浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 2066-2076.DOI: 10.3969/j.issn.1004-1524.2022.09.25
• 综述 • 上一篇
李春梅(
), 万小荣, 关子盈, 赖晓凤, 罗凯晴, 刘凯(
)
收稿日期:2021-12-16
出版日期:2022-09-25
发布日期:2022-09-30
作者简介:*刘凯,E-mail: liukai5088@126.com通讯作者:
刘凯
基金资助:
LI Chunmei(
), WAN Xiaorong, GUAN Ziying, LAI Xiaofeng, LUO Kaiqing, LIU Kai(
)
Received:2021-12-16
Online:2022-09-25
Published:2022-09-30
Contact:
LIU Kai
摘要:
长链非编码RNA(long non-coding RNAs,lncRNAs)是一类转录本长度大于200 nt的非编码RNA,其表达和保守性比编码蛋白的mRNA低,在动植物各个生物学过程中发挥重要作用。近年来,植物lncRNAs的作用和功能受到广泛关注。本文总结了lncRNAs调控植物生长发育和生殖,应对低温、干旱等非生物胁迫和病虫害等生物胁迫方面的功能,同时根据lncRNAs在基因组上的来源,分类讨论了不同来源lncRNAs的作用机制,为深入挖掘植物新的lncRNAs、功能验证与作用机制探究提供参考。
中图分类号:
李春梅, 万小荣, 关子盈, 赖晓凤, 罗凯晴, 刘凯. 长链非编码RNA调控植物生长发育与逆境胁迫响应研究进展[J]. 浙江农业学报, 2022, 34(9): 2066-2076.
LI Chunmei, WAN Xiaorong, GUAN Ziying, LAI Xiaofeng, LUO Kaiqing, LIU Kai. Progress of long non-coding RNA regulating growth, development and response to stress in plants[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2066-2076.
| 物种 Species | 基因 Gene name | 来源 Origin | 功能 Function | 作用机制 Mechanism |
|---|---|---|---|---|
| 拟南芥 | COOLAIR[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
| Arabidopsis | COLDAIR[ | incRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
| thaliana | COLDWRAP[ | sense lncRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
| MAS[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling | |
| FLORE[ | NAT | 开花 Flowering | 抑制关联结构基因CDFs转录 Repressing transcription of the associated structural gene CDFs | |
| npc48[ | lincRNA | 叶片发育、开花 Leaf development and flowering | — | |
| asHSFB2a[ | NAT | 配子体发育Fertility | — | |
| LINC-AP2[ | lincRNA | 花发育Flower development | — | |
| AG-incRNA4[ | incRNA | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
| 1GOD/asDOG1[ | NAT | 种子休眠Seed dormancy | — | |
| HID1(nc3020)[ | lincRNA | 光形态建成 Photomorphogenesis | 抑制非邻近基因PIF3转录 Repressing transcription of the non-neighboring structural gene PIF3 | |
| ASCO-lncRNA(npc351)[ | lincRNA | 根发育 Root development | 靶基因的可变剪接 Alternative splicing on the target gene | |
| APOLO (npc34)[ | lincRNA | 根发育Root development | 染色质重塑Chromatin remodeling | |
| npc536[ | lincRNA | 应对盐胁迫Salt stress | — | |
| DRIR[ | lincRNA | 应对干旱和盐胁迫 Drought and salt stress | — | |
| SVALKA[ | lincNAT | 应对低温胁迫 Cold stress | 抑制邻近基因CBF1转录 Repressing transcription of the neighboring structural gene CBF1 | |
| IPS1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
| At4[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
| TARs (TAR191/212/224/66)[ | lincRNA | 尖孢镰刀菌抗性 Fusarium oxysporum resistance | — | |
| ELENA1[ | lincRNA | 细菌性叶斑病抗性 Bacterial leaf spot resistance | 激活邻近基因PR1表达 Activating expression of the neighboring structural gene PR1 | |
| 水稻 | LAIR[ | lincNAT | 产量Yield | 染色质重塑Chromatin remodeling |
| Oryza sativa | Ef-cd[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
| LDMAR[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
| XLOC_057324 (MISSEN)[ | lincRNA | 育性 Fertility | 结合非邻近基因靶蛋白质HeFP Binding HeFP encoded by the non-neighboring gene | |
| PMS1T[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
| TL[ | NAT | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
| ALEX1/XLOC_437338[ | NAT | 白叶枯病抗性 Bacterial blight resistance | — | |
