浙江农业学报 ›› 2021, Vol. 33 ›› Issue (6): 1069-1077.DOI: 10.3969/j.issn.1004-1524.2021.06.12
收稿日期:2020-10-28
出版日期:2021-06-25
发布日期:2021-06-25
作者简介:朱诗君(1991—),男,浙江温州人,博士,助理研究员,研究方向为农业微生物资源开发与应用。E-mail: 1227935418@qq.com
基金资助:
ZHU Shijun1(
), JIN Shuquan1, WANG Feng1, HAN Yongjiang2, SUN Jie3
Received:2020-10-28
Online:2021-06-25
Published:2021-06-25
摘要:
以园林废弃物、干化建筑渣土、餐厨废弃物有机渣作为堆肥原料,研究不同混合比例下堆体温度和养分的变化,并以最终制成的堆肥作为育苗基质的混合物,明确其对番茄、青瓜、甘蓝种子出芽率和幼苗发育的影响。结果显示,园林废弃物堆体、园林废弃物和餐厨废弃物有机渣的混合堆体在短时间内温度上升至70 ℃以上,并于45 d后缓慢降低至50 ℃左右。其间,堆体的有机质、全氮、碱解氮含量,以及含水率逐渐下降,而pH值、电导率,以及速效磷、速效钾含量则基本保持稳定。育苗试验结果表明,制成的堆肥具有较高的电导率,但在试验条件下,对幼苗存活率没有显著不利影响,说明园林废弃物、干化建筑渣土,以及餐厨废弃物有机渣通过堆肥处理投入农业生产是具备应用潜力的。
中图分类号:
朱诗君, 金树权, 汪峰, 韩永江, 孙杰. 典型城市废弃物混合好氧堆肥的基本特征及其育苗应用潜力[J]. 浙江农业学报, 2021, 33(6): 1069-1077.
ZHU Shijun, JIN Shuquan, WANG Feng, HAN Yongjiang, SUN Jie. Characteristics of typical urban waste mixed aerobic composting and its effect on seedling growth[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1069-1077.
| 废弃物材料 Waste | pH | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 含水率 Moisture content/% | 电导率 Electrical conductivity/ (μS·cm-1) |
|---|---|---|---|---|---|---|---|---|
| 餐厨废弃物有机渣 Organic residue of kitchen waste | 6.40 | 432.0 | 19.62 | 732.5 | 1 173 | 550.0 | 72.4 | 8 565 |
| 园林废弃物 Garden waste | 7.10 | 517.8 | 7.49 | 393.4 | 617.9 | 981.2 | 52.5 | 482 |
| 干化建筑渣土 Dried construction waste | 7.92 | 37.3 | 2.09 | 133.0 | 30.8 | 570.0 | 5.00 | 642 |
表1 城市废弃物的理化性质
Table 1 Physical and chemical properties of municipal waste
| 废弃物材料 Waste | pH | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 含水率 Moisture content/% | 电导率 Electrical conductivity/ (μS·cm-1) |
|---|---|---|---|---|---|---|---|---|
| 餐厨废弃物有机渣 Organic residue of kitchen waste | 6.40 | 432.0 | 19.62 | 732.5 | 1 173 | 550.0 | 72.4 | 8 565 |
| 园林废弃物 Garden waste | 7.10 | 517.8 | 7.49 | 393.4 | 617.9 | 981.2 | 52.5 | 482 |
| 干化建筑渣土 Dried construction waste | 7.92 | 37.3 | 2.09 | 133.0 | 30.8 | 570.0 | 5.00 | 642 |
| 堆体 Mixture | 园林废弃物 Garden waste/m3 | 餐厨废弃物有机渣 Organic residue of kitchen waste/m3 | 干化建筑渣土 Dried construction waste/m3 | C/N | 电导率 Electrical conductivity/ (μS·cm-1) | 含水率 Moisture content/% |
|---|---|---|---|---|---|---|
| 1 | 6 | 0 | 0 | 26.40 | 482 | 52.5 |
| 2 | 5 | 1 | 0 | 22.55 | 1 300 | 55.8 |
| 3 | 0 | 4 | 2 | 21.82 | 3 367 | 49.9 |
表2 堆肥原料配方
Table 2 Composting ingredients formula
| 堆体 Mixture | 园林废弃物 Garden waste/m3 | 餐厨废弃物有机渣 Organic residue of kitchen waste/m3 | 干化建筑渣土 Dried construction waste/m3 | C/N | 电导率 Electrical conductivity/ (μS·cm-1) | 含水率 Moisture content/% |
|---|---|---|---|---|---|---|
