of The Total Environment, 2018,612:257-268. |
| [22] | HE Y, LEHNDORFF E, AMELUNG W, et al. Drainage and leaching losses of nitrogen and dissolved organic carbon after introducing maize into a continuous paddy-rice crop rotation[J]. Agriculture Ecosystems & Environment, 2017,249:91-100. |
| [23] | 董玉兵, 吴震, 李博, 等. 追施生物炭对稻麦轮作中麦季氨挥发和氮肥利用率的影响[J]. 植物营养与肥料学报, 2017,23(5):1258-1267. |
| DONG Y B, WU Z, LI B, et al. Effects of biochar reapplication on ammonia volatilization and nitrogen use efficiency during wheat season in a rice-wheat annual rotation system[J]. Plant Nutrition and Fertilizer Science, 2017,23(5):1258-1267.(in Chinese with English abstract) | |
| [24] | 魏玉云. 热带地区砖红壤上不同土壤pH和含水量对尿素氨挥发的影响研究[D]. 海口: 海南大学, 2006. |
| WEI Y Y. Study on the volatilization differences of ammonia from latosols with different soil pH and different soil water content[D]. Haikou: Hainan University, 2006. (in Chinese with English abstract) | |
| [25] | 田玉华, 曾科, 尹斌. 基于不同监测方法的太湖地区稻田基蘖肥期氨排放研究[J]. 土壤学报, 2019,56(5):1180-1189. |
| TIAN Y H, ZENG K, YIN B. Ammonia emission following basal and tillering fertilization in Taihu Lake region relative to monitoring techniques[J]. Acta Pedologica Sinica, 2019,56(5):1180-1189. (in Chinese with English abstract) | |
| [26] |
SUN X, ZHONG T, ZHANG L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. The Science of the Total Environment, 2019,660:512-518.
DOI URL PMID |
| [27] | 余姗, 薛利红, 花昀, 等. 水热炭减少稻田氨挥发损失的效果与机制[J]. 环境科学, 2020,41(2):922-931. |
| YU S, XUE L H, HUA Y, et al. Effect of applying hydrochar for reduction of ammonia volatilization and mechanisms in paddy soil[J]. Environmental Science, 2020,41(2):922-931. (in Chinese with English abstract) | |
| [28] | CHEN A Q, LEI B K, HU W L, et al. Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China[J]. Nutrient Cycling in Agroecosystems, 2015,101(1):139-152. |
| [29] |
YAO Z S, ZHENG X H, ZHANG Y N, et al. Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system[J]. Scientific Reports, 2017,7(1):11415.
URL PMID |
| [30] | 吴凡, 张克强, 谢坤, 等. 洱海流域典型农区不同施肥处理下稻田氨挥发变化特征[J]. 农业环境科学学报, 2019,38(8):1735-1742. |
| WU F, ZHANG K Q, XIE K, et al. Characteristics of ammonia volatilization from rice paddy fields under different fertilization treatments in typical agricultural areas of Erhai basin[J]. Journal of Agro-Environment Science, 2019,38(8):1735-1742. (in Chinese with English abstract) | |
| [31] | 李然, 蔡威威, 艾天成, 等. 稻田氨挥发损失和水稻产量对不同水氮处理的响应[J]. 中国土壤与肥料, 2020(3):47-54. |
| LI R, CAI W W, AI T C, et al. Responses of ammonia volatilization and grain yield under different water and fertilizer practices in a rice paddy[J]. Soils and Fertilizers Sciences in China, 2020(3):47-54.(in Chinese) | |
| [32] |
YING J Y, ZHANG L M, HE J Z. Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns.[J]. Environmental Microbiology Reports, 2010,2(2):304-312.