| 小麦 Triticum | Iw1[ | lincRNA | 蜡质合成 β-diketone waxes biosynthesis | miRNA前体 miRNA precursor |
| aestivum | VAS[ | sense lncRNA | 开花 Flowering | 激活关联结构基因TaVRN1转录 Activating transcription of the associated structural gene TaVRN1 |
| 番茄 | lncRNA1459[ | lincRNA | 果实成熟Fruit ripening | — |
| Solanum lycopersicum | lncRNA16397[ | NAT | 晚疫病抗性 Phytophthora infestans resistance | 诱导关联结构基因SIGRX21表达 Inducing expression of the associated structural gene SIGRX21 |
| lncRNA33732[ | lincRNA | 晚疫病抗性 Phytophthora infestans resistance | 诱导邻近基因RBOH表达 Inducing expression of the neighboring structural gene RBOH | |
| slylnc0195[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
| slylnc1077[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
| 蒺藜苜蓿 Medicago | ENOD40[ | lincRNA | 结瘤 Root nodule formation | 蛋白质重定位 Cytoplasmic relocalization of nuclear proteins |
| truncatula | PDIL1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
| PDIL2[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
| PDIL3[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
| Mt4/TPSI1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
| 棉花 | lncRNA973[ | lincRNA | 应对盐胁迫Salt stress | — |
| Gossypium hirsutum | GhlncNAT-ANX2[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — |
| GhlncNAT-RLP7[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — | |
| 芜菁 Brassica rapa | bra-eTM160-1[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
| bra-eTM160-2[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
| 野生烟草 Nicotiana | JAL1[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
| attenuata | JAL3[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
| 甘蓝 Brassica oleracea | BoNR8[ | lincRNA | 种子萌发 Seed germination | — |
| 大白菜 Brassica rapa L. ssp. pekinensis | MSTRG.19915[ | NAT | 霜霉病 Downy mildew resistance | — |
| 小白菜 Brassica campestris | BcMF11[ | lincRNA | 育性 Fertility | — |
| 苹果 Malus domestica | MdLNC499[ | lincRNA | 花青素合成 Anthocyanin biosynthesis | 激活邻近基因MdERF109表达 Activating expression of the neighboring structural gene MdERF109 |
表1 LncRNAs在植物中的功能与作用机制
Table 1 Function and regulation mechanism of lncRNAs in plants
| 物种 Species | 基因 Gene name | 来源 Origin | 功能 Function | 作用机制 Mechanism |
|---|---|---|---|---|
| 拟南芥 | COOLAIR[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
| Arabidopsis | COLDAIR[ | incRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
| thaliana | COLDWRAP[ | sense lncRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
| MAS[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling | |
| FLORE[ | NAT | 开花 Flowering | 抑制关联结构基因CDFs转录 Repressing transcription of the associated structural gene CDFs | |
| npc48[ | lincRNA | 叶片发育、开花 Leaf development and flowering | — | |
| asHSFB2a[ | NAT | 配子体发育Fertility | — | |
| LINC-AP2[ | lincRNA | 花发育Flower development | — | |
| AG-incRNA4[ | incRNA | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
| 1GOD/asDOG1[ | NAT | 种子休眠Seed dormancy | — | |
| HID1(nc3020)[ | lincRNA | 光形态建成 Photomorphogenesis | 抑制非邻近基因PIF3转录 Repressing transcription of the non-neighboring structural gene PIF3 | |
| ASCO-lncRNA(npc351)[ | lincRNA | 根发育 Root development | 靶基因的可变剪接 Alternative splicing on the target gene | |
| APOLO (npc34)[ | lincRNA | 根发育Root development | 染色质重塑Chromatin remodeling | |