| 1 | 6 | 0 | 0 | 26.40 | 482 | 52.5 |
| 2 | 5 | 1 | 0 | 22.55 | 1 300 | 55.8 |
| 3 | 0 | 4 | 2 | 21.82 | 3 367 | 49.9 |
| 处理 Treatment | 混合物及其比例 Mixing ratio and materials | 处理 Treatment | 混合物及其比例 Mixing ratio and materials |
|---|---|---|---|
| 1 | D* | 6 | B+D,1∶2 |
| 2 | A+D,1∶1 | 7 | B+D,1∶5 |
| 3 | A+D,1∶2 | 8 | C+D,1∶2 |
| 4 | A+D,1∶5 | 9 | C+D,1∶5 |
| 5 | B+D,1∶1 | 10 | C+D,1∶10 |
表3 育苗基质配方
Table 3 Substrate formula
| 处理 Treatment | 混合物及其比例 Mixing ratio and materials | 处理 Treatment | 混合物及其比例 Mixing ratio and materials |
|---|---|---|---|
| 1 | D* | 6 | B+D,1∶2 |
| 2 | A+D,1∶1 | 7 | B+D,1∶5 |
| 3 | A+D,1∶2 | 8 | C+D,1∶2 |
| 4 | A+D,1∶5 | 9 | C+D,1∶5 |
| 5 | B+D,1∶1 | 10 | C+D,1∶10 |
| 样品 Sample | pH | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 含水率 Moisture content/% | 发芽指数 Germination index/% |
|---|---|---|---|---|---|---|---|---|
| A | 7.50 | 300.85 | 10.89 | 508.95 | 472.65 | 97.6 | 778.5 | 98 |
| B | 6.92 | 221.04 | 6.46 | 311.15 | 598.09 | 94.3 | 1 793.0 | 43 |
| C | 7.10 | 288.44 | 8.77 | 463.85 | 715.48 | 91.9 | 3 143.5 | 18 |
| D | 7.58 | 489.00 | 8.66 | 380.00 | 116.00 | 91.7 | 969.0 | — |
表4 堆肥与商品基质的质量指标
Table 4 Quality indicators of compost and commercial substrates
| 样品 Sample | pH | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 含水率 Moisture content/% | 发芽指数 Germination index/% |
|---|---|---|---|---|---|---|---|---|
| A | 7.50 | 300.85 | 10.89 | 508.95 | 472.65 | 97.6 | 778.5 | 98 |
| B | 6.92 | 221.04 | 6.46 | 311.15 | 598.09 | 94.3 | 1 793.0 | 43 |
| C | 7.10 | 288.44 | 8.77 | 463.85 | 715.48 | 91.9 | 3 143.5 | 18 |
| D | 7.58 | 489.00 | 8.66 | 380.00 | 116.00 | 91.7 | 969.0 | — |
| 处理 Treatment | 番茄Tomato | 青瓜Cucumber | 甘蓝Cabbage | |||
|---|---|---|---|---|---|---|
| 初始出芽率 Germination rate/% | 株高 Plant height/cm | 初始出芽率 Germination rate/% | 株高 Plant height/cm | 初始出芽率 Germination rate/% | 株高 Plant height/cm | |
| 1 | 37.50 | 16.88±1.56 b | 62.50 | 43.38±2.2 b | 31.25 | 9.56±0.99 b |
| 2 | 34.38 | 17.59±1.69 b | 53.13 | 43.65±2.86 b | 50.00 | 13.62±1.93 a |
| 3 | 31.25 | 18.12±1.98 b | 56.25 | 46.75±5.55 a | 46.88 | 12.37±1.31 a |
| 4 | 35.94 | 19.43±3.89 a | 71.88 | 46.43±2.45 a | 31.25 | 10.71±0.86 a |
| 5 | 15.63 | 16.28±1.66 b | 56.25 | 42.15±6.87 b | 12.50 | 7.45±0.86 b |
| 6 | 34.38 | 17.32±1.6 b | 62.50 | 45.83±4.72 a | 43.75 | 10.55±0.92 a |
| 7 | 43.75 | 18.81±1.77 a | 75.00 | 48.18±4.28 a | 56.25 | 11.52±0.84 a |
| 8 | 21.88 | 15.8±1.61 b | 46.88 | 41.33±2.81 b | 0 | 6.25±0.86 b |
| 9 | 32.81 | 18.62±2.10 a | 68.75 | 42.38±5.00 b | 31.25 | 8.62±0.74 b |
| 10 | 35.94 | 20.91±1.7 a | 65.63 | 51.65±3.41 a | 37.50 | 13.5±1.82 a |
