浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 2066-2076.DOI: 10.3969/j.issn.1004-1524.2022.09.25
• 综述 • 上一篇
李春梅(), 万小荣, 关子盈, 赖晓凤, 罗凯晴, 刘凯(
)
收稿日期:
2021-12-16
出版日期:
2022-09-25
发布日期:
2022-09-30
通讯作者:
刘凯
作者简介:
*刘凯,E-mail: liukai5088@126.com基金资助:
LI Chunmei(), WAN Xiaorong, GUAN Ziying, LAI Xiaofeng, LUO Kaiqing, LIU Kai(
)
Received:
2021-12-16
Online:
2022-09-25
Published:
2022-09-30
Contact:
LIU Kai
摘要:
长链非编码RNA(long non-coding RNAs,lncRNAs)是一类转录本长度大于200 nt的非编码RNA,其表达和保守性比编码蛋白的mRNA低,在动植物各个生物学过程中发挥重要作用。近年来,植物lncRNAs的作用和功能受到广泛关注。本文总结了lncRNAs调控植物生长发育和生殖,应对低温、干旱等非生物胁迫和病虫害等生物胁迫方面的功能,同时根据lncRNAs在基因组上的来源,分类讨论了不同来源lncRNAs的作用机制,为深入挖掘植物新的lncRNAs、功能验证与作用机制探究提供参考。
中图分类号:
李春梅, 万小荣, 关子盈, 赖晓凤, 罗凯晴, 刘凯. 长链非编码RNA调控植物生长发育与逆境胁迫响应研究进展[J]. 浙江农业学报, 2022, 34(9): 2066-2076.
LI Chunmei, WAN Xiaorong, GUAN Ziying, LAI Xiaofeng, LUO Kaiqing, LIU Kai. Progress of long non-coding RNA regulating growth, development and response to stress in plants[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2066-2076.
物种 Species | 基因 Gene name | 来源 Origin | 功能 Function | 作用机制 Mechanism |
---|---|---|---|---|
拟南芥 | COOLAIR[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
Arabidopsis | COLDAIR[ | incRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
thaliana | COLDWRAP[ | sense lncRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
MAS[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling | |
FLORE[ | NAT | 开花 Flowering | 抑制关联结构基因CDFs转录 Repressing transcription of the associated structural gene CDFs | |
npc48[ | lincRNA | 叶片发育、开花 Leaf development and flowering | — | |
asHSFB2a[ | NAT | 配子体发育Fertility | — | |
LINC-AP2[ | lincRNA | 花发育Flower development | — | |
AG-incRNA4[ | incRNA | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
1GOD/asDOG1[ | NAT | 种子休眠Seed dormancy | — | |
HID1(nc3020)[ | lincRNA | 光形态建成 Photomorphogenesis | 抑制非邻近基因PIF3转录 Repressing transcription of the non-neighboring structural gene PIF3 | |
ASCO-lncRNA(npc351)[ | lincRNA | 根发育 Root development | 靶基因的可变剪接 Alternative splicing on the target gene | |
APOLO (npc34)[ | lincRNA | 根发育Root development | 染色质重塑Chromatin remodeling | |
npc536[ | lincRNA | 应对盐胁迫Salt stress | — | |
DRIR[ | lincRNA | 应对干旱和盐胁迫 Drought and salt stress | — | |
SVALKA[ | lincNAT | 应对低温胁迫 Cold stress | 抑制邻近基因CBF1转录 Repressing transcription of the neighboring structural gene CBF1 | |
IPS1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
At4[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
TARs (TAR191/212/224/66)[ | lincRNA | 尖孢镰刀菌抗性 Fusarium oxysporum resistance | — | |
ELENA1[ | lincRNA | 细菌性叶斑病抗性 Bacterial leaf spot resistance | 激活邻近基因PR1表达 Activating expression of the neighboring structural gene PR1 | |
水稻 | LAIR[ | lincNAT | 产量Yield | 染色质重塑Chromatin remodeling |
Oryza sativa | Ef-cd[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
LDMAR[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
XLOC_057324 (MISSEN)[ | lincRNA | 育性 Fertility | 结合非邻近基因靶蛋白质HeFP Binding HeFP encoded by the non-neighboring gene | |
PMS1T[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
TL[ | NAT | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
ALEX1/XLOC_437338[ | NAT | 白叶枯病抗性 Bacterial blight resistance | — | |
小麦 Triticum | Iw1[ | lincRNA | 蜡质合成 β-diketone waxes biosynthesis | miRNA前体 miRNA precursor |