| npc536[ | lincRNA | 应对盐胁迫Salt stress | — | |
| DRIR[ | lincRNA | 应对干旱和盐胁迫 Drought and salt stress | — | |
| SVALKA[ | lincNAT | 应对低温胁迫 Cold stress | 抑制邻近基因CBF1转录 Repressing transcription of the neighboring structural gene CBF1 | |
| IPS1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
| At4[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
| TARs (TAR191/212/224/66)[ | lincRNA | 尖孢镰刀菌抗性 Fusarium oxysporum resistance | — | |
| ELENA1[ | lincRNA | 细菌性叶斑病抗性 Bacterial leaf spot resistance | 激活邻近基因PR1表达 Activating expression of the neighboring structural gene PR1 | |
| 水稻 | LAIR[ | lincNAT | 产量Yield | 染色质重塑Chromatin remodeling |
| Oryza sativa | Ef-cd[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
| LDMAR[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
| XLOC_057324 (MISSEN)[ | lincRNA | 育性 Fertility | 结合非邻近基因靶蛋白质HeFP Binding HeFP encoded by the non-neighboring gene | |
| PMS1T[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
| TL[ | NAT | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
| ALEX1/XLOC_437338[ | NAT | 白叶枯病抗性 Bacterial blight resistance | — | |
| 小麦 Triticum | Iw1[ | lincRNA | 蜡质合成 β-diketone waxes biosynthesis | miRNA前体 miRNA precursor |
| aestivum | VAS[ | sense lncRNA | 开花 Flowering | 激活关联结构基因TaVRN1转录 Activating transcription of the associated structural gene TaVRN1 |
| 番茄 | lncRNA1459[ | lincRNA | 果实成熟Fruit ripening | — |
| Solanum lycopersicum | lncRNA16397[ | NAT | 晚疫病抗性 Phytophthora infestans resistance | 诱导关联结构基因SIGRX21表达 Inducing expression of the associated structural gene SIGRX21 |
| lncRNA33732[ | lincRNA | 晚疫病抗性 Phytophthora infestans resistance | 诱导邻近基因RBOH表达 Inducing expression of the neighboring structural gene RBOH | |
| slylnc0195[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
| slylnc1077[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
| 蒺藜苜蓿 Medicago | ENOD40[ | lincRNA | 结瘤 Root nodule formation | 蛋白质重定位 Cytoplasmic relocalization of nuclear proteins |
| truncatula | PDIL1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
| PDIL2[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
| PDIL3[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
| Mt4/TPSI1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
| 棉花 | lncRNA973[ | lincRNA | 应对盐胁迫Salt stress | — |
| Gossypium hirsutum | GhlncNAT-ANX2[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — |
| GhlncNAT-RLP7[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — | |
| 芜菁 Brassica rapa | bra-eTM160-1[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
| bra-eTM160-2[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
| 野生烟草 Nicotiana | JAL1[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
| attenuata | JAL3[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
| 甘蓝 Brassica oleracea | BoNR8[ | lincRNA | 种子萌发 Seed germination | — |
| 大白菜 Brassica rapa L. ssp. pekinensis | MSTRG.19915[ | NAT | 霜霉病 Downy mildew resistance | — |
| 小白菜 Brassica campestris | BcMF11[ | lincRNA | 育性 Fertility | — |
| 苹果 Malus domestica | MdLNC499[ | lincRNA | 花青素合成 Anthocyanin biosynthesis | 激活邻近基因MdERF109表达 Activating expression of the neighboring structural gene MdERF109 |
| [1] |
FU X D. Non-coding RNA: a new frontier in regulatory biology[J]. National Science Review, 2014, 1(2): 190-204.