URL PMID |
| [33] | 邬刚, 袁嫚嫚, 曹哲伟, 等. 不同水氮管理条件下稻田氨挥发损失特征[J]. 生态与农村环境学报, 2019,35(5):651-658. |
| WU G, YUAN M M, CAO Z W, et al. Ammonia volatilization under different water management and nitrogen schemes in a paddy field[J]. Journal of Ecology and Rural Environment, 2019,35(5):651-658. (in Chinese with English abstract) | |
| [34] | 俞映倞, 薛利红, 杨林章. 太湖地区稻田不同氮肥管理模式下氨挥发特征研究[J]. 农业环境科学学报, 2013,32(8):1682-1689. |
| YU Y L, XUE L H, YANG L Z. Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region[J]. Journal of Agro-Environment Science, 2013,32(8):1682-1689.(in Chinese with English abstract) | |
| [35] | 黄思怡, 田昌, 谢桂先, 等. 控释尿素减少双季稻田氨挥发的主要机理和适宜用量[J]. 植物营养与肥料学报, 2019,25(12):2102-2112. |
| HUANG S Y, TIAN C, XIE G X, et al. Mechanism and suitable application dosage of controlled-release urea effectively reducing ammonia volatilization in double-cropping paddy fields[J]. Plant Nutrition and Fertilizer Science, 2019,25(12):2102-2112. (in Chinese with English abstract) | |
| [36] | 张水清, 张博, 岳克, 等. 生物质炭对华北平原4种典型土壤冬小麦生育前期氨挥发的影响[J]. 农业资源与环境学报, 2021(1):1-14. |
| ZHANG S Q, ZHANG B, YUE K, et al. Effects of biochar on NH3 volatilization from four typical soils during early growth stage of winter wheat in the North China Plain[J]. Journal of Agricultural Resources and Environment, 2021(1):1-14.(in Chinese with English abstract) | |
| [37] |
MANDAL S, DONNER E, VASILEIADIS S, et al. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil[J]. The Science of the Total Environment, 2018,627:942-950.
DOI URL PMID |
| [1] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [2] | 武佳龙, 迟铭, 高燕, 王祥, 沈海鸥. 施加生物炭对黑土区坡耕地土壤主要理化指标的动态影响[J]. 浙江农业学报, 2024, 36(9): 2060-2069. |
| [3] | 傅志强, 刘祯, 马春花, 温梦玲, 奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响[J]. 浙江农业学报, 2024, 36(7): 1634-1645. |
| [4] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
| [5] | 马玲, 张镇武, 方英姿, 吴慧欣, 邢承华. 减氮配施生物炭对椪柑生长发育与土壤特性的影响[J]. 浙江农业学报, 2024, 36(12): 2739-2747. |
| [6] | 吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315. |
| [7] | 韩静, 朱依婷, 郑驰, 马莉红, 张亚男, 曾秋艳, 刘书亮, 陈姝娟. 毛豆壳生物炭的活化及其对甲萘威的吸附性能[J]. 浙江农业学报, 2023, 35(9): 2202-2211. |
| [8] | 徐洋, 任奕林, 王浩杰, 黄秋航, 邢博源, 曹红亮. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价[J]. 浙江农业学报, 2023, 35(4): 893-902. |
| [9] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
| [10] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
| [11] | 崔文芳, 陈静, 鲁富宽, 秦丽, 秦德志, 王利平, 高聚林. 生物炭结合氮肥减量对玉米产量和氮效率的影响[J]. 浙江农业学报, 2022, 34(2): 248-254. |
| [12] | 林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699. |
| [13] | 夏苏敬, 乔月, 朱建强. 调整氮肥基追比减少稻田氮素损失和保证直播稻产量[J]. 浙江农业学报, 2022, 34(11): 2482-2490. |
| [14] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
| [15] | 苏瑶, 贾生强, 何振超, 杨艳华, 喻曼, 陈喜靖, 沈阿林. 利用响应曲面法优化秸秆腐熟剂的腐解条件[J]. 浙江农业学报, 2019, 31(5): 798-805. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||