表5 不同处理下不同作物的发芽情况与幼苗株高
Table 5 Plant height and germination rate of different vegetables under different treatments
| 处理 Treatment | 番茄Tomato | 青瓜Cucumber | 甘蓝Cabbage | |||
|---|---|---|---|---|---|---|
| 初始出芽率 Germination rate/% | 株高 Plant height/cm | 初始出芽率 Germination rate/% | 株高 Plant height/cm | 初始出芽率 Germination rate/% | 株高 Plant height/cm | |
| 1 | 37.50 | 16.88±1.56 b | 62.50 | 43.38±2.2 b | 31.25 | 9.56±0.99 b |
| 2 | 34.38 | 17.59±1.69 b | 53.13 | 43.65±2.86 b | 50.00 | 13.62±1.93 a |
| 3 | 31.25 | 18.12±1.98 b | 56.25 | 46.75±5.55 a | 46.88 | 12.37±1.31 a |
| 4 | 35.94 | 19.43±3.89 a | 71.88 | 46.43±2.45 a | 31.25 | 10.71±0.86 a |
| 5 | 15.63 | 16.28±1.66 b | 56.25 | 42.15±6.87 b | 12.50 | 7.45±0.86 b |
| 6 | 34.38 | 17.32±1.6 b | 62.50 | 45.83±4.72 a | 43.75 | 10.55±0.92 a |
| 7 | 43.75 | 18.81±1.77 a | 75.00 | 48.18±4.28 a | 56.25 | 11.52±0.84 a |
| 8 | 21.88 | 15.8±1.61 b | 46.88 | 41.33±2.81 b | 0 | 6.25±0.86 b |
| 9 | 32.81 | 18.62±2.10 a | 68.75 | 42.38±5.00 b | 31.25 | 8.62±0.74 b |
| 10 | 35.94 | 20.91±1.7 a | 65.63 | 51.65±3.41 a | 37.50 | 13.5±1.82 a |
| [1] | 李彬. 城市固体废弃物处理及综合利用策略探讨[J]. 中国资源综合利用, 2020,38(9):117-119. |
| LI B. Discussion on urban solid waste treatment and comprehensive utilization strategy[J]. China Resources Comprehensive Utilization, 2020,38(9):117-119.(in Chinese with English abstract) | |
| [2] | 刘瑜, 赵佳颖, 周晚来, 等. 城市园林废弃物资源化利用研究进展[J]. 环境科学与技术, 2020,43(4):32-38. |
| LIU Y, ZHAO J Y, ZHOU W L, et al. Progress on resource utilization of urban garden waste[J]. Environmental Science & Technology, 2020,43(4):32-38.(in Chinese with English abstract) | |
| [3] | LU W S, YUAN H P. Exploring critical success factors for waste management in construction projects of China[J]. Resources, Conservation and Recycling, 2010,55(2):201-208. |
| [4] | 姚如青. 杭州市建筑渣土管理主要问题与改进对策[J]. 环境与可持续发展, 2014,39(5):160-162. |
| YAO R Q. On problem and countermeasures with the management of construction waste in Hangzhou[J]. Environment and Sustainable Development, 2014,39(5):160-162.(in Chinese with English abstract) | |
| [5] | 王东权, 陈沛, 刘春荣, 等. 建筑渣土在市政道路路基工程中的应用研究[J]. 建筑技术, 2005,36(2):145-146. |
| WANG D Q, CHEN P, LIU C R, et al. Study on the application of constructional waste to municipal roadbed works[J]. Architecture Technology, 2005,36(2):145-146.(in Chinese with English abstract) | |
| [6] | 张清峰, 王东权, 姜晨光, 等. 建筑渣土作为城市道路填料的路用性能研究[J]. 公路, 2006,51(11):157-160. |
| ZHANG Q F, WANG D Q, JIANG C G, et al. A study on road performance of construction waste as municipal road filling[J]. Highway, 2006,51(11):157-160.(in Chinese with English abstract) | |