DOI URL |
| [2] |
WILUSZ J E, SUNWOO H, SPECTOR D L. Long noncoding RNAs: functional surprises from the RNA world[J]. Genes & Development, 2009, 23(13): 1494-1504.
DOI URL |
| [3] |
TSAI M C, MANOR O, WAN Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes[J]. Science, 2010, 329(5992): 689-693.
DOI URL |
| [4] |
GUTTMAN M, DONAGHEY J, CAREY B W, et al. LincRNAs act in the circuitry controlling pluripotency and differentiation[J]. Nature, 2011, 477(7364): 295-300.
DOI URL |
| [5] |
JHA U C, NAYYAR H, JHA R, et al. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation[J]. BMC Plant Biology, 2020, 20(1): 466.
DOI PMID |
| [6] |
HUANG J Z, CHEN M, DE CHEN, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth[J]. Molecular Cell, 2017, 68(1): 171-184.
DOI URL |
| [7] | WANG H L V, CHEKANOVA J A. Long noncoding RNAs in plants[J]. Advances in Experimental Medicine and Biology, 2017, 1008: 133-154. |
| [8] |
WIERZBICKI A T, BLEVINS T, SWIEZEWSKI S. Long noncoding RNAs in plants[J]. Annual Review of Plant Biology, 2021, 72: 245-271.
DOI PMID |
| [9] |
MA L N, BAJIC V B, ZHANG Z. On the classification of long non-coding RNAs[J]. RNA Biology, 2013, 10(6): 924-933.
DOI URL |
| [10] | LI R, JIN J J, XU J, et al. Long non-coding RNAs associate with jasmonate-mediated plant defense against herbivores[J]. Plant, Cell & Environment, 2021, 44(3): 982-994. |
| [11] |
ARIEL F, ROMERO-BARRIOS N, JÉGU T, et al. Battles and hijacks: noncoding transcription in plants[J]. Trends in Plant Science, 2015, 20(6): 362-371.
DOI PMID |
| [12] |
LIU J, WANG H, CHUA N H. Long noncoding RNA transcriptome of plants[J]. Plant Biotechnology Journal, 2015, 13(3): 319-328.
DOI PMID |
| [13] |
GUPTA R A, SHAH N, WANG K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291): 1071-1076.
DOI URL |
| [14] |
LOEWER S, CABILI M N, GUTTMAN M, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells[J]. Nature Genetics, 2010, 42(12): 1113-1117.
DOI PMID |
| [15] |
KLATTENHOFF C A, SCHEUERMANN J C, SURFACE L E, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment[J]. Cell, 2013, 152(3): 570-583.
DOI PMID |
| [16] |
WU H W, DENG S L, XU H Y, et al. A noncoding RNA transcribed from the AGAMOUS (AG) second intron binds to CURLY LEAF and represses AG expression in leaves[J]. The New Phytologist, 2018, 219(4): 1480-1491.
DOI URL |
| [17] |
LIU X, LI D Y, ZHANG D L, et al. A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice[J]. The New Phytologist, 2018, 218(2): 774-788.
DOI URL |
| [18] |
AMASINO R M, MICHAELS S D. The timing of flowering[J]. Plant Physiology, 2010, 154(2): 516-520.
DOI PMID |
| [19] |
HEO J B, SUNG S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331(6013): 76-79.
DOI PMID |
| [20] |
SWIEZEWSKI S, LIU F Q, MAGUSIN A, et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target[J]. Nature, 2009, 462(7274): 799-802.
DOI URL |
| [21] |
CASTAINGS L, BERGONZI S, ALBANI M C, et al. Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives[J]. Nature Communications, 2014, 5: 4457.
DOI URL |
| [22] |
CSORBA T, QUESTA J I, SUN Q W, et al. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): 16160-16165.
DOI PMID |
| [23] |
KIM D H, SUNG S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs[J]. Developmental Cell, 2017, 40(3): 302-312.