aestivum | VAS[ | sense lncRNA | 开花 Flowering | 激活关联结构基因TaVRN1转录 Activating transcription of the associated structural gene TaVRN1 |
番茄 | lncRNA1459[ | lincRNA | 果实成熟Fruit ripening | — |
Solanum lycopersicum | lncRNA16397[ | NAT | 晚疫病抗性 Phytophthora infestans resistance | 诱导关联结构基因SIGRX21表达 Inducing expression of the associated structural gene SIGRX21 |
lncRNA33732[ | lincRNA | 晚疫病抗性 Phytophthora infestans resistance | 诱导邻近基因RBOH表达 Inducing expression of the neighboring structural gene RBOH | |
slylnc0195[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
slylnc1077[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
蒺藜苜蓿 Medicago | ENOD40[ | lincRNA | 结瘤 Root nodule formation | 蛋白质重定位 Cytoplasmic relocalization of nuclear proteins |
truncatula | PDIL1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
PDIL2[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
PDIL3[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
Mt4/TPSI1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
棉花 | lncRNA973[ | lincRNA | 应对盐胁迫Salt stress | — |
Gossypium hirsutum | GhlncNAT-ANX2[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — |
GhlncNAT-RLP7[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — | |
芜菁 Brassica rapa | bra-eTM160-1[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
bra-eTM160-2[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
野生烟草 Nicotiana | JAL1[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
attenuata | JAL3[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
甘蓝 Brassica oleracea | BoNR8[ | lincRNA | 种子萌发 Seed germination | — |
大白菜 Brassica rapa L. ssp. pekinensis | MSTRG.19915[ | NAT | 霜霉病 Downy mildew resistance | — |
小白菜 Brassica campestris | BcMF11[ | lincRNA | 育性 Fertility | — |
苹果 Malus domestica | MdLNC499[ | lincRNA | 花青素合成 Anthocyanin biosynthesis | 激活邻近基因MdERF109表达 Activating expression of the neighboring structural gene MdERF109 |
表1 LncRNAs在植物中的功能与作用机制
Table 1 Function and regulation mechanism of lncRNAs in plants
物种 Species | 基因 Gene name | 来源 Origin | 功能 Function | 作用机制 Mechanism |
---|---|---|---|---|
拟南芥 | COOLAIR[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
Arabidopsis | COLDAIR[ | incRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
thaliana | COLDWRAP[ | sense lncRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
MAS[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling | |
FLORE[ | NAT | 开花 Flowering | 抑制关联结构基因CDFs转录 Repressing transcription of the associated structural gene CDFs | |
npc48[ | lincRNA | 叶片发育、开花 Leaf development and flowering | — | |
asHSFB2a[ | NAT | 配子体发育Fertility | — | |
LINC-AP2[ | lincRNA | 花发育Flower development | — | |
AG-incRNA4[ | incRNA | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
1GOD/asDOG1[ | NAT | 种子休眠Seed dormancy | — | |
HID1(nc3020)[ | lincRNA | 光形态建成 Photomorphogenesis | 抑制非邻近基因PIF3转录 Repressing transcription of the non-neighboring structural gene PIF3 | |
ASCO-lncRNA(npc351)[ | lincRNA | 根发育 Root development | 靶基因的可变剪接 Alternative splicing on the target gene | |
APOLO (npc34)[ | lincRNA | 根发育Root development | 染色质重塑Chromatin remodeling | |
npc536[ | lincRNA | 应对盐胁迫Salt stress | — | |
DRIR[ | lincRNA | 应对干旱和盐胁迫 Drought and salt stress | — | |
SVALKA[ | lincNAT | 应对低温胁迫 Cold stress | 抑制邻近基因CBF1转录 Repressing transcription of the neighboring structural gene CBF1 | |
IPS1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