| [7] | 杨丽娟, 李天来, 储慧霞, 等. 餐厨废弃物作堆肥对盆栽番茄产量及品质影响[J]. 沈阳农业大学学报, 2010,41(6):721-724. |
| YANG L J, LI T L, CHU H X, et al. Effect of food waste compost on tomato yield and quality[J]. Journal of Shenyang Agricultural University, 2010,41(6):721-724.(in Chinese with English abstract) | |
| [8] | 黄亦明. 餐厨和绿化废弃物的生物处理及其产出物对黄秋葵生长的影响[J]. 上海交通大学学报(农业科学版), 2014,32(3):75-80. |
| HUANG Y M. Biotreatment and effects of waste from kitchen and greening process on Abelmoschus esculentus growth[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2014,32(3):75-80.(in Chinese with English abstract) | |
| [9] | BREITENBECK G A, SCHELLINGER D. Calculating the reduction in material mass and volume during composting[J]. Compost Science & Utilization, 2004,12(4):365-371. |
| [10] | FISCHER D, GLASER B. Synergisms between compost and biochar for sustainable soil amelioration[EB/OL]. [2020-10-28]. https://cdn.intechopen.compdfs27163.pdf. |
| [11] |
THYAGARAJAN D, BARATHI M, SAKTHIVADIVU R. Scope of poultry waste utilization[J]. IOSR Journal of Agriculture and Veterinary Science, 2013,6(5):29-35.
DOI URL |
| [12] |
VIGNESWARAN S, KANDASAMY J, JOHIR M A H . Sustainable operation of composting in solid waste management[J]. Procedia Environmental Sciences, 2016,35:408-415.
DOI URL |
| [13] | 张鹤, 李孟婵, 杨慧珍, 等. 不同碳氮比对牛粪好氧堆肥腐熟过程的影响[J]. 甘肃农业大学学报, 2019,54(1):60-67. |
| ZHANG H, LI M C, YANG H Z, et al. Effect of different carbon and nitrogen ratio on decayed process of aerobic composting of cow dung[J]. Journal of Gansu Agricultural University, 2019,54(1):60-67.(in Chinese with English abstract) | |
| [14] | EMINO E R, WARMAN P R. Biological assay for compost quality[J]. Compost Science & Utilization, 2004,12(4):342-348. |
| [15] | 唐尚柱, 赵晓海, 斯鑫鑫, 等. 不同镁/磷盐添加剂对蓝藻堆肥的氮素损失控制效果[J]. 农业环境科学学报, 2021,40(2):428-435. |
| TANG S Z, ZHAO X H, SI X X, et al. Effects of different combinations of magnesium (Mg) and phosphorus (P) salts on nitrogen loss during cyanobacteria composting[J]. Journal of Agro-Environment Science, 2021,40(2):428-435.(in Chinese with English abstract) | |
| [16] | COOPERBAND L. The art and science of composting: a resource for farmers and compost producers[EB/OL]. [2020-10-28]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.3608&rep=rep1&type=pdf. |
| [17] |
TIBU C, ANNANG T Y, SOLOMON N, et al. Effect of the composting process on physicochemical properties and concentration of heavy metals in market waste with additive materials in the Ga West Municipality, Ghana[J]. International Journal of Recycling of Organic Waste in Agriculture, 2019,8(4):393-403.