DOI URL |
| [24] |
ZHAO X Y, LI J R, LIAN B, et al. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA[J]. Nature Communications, 2018, 9: 5056.
DOI URL |
| [25] |
FANG J, ZHANG F T, WANG H R, et al. Ef-cd locus shortens rice maturity duration without yield penalty[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(37): 18717-18722.
DOI PMID |
| [26] |
XU S J, DONG Q, DENG M, et al. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat[J]. Molecular Plant, 2021, 14(9): 1525-1538.
DOI URL |
| [27] |
DING J H, LU Q, OUYANG Y D, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2654-2659.
DOI PMID |
| [28] |
FAN Y R, YANG J Y, MATHIONI S M, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15144-15149.
DOI PMID |
| [29] |
ZHANG Y C, LIAO J Y, LI Z Y, et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice[J]. Genome Biology, 2014, 15(12): 512.
DOI URL |
| [30] |
ZHOU Y F, ZHANG Y C, SUN Y M, et al. The parent-of-origin lncRNA MISSEN regulates rice endosperm development[J]. Nature Communications, 2021, 12(1): 6525.
DOI URL |
| [31] |
HUANG L, DONG H, ZHOU D, et al. Systematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa[J]. The Plant Journal, 2018, 96(1): 203-222.
DOI URL |
| [32] | BENTSINK L, JOWETT J, HANHART C J, et al. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(45): 17042-17047. |
| [33] | FEDAK H, PALUSINSKA M, KRZYCZMONIK K, et al. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): E7846-E7855. |
| [34] |
WU J, OKADA T, FUKUSHIMA T, et al. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis[J]. RNA Biology, 2012, 9(3): 302-313.
DOI URL |
| [35] |
WU J, LIU C X, LIU Z G, et al. Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis[J]. Plant and Cell Physiology, 2018, 60(2): 421-435.
DOI URL |
| [36] |
ZHU B Z, YANG Y F, LI R, et al. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening[J]. Journal of Experimental Botany, 2015, 66(15): 4483-4495.
DOI PMID |
| [37] |
LI R, FU D Q, ZHU B Z, et al. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening[J]. The Plant Journal: for Cell and Molecular Biology, 2018, 94(3): 513-524.
DOI PMID |
| [38] |
HENRIQUES R, WANG H, LIU J, et al. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering[J]. The New Phytologist, 2017, 216(3): 854-867.
DOI URL |
| [39] |
BEN AMOR B, WIRTH S, MERCHAN F, et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses[J]. Genome Research, 2009, 19(1): 57-69.
DOI URL |
| [40] |
WUNDERLICH M, GROSS-HARDT R, SCHÖFFL F. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA[J]. Plant Molecular Biology, 2014, 85(6): 541-550.
DOI URL |
| [41] |
GAO R M, LIU P, IRWANTO N, et al. Upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana[J]. Plant Cell Reports, 2016, 35(11): 2257-2267.
DOI URL |
| [42] | WANG Y Q, FAN X D, LIN F, et al. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10359-10364. |
| [43] |
WANG Y Q, WANG X C, DENG W, et al. Genomic features and regulatory roles of intermediate-sized non-coding RNAs in Arabidopsis[J]. Molecular Plant, 2014, 7(3): 514-527.
DOI URL |
| [44] |
BARDOU F, ARIEL F, SIMPSON C G, et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis[J]. Developmental Cell, 2014, 30(2): 166-176.
DOI URL |
| [45] |
QIN T, ZHAO H Y, CUI P, et al. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J]. Plant Physiology, 2017, 175(3): 1321-1336.
DOI PMID |
| [46] |
KINDGREN P, ARD R, IVANOV M, et al. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation[J]. Nature Communications, 2018, 9: 4561.
DOI URL |
| [47] |
FRANCO-ZORRILLA J M, VALLI A, TODESCO M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics, 2007, 39(8): 1033-1037.