At4[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
TARs (TAR191/212/224/66)[ | lincRNA | 尖孢镰刀菌抗性 Fusarium oxysporum resistance | — | |
ELENA1[ | lincRNA | 细菌性叶斑病抗性 Bacterial leaf spot resistance | 激活邻近基因PR1表达 Activating expression of the neighboring structural gene PR1 | |
水稻 | LAIR[ | lincNAT | 产量Yield | 染色质重塑Chromatin remodeling |
Oryza sativa | Ef-cd[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
LDMAR[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
XLOC_057324 (MISSEN)[ | lincRNA | 育性 Fertility | 结合非邻近基因靶蛋白质HeFP Binding HeFP encoded by the non-neighboring gene | |
PMS1T[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
TL[ | NAT | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
ALEX1/XLOC_437338[ | NAT | 白叶枯病抗性 Bacterial blight resistance | — | |
小麦 Triticum | Iw1[ | lincRNA | 蜡质合成 β-diketone waxes biosynthesis | miRNA前体 miRNA precursor |
aestivum | VAS[ | sense lncRNA | 开花 Flowering | 激活关联结构基因TaVRN1转录 Activating transcription of the associated structural gene TaVRN1 |
番茄 | lncRNA1459[ | lincRNA | 果实成熟Fruit ripening | — |
Solanum lycopersicum | lncRNA16397[ | NAT | 晚疫病抗性 Phytophthora infestans resistance | 诱导关联结构基因SIGRX21表达 Inducing expression of the associated structural gene SIGRX21 |
lncRNA33732[ | lincRNA | 晚疫病抗性 Phytophthora infestans resistance | 诱导邻近基因RBOH表达 Inducing expression of the neighboring structural gene RBOH | |
slylnc0195[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
slylnc1077[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
蒺藜苜蓿 Medicago | ENOD40[ | lincRNA | 结瘤 Root nodule formation | 蛋白质重定位 Cytoplasmic relocalization of nuclear proteins |
truncatula | PDIL1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
PDIL2[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
PDIL3[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
Mt4/TPSI1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
棉花 | lncRNA973[ | lincRNA | 应对盐胁迫Salt stress | — |
Gossypium hirsutum | GhlncNAT-ANX2[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — |
GhlncNAT-RLP7[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — | |
芜菁 Brassica rapa | bra-eTM160-1[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
bra-eTM160-2[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
野生烟草 Nicotiana | JAL1[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
attenuata | JAL3[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
甘蓝 Brassica oleracea | BoNR8[ | lincRNA | 种子萌发 Seed germination | — |
大白菜 Brassica rapa L. ssp. pekinensis | MSTRG.19915[ | NAT | 霜霉病 Downy mildew resistance | — |
小白菜 Brassica campestris | BcMF11[ | lincRNA | 育性 Fertility | — |
苹果 Malus domestica | MdLNC499[ | lincRNA | 花青素合成 Anthocyanin biosynthesis | 激活邻近基因MdERF109表达 Activating expression of the neighboring structural gene MdERF109 |
[1] |
FU X D. Non-coding RNA: a new frontier in regulatory biology[J]. National Science Review, 2014, 1(2): 190-204.
DOI URL |
[2] |
WILUSZ J E, SUNWOO H, SPECTOR D L. Long noncoding RNAs: functional surprises from the RNA world[J]. Genes & Development, 2009, 23(13): 1494-1504.
DOI URL |
[3] |
TSAI M C, MANOR O, WAN Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes[J]. Science, 2010, 329(5992): 689-693.
DOI URL |
[4] |
GUTTMAN M, DONAGHEY J, CAREY B W, et al. LincRNAs act in the circuitry controlling pluripotency and differentiation[J]. Nature, 2011, 477(7364): 295-300.