DOI URL |
| [18] |
ZHANG D F, LUO W H, LI Y, et al. Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions[J]. Bioresource Technology, 2018,250:853-859.
DOI URL |
| [19] | 薛兆骏, 彭永臻, 王鹏鹞, 等. 自发热持续高温好氧堆肥碳、氮、腐殖酸变化过程[J]. 中国环境科学, 2018,38(11):4094-4098. |
| XUE Z J, PENG Y Z, WANG P Y, et al. The transformation regularities of carbon, nitrogen and hunic acid during high temperature aerobic composting process[J]. China Environmental Science, 2018,38(11):4094-4098.(in Chinese with English abstract) | |
| [20] | 秦莉, 沈玉君, 李国学, 等. 不同C N比堆肥碳素物质变化规律研究[J]. 农业环境科学学报, 2010,29(7):1388-1393. |
| QIN L, SHEN Y J, LI G X, et al. C matter change of composting with different C/N[J]. Journal of Agro-Environment Science, 2010,29(7):1388-1393.(in Chinese with English abstract) | |
| [21] |
HACHICHA R, REKIK O, HACHICHA S, et al. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity[J]. Chemosphere, 2012,88(6):677-682.
DOI URL |
| [22] | HIRAI M F, CHANYASAK V, KUBOTA H. Standard measurement for compost maturity[J]. BioCycle, 1983,24(6):54-56. |
| [23] | 汤江武, 吴逸飞, 薛智勇, 等. 畜禽固弃物堆肥腐熟度评价指标的研究[J]. 浙江农业学报, 2003,15(5):293-296. |
| TANG J W, WU Y F, XUE Z Y, et al. Study on evaluation index of maturity of livestock and poultry solid wastes[J]. Acta Agriculturae Zhejiangensis, 2003,15(5):293-296.(in Chinese with English abstract) | |
| [24] |
PARIHAR P, SINGH S, SINGH R, et al. Effect of salinity stress on plants and its tolerance strategies: a review[J]. Environmental Science and Pollution Research, 2015,22(6):4056-4075.
DOI URL |
| [25] |
CAI H, CHEN T B, LIU H T, et al. The effect of salinity and porosity of sewage sludge compost on the growth of vegetable seedlings[J]. Scientia Horticulturae, 2010,124(3):381-386.
DOI URL |
| [26] |
HERRERA F, CASTILLO J E, CHICA A F, et al. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants[J]. Bioresource Technology, 2008,99(2):287-296.
DOI URL |
| [27] | REDDY N, CROHN D M. Compost induced soil salinity: a new prediction method and its effect on plant growth[J]. Compost Science & Utilization, 2012,20(3):133-140. |
| [28] |
CHANG E H, CHUNG R S, TSAI Y H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population[J]. Soil Science and Plant Nutrition, 2007,53(2):132-140.
DOI URL |
| [29] | DIACONO M, MONTEMURRO F. Long-term effects of organic amendments on soil fertility[M]//Sustainable agriculture: Volume 2. Dordrecht: Springer Netherlands, 2011:761-786. |
| [30] |
LAKHDAR A, RABHI M, GHNAYA T, et al. Effectiveness of compost use in salt-affected soil[J]. Journal of Hazardous Materials, 2009,171(1/2/3):29-37.