DOI URL |
| [48] |
SHIN H, SHIN H S, CHEN R J, et al. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation[J]. The Plant Journal: for Cell and Molecular Biology, 2006, 45(5): 712-726.
DOI URL |
| [49] |
ZHU Q H, STEPHEN S, TAYLOR J, et al. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana[J]. The New Phytologist, 2014, 201(2): 574-584.
DOI URL |
| [50] |
SEO J S, SUN H X, PARK B S, et al. ELF18-INDUCED LONG-NONCODING RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis[J]. The Plant Cell, 2017, 29(5): 1024-1038.
DOI URL |
| [51] |
WANG Y, LUO X J, SUN F, et al. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice[J]. Nature Communications, 2018, 9: 3516.
DOI URL |
| [52] |
DING J H, SHEN J Q, MAO H L, et al. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice[J]. Molecular Plant, 2012, 5(6): 1210-1216.
DOI PMID |
| [53] |
ZHOU H, LIU Q J, LI J, et al. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22(4): 649-660.
DOI URL |
| [54] |
YU Y, ZHOU Y F, FENG Y Z, et al. Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX1 in jasmonate pathway and disease resistance[J]. Plant Biotechnology Journal, 2020, 18(3): 679-690.
DOI PMID |
| [55] | HUANG D, FEURTADO J A, SMITH M A, et al. Long noncoding miRNA gene represses wheat β-diketone waxes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(15): E3149-E3158. |
| [56] |
CUI J, LUAN Y S, JIANG N, et al. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin[J]. The Plant Journal: for Cell and Molecular Biology, 2017, 89(3): 577-589.
DOI URL |
| [57] |
CUI J, JIANG N, MENG J, et al. LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions[J]. The Plant Journal: for Cell and Molecular Biology, 2019, 97(5): 933-946.
DOI URL |
| [58] |
WANG J Y, YU W G, YANG Y W, et al. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection[J]. Scientific Reports, 2015, 5: 16946.
DOI PMID |
| [59] |
CAMPALANS A, KONDOROSI A, CRESPI M. Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula[J]. The Plant Cell, 2004, 16(4): 1047-1059.
DOI URL |
| [60] |
WANG T Z, ZHAO M G, ZHANG X X, et al. Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant Medicago truncatula[J]. Journal of Experimental Botany, 2017, 68(21/22): 5937-5948.
DOI URL |
| [61] |
BURLEIGH S H, HARRISON M J. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition[J]. Plant Molecular Biology, 1997, 34(2): 199-208.
DOI URL |
| [62] |
ZHANG X P, DONG J, DENG F N, et al. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress[J]. BMC Plant Biology, 2019, 19(1): 459.
DOI PMID |
| [63] |
ZHANG L, WANG M J, LI N N, et al. Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton[J]. Plant Biotechnology Journal, 2018, 16(6): 1172-1185.
DOI URL |
| [64] |
ZHANG B, SU T B, LI P R, et al. Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage[J]. Horticulture Research, 2021, 8: 44.
DOI PMID |
| [65] |
SONG J H, CAO J S, WANG C G. BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility[J]. Plant Cell Reports, 2013, 32(1): 21-30.
DOI URL |
| [66] |
SONG J H, CAO J S, YU X L, et al. BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis[J]. Journal of Plant Physiology, 2007, 164(8): 1097-1100.
DOI URL |
| [67] |
MA H Y, YANG T, LI Y, et al. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit[J]. The Plant Cell, 2021, 33(10): 3309-3330.
DOI URL |
| [68] |
ARIEL F, JEGU T, LATRASSE D, et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop[J]. Molecular Cell, 2014, 55(3): 383-396.
DOI PMID |
| [69] |
JIA L, ZHANG D Y, XIANG Z H, et al. Nonfunctional ingestion of plant miRNAs in silkworm revealed by digital droplet PCR and transcriptome analysis[J]. Scientific Reports, 2015, 5: 12290.