DOI URL |
[5] |
JHA U C, NAYYAR H, JHA R, et al. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation[J]. BMC Plant Biology, 2020, 20(1): 466.
DOI PMID |
[6] |
HUANG J Z, CHEN M, DE CHEN, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth[J]. Molecular Cell, 2017, 68(1): 171-184.
DOI URL |
[7] | WANG H L V, CHEKANOVA J A. Long noncoding RNAs in plants[J]. Advances in Experimental Medicine and Biology, 2017, 1008: 133-154. |
[8] |
WIERZBICKI A T, BLEVINS T, SWIEZEWSKI S. Long noncoding RNAs in plants[J]. Annual Review of Plant Biology, 2021, 72: 245-271.
DOI PMID |
[9] |
MA L N, BAJIC V B, ZHANG Z. On the classification of long non-coding RNAs[J]. RNA Biology, 2013, 10(6): 924-933.
DOI URL |
[10] | LI R, JIN J J, XU J, et al. Long non-coding RNAs associate with jasmonate-mediated plant defense against herbivores[J]. Plant, Cell & Environment, 2021, 44(3): 982-994. |
[11] |
ARIEL F, ROMERO-BARRIOS N, JÉGU T, et al. Battles and hijacks: noncoding transcription in plants[J]. Trends in Plant Science, 2015, 20(6): 362-371.
DOI PMID |
[12] |
LIU J, WANG H, CHUA N H. Long noncoding RNA transcriptome of plants[J]. Plant Biotechnology Journal, 2015, 13(3): 319-328.
DOI PMID |
[13] |
GUPTA R A, SHAH N, WANG K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291): 1071-1076.
DOI URL |
[14] |
LOEWER S, CABILI M N, GUTTMAN M, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells[J]. Nature Genetics, 2010, 42(12): 1113-1117.
DOI PMID |
[15] |
KLATTENHOFF C A, SCHEUERMANN J C, SURFACE L E, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment[J]. Cell, 2013, 152(3): 570-583.
DOI PMID |
[16] |
WU H W, DENG S L, XU H Y, et al. A noncoding RNA transcribed from the AGAMOUS (AG) second intron binds to CURLY LEAF and represses AG expression in leaves[J]. The New Phytologist, 2018, 219(4): 1480-1491.
DOI URL |
[17] |
LIU X, LI D Y, ZHANG D L, et al. A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice[J]. The New Phytologist, 2018, 218(2): 774-788.
DOI URL |
[18] |
AMASINO R M, MICHAELS S D. The timing of flowering[J]. Plant Physiology, 2010, 154(2): 516-520.
DOI PMID |
[19] |
HEO J B, SUNG S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331(6013): 76-79.
DOI PMID |
[20] |
SWIEZEWSKI S, LIU F Q, MAGUSIN A, et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target[J]. Nature, 2009, 462(7274): 799-802.
DOI URL |
[21] |
CASTAINGS L, BERGONZI S, ALBANI M C, et al. Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives[J]. Nature Communications, 2014, 5: 4457.
DOI URL |
[22] |
CSORBA T, QUESTA J I, SUN Q W, et al. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): 16160-16165.
DOI PMID |
[23] |
KIM D H, SUNG S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs[J]. Developmental Cell, 2017, 40(3): 302-312.
DOI URL |
[24] |
ZHAO X Y, LI J R, LIAN B, et al. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA[J]. Nature Communications, 2018, 9: 5056.
DOI URL |
[25] |
FANG J, ZHANG F T, WANG H R, et al. Ef-cd locus shortens rice maturity duration without yield penalty[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(37): 18717-18722.
DOI PMID |
[26] |
XU S J, DONG Q, DENG M, et al. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat[J]. Molecular Plant, 2021, 14(9): 1525-1538.
DOI URL |
[27] |
DING J H, LU Q, OUYANG Y D, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2654-2659.
DOI PMID |
[28] |
FAN Y R, YANG J Y, MATHIONI S M, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15144-15149.