DOI URL |
| [31] |
MAHMOODABADI M, YAZDANPANAH N, SINOBAS L R, et al. Reclamation of calcareous saline sodic soil with different amendments (I): redistribution of soluble cations within the soil profile[J]. Agricultural Water Management, 2013,120:30-38.
DOI URL |
| [1] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [2] | 王路童, 姜利红, 代家鹏, 陈粮, 曾光熙, 刘尔伦, 周湘丹, 肖云花, 方俊. 硫酸亚铁对鸡粪堆肥真菌群落的影响及其应用[J]. 浙江农业学报, 2025, 37(1): 169-177. |
| [3] | 张斌, 袁志辉, 彭陆军, 周向平, 周德英, 王锡春. 发酵稻壳通过增强氮代谢途径影响烟草幼苗的生长发育[J]. 浙江农业学报, 2024, 36(2): 237-246. |
| [4] | 燕中立, 李永慧, 李玉成, 李伟, 张学胜, 洪勇, 葛立傲. 蓝藻好氧堆肥负载阿维菌素对草莓红蜘蛛的防治效果[J]. 浙江农业学报, 2024, 36(10): 2264-2272. |
| [5] | 郭永川, 马永杰, 王星明, 蔺玉红, 罗雁馨, 王欣怡, 张雪艳. 磷石膏对葡萄酒渣堆肥进程与品质的影响[J]. 浙江农业学报, 2024, 36(10): 2298-2307. |
| [6] | 吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315. |
| [7] | 王佳丽, 王梓宇, 马咏琪, 唐德富, 孙丽坤. 氮素转化菌群对牛粪好氧堆肥的保氮效果[J]. 浙江农业学报, 2024, 36(1): 177-186. |
| [8] | 傅鸿妃, 郭赛赛, 郑积荣. 茄果类蔬菜残体混合基质对黄瓜育苗的影响[J]. 浙江农业学报, 2023, 35(8): 1805-1813. |
| [9] | 王可, 邵烨瑶, 张培云, 杜妍纯, 徐强龙, 王燕燕, 阮文斌, 徐思捷, 葛杰克, 叶铎, 刘鹏, 邢承华. 园林废弃物混菌堆腐方法及其产物对泥炭的替代效果研究[J]. 浙江农业学报, 2023, 35(7): 1680-1689. |
| [10] | 潘亚杰, 常会庆, 宋盼盼. 规模化猪场粪便养分特征与堆肥过程中填料添加的影响[J]. 浙江农业学报, 2023, 35(7): 1690-1698. |
| [11] | 肖小兰, 张浩, 付传僡, 刘皓, 阮文权. 嗜热菌筛选及其促进沼渣和虫粪共堆肥的效果[J]. 浙江农业学报, 2023, 35(3): 647-657. |
| [12] | 周文志, 李素艳, 孙向阳, 李啸冲, 查贵超, 魏宁娴. 不同改良材料对滨海盐碱土盐分淋溶特征的影响[J]. 浙江农业学报, 2022, 34(7): 1485-1492. |
| [13] | 吴一凡, 夏捷, 陈胜, 张玮, 谢锦忠. 竹屑与麦麸堆肥用作大球盖菇栽培基质的适宜配比研究[J]. 浙江农业学报, 2022, 34(5): 1024-1031. |
| [14] | 张鑫鹏, 王信, 孙健, 伊国云, 李松龄. 一株假单胞菌的分离鉴定及其在青海地区堆肥中的应用潜力[J]. 浙江农业学报, 2022, 34(2): 343-351. |
| [15] | 殷泽欣, 张璐, 郝丹, 白一帆. 牛粪堆肥替代泥炭用于3种茄科植物育苗的可行性[J]. 浙江农业学报, 2021, 33(9): 1700-1709. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||