DOI PMID |
| [70] |
CHEN Y, SINGH A, KAITHAKOTTIL G G, et al. An aphid RNA transcript migrates systemically within plants and is a virulence factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 12763-12771.
DOI PMID |
| [1] | 胡莹洁, 杜晨琪, 王鎏帆, 寿建昕, 王超, 徐梅, 严旭. 囊泡运输调控植物盐胁迫响应的研究进展[J]. 浙江农业学报, 2025, 37(9): 2003-2011. |
| [2] | 关秀生, 刘铁山, 王娟, 张茂林, 刘春晓, 董瑞, 关海英, 刘强, 徐扬, 何春梅. 玉米NF-YA家族基因的生物信息学分析与克隆[J]. 浙江农业学报, 2025, 37(8): 1605-1614. |
| [3] | 李宇静, 黄倩茹, 张爱冬, 吴雪霞, 朱栋幸, 肖凯. 茄子SmMYB13基因在干旱胁迫响应中的功能[J]. 浙江农业学报, 2025, 37(8): 1666-1679. |
| [4] | 师阳阳, 吕丽霞, 脱登峰. 低温弱光胁迫下AMF和PGPR对紫罗兰生长及营养吸收的影响[J]. 浙江农业学报, 2025, 37(8): 1694-1705. |
| [5] | 陈敏, 张巧艳, 王夏君, 王顺利, 郑蔚然. 固相萃取-高效液相色谱法测定植物源性产品中的熊果苷[J]. 浙江农业学报, 2025, 37(8): 1776-1784. |
| [6] | 刘岩, 林天宝, 吕志强. 植物肌醇半乳糖苷合成酶家族基因功能的研究进展[J]. 浙江农业学报, 2025, 37(8): 1817-1824. |
| [7] | 赵泓雨, 周宇杰, 李建忠, 郑涵, 毕继安, 余初浪, 周宇航, 侯凡, 戴彬凤, 钟列权, 严成其, 张海鹏, 杨勇, 陈剑平, 王成雨. 微塑料对植物影响的研究现状、未来展望与植物激素抵抗微塑料的分子生物学机制[J]. 浙江农业学报, 2025, 37(7): 1595-1604. |
| [8] | 周丹宁, 许姣, 白静, 刘湘楠, 朱畇昊. 内生真菌GG22蛋白质改善胁迫条件下红花幼苗的生长[J]. 浙江农业学报, 2025, 37(6): 1193-1202. |
| [9] | 邹俊燕, 王筠竹, 赵婉秋, 尹志浩, 杜建科, 孙崇波. 兰科植物原球茎和类原球茎研究进展[J]. 浙江农业学报, 2025, 37(6): 1372-1389. |
| [10] | 胡心柔, 王梅, 张雅芬, 蔡为明, 金群力. 非生物胁迫对灵芝生长发育及其响应机制的影响[J]. 浙江农业学报, 2025, 37(5): 1182-1190. |
| [11] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [12] | 夏思, 房祥军, 吴伟杰, 刘瑞玲, 陈慧芝, 牛犇, 郜海燕. 发酵型杨梅果浆的制备及其功能风味品质研究[J]. 浙江农业学报, 2025, 37(3): 667-678. |
| [13] | 任元龙, 马蓉, 王晓卓, 张雪艳. 叶面喷施褪黑素对甘蓝幼苗干旱胁迫的缓解作用[J]. 浙江农业学报, 2025, 37(2): 338-348. |
| [14] | 李文杨, 刘洋, 李勇, 邱雯雯, 王辉. 光质和补光时间对南方红豆杉生长发育的影响[J]. 浙江农业学报, 2025, 37(10): 2077-2086. |
| [15] | 崔博文, 张思懿, 王佳玲, 王竞红, 蔺吉祥, 杨青杰. 宽叶苔草WRKY家族成员生物信息学分析与耐旱基因挖掘[J]. 浙江农业学报, 2025, 37(10): 2087-2103. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||