DOI PMID |
[29] |
ZHANG Y C, LIAO J Y, LI Z Y, et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice[J]. Genome Biology, 2014, 15(12): 512.
DOI URL |
[30] |
ZHOU Y F, ZHANG Y C, SUN Y M, et al. The parent-of-origin lncRNA MISSEN regulates rice endosperm development[J]. Nature Communications, 2021, 12(1): 6525.
DOI URL |
[31] |
HUANG L, DONG H, ZHOU D, et al. Systematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa[J]. The Plant Journal, 2018, 96(1): 203-222.
DOI URL |
[32] | BENTSINK L, JOWETT J, HANHART C J, et al. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(45): 17042-17047. |
[33] | FEDAK H, PALUSINSKA M, KRZYCZMONIK K, et al. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): E7846-E7855. |
[34] |
WU J, OKADA T, FUKUSHIMA T, et al. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis[J]. RNA Biology, 2012, 9(3): 302-313.
DOI URL |
[35] |
WU J, LIU C X, LIU Z G, et al. Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis[J]. Plant and Cell Physiology, 2018, 60(2): 421-435.
DOI URL |
[36] |
ZHU B Z, YANG Y F, LI R, et al. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening[J]. Journal of Experimental Botany, 2015, 66(15): 4483-4495.
DOI PMID |
[37] |
LI R, FU D Q, ZHU B Z, et al. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening[J]. The Plant Journal: for Cell and Molecular Biology, 2018, 94(3): 513-524.
DOI PMID |
[38] |
HENRIQUES R, WANG H, LIU J, et al. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering[J]. The New Phytologist, 2017, 216(3): 854-867.
DOI URL |
[39] |
BEN AMOR B, WIRTH S, MERCHAN F, et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses[J]. Genome Research, 2009, 19(1): 57-69.
DOI URL |
[40] |
WUNDERLICH M, GROSS-HARDT R, SCHÖFFL F. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA[J]. Plant Molecular Biology, 2014, 85(6): 541-550.
DOI URL |
[41] |
GAO R M, LIU P, IRWANTO N, et al. Upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana[J]. Plant Cell Reports, 2016, 35(11): 2257-2267.
DOI URL |
[42] | WANG Y Q, FAN X D, LIN F, et al. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10359-10364. |
[43] |
WANG Y Q, WANG X C, DENG W, et al. Genomic features and regulatory roles of intermediate-sized non-coding RNAs in Arabidopsis[J]. Molecular Plant, 2014, 7(3): 514-527.
DOI URL |
[44] |
BARDOU F, ARIEL F, SIMPSON C G, et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis[J]. Developmental Cell, 2014, 30(2): 166-176.
DOI URL |
[45] |
QIN T, ZHAO H Y, CUI P, et al. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J]. Plant Physiology, 2017, 175(3): 1321-1336.
DOI PMID |
[46] |
KINDGREN P, ARD R, IVANOV M, et al. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation[J]. Nature Communications, 2018, 9: 4561.
DOI URL |
[47] |
FRANCO-ZORRILLA J M, VALLI A, TODESCO M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics, 2007, 39(8): 1033-1037.
DOI URL |
[48] |
SHIN H, SHIN H S, CHEN R J, et al. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation[J]. The Plant Journal: for Cell and Molecular Biology, 2006, 45(5): 712-726.
DOI URL |
[49] |
ZHU Q H, STEPHEN S, TAYLOR J, et al. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana[J]. The New Phytologist, 2014, 201(2): 574-584.
DOI URL |
[50] |
SEO J S, SUN H X, PARK B S, et al. ELF18-INDUCED LONG-NONCODING RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis[J]. The Plant Cell, 2017, 29(5): 1024-1038.
DOI URL |
[51] |
WANG Y, LUO X J, SUN F, et al. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice[J]. Nature Communications, 2018, 9: 3516.
DOI URL |
[52] |
DING J H, SHEN J Q, MAO H L, et al. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice[J]. Molecular Plant, 2012, 5(6): 1210-1216.
DOI PMID |
[53] |
ZHOU H, LIU Q J, LI J, et al. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22(4): 649-660.
DOI URL |
[54] |
YU Y, ZHOU Y F, FENG Y Z, et al. Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX1 in jasmonate pathway and disease resistance[J]. Plant Biotechnology Journal, 2020, 18(3): 679-690.
DOI PMID |
[55] | HUANG D, FEURTADO J A, SMITH M A, et al. Long noncoding miRNA gene represses wheat β-diketone waxes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(15): E3149-E3158. |
[56] |
CUI J, LUAN Y S, JIANG N, et al. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin[J]. The Plant Journal: for Cell and Molecular Biology, 2017, 89(3): 577-589.
DOI URL |
[57] |
CUI J, JIANG N, MENG J, et al. LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions[J]. The Plant Journal: for Cell and Molecular Biology, 2019, 97(5): 933-946.
DOI URL |
[58] |
WANG J Y, YU W G, YANG Y W, et al. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection[J]. Scientific Reports, 2015, 5: 16946.
DOI PMID |
[59] |
CAMPALANS A, KONDOROSI A, CRESPI M. Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula[J]. The Plant Cell, 2004, 16(4): 1047-1059.
DOI URL |
[60] |
WANG T Z, ZHAO M G, ZHANG X X, et al. Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant Medicago truncatula[J]. Journal of Experimental Botany, 2017, 68(21/22): 5937-5948.
DOI URL |
[61] |
BURLEIGH S H, HARRISON M J. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition[J]. Plant Molecular Biology, 1997, 34(2): 199-208.
DOI URL |
[62] |
ZHANG X P, DONG J, DENG F N, et al. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress[J]. BMC Plant Biology, 2019, 19(1): 459.
DOI PMID |
[63] |
ZHANG L, WANG M J, LI N N, et al. Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton[J]. Plant Biotechnology Journal, 2018, 16(6): 1172-1185.
DOI URL |
[64] |
ZHANG B, SU T B, LI P R, et al. Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage[J]. Horticulture Research, 2021, 8: 44.
DOI PMID |
[65] |
SONG J H, CAO J S, WANG C G. BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility[J]. Plant Cell Reports, 2013, 32(1): 21-30.
DOI URL |
[66] |
SONG J H, CAO J S, YU X L, et al. BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis[J]. Journal of Plant Physiology, 2007, 164(8): 1097-1100.
DOI URL |
[67] |
MA H Y, YANG T, LI Y, et al. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit[J]. The Plant Cell, 2021, 33(10): 3309-3330.
DOI URL |
[68] |
ARIEL F, JEGU T, LATRASSE D, et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop[J]. Molecular Cell, 2014, 55(3): 383-396.
DOI PMID |
[69] |
JIA L, ZHANG D Y, XIANG Z H, et al. Nonfunctional ingestion of plant miRNAs in silkworm revealed by digital droplet PCR and transcriptome analysis[J]. Scientific Reports, 2015, 5: 12290.
DOI PMID |
[70] |
CHEN Y, SINGH A, KAITHAKOTTIL G G, et al. An aphid RNA transcript migrates systemically within plants and is a virulence factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 12763-12771.
DOI PMID |
[1] | 金宝霞, 王伟杰, 朱晓林, 王贤, 魏小红. 不同激素组合对番茄离体再生和相关基因表达的影响[J]. 浙江农业学报, 2022, 34(9): 1889-1900. |
[2] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
[3] | 蒋瑞平, 赵辰晖, 李文杰, 安秋菊, 李佳伦, 周嘉裕, 李遂焰, 廖海. 豆科植物IPI基因密码子偏好性[J]. 浙江农业学报, 2022, 34(6): 1114-1123. |
[4] | 李文翔, 王芳, 王舰. 马铃薯miR397的克隆及靶基因筛选[J]. 浙江农业学报, 2022, 34(6): 1141-1151. |
[5] | 麻仲花, 吴娜, 陈娟, 赵匆, 闫承宏, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期生理特性的影响[J]. 浙江农业学报, 2022, 34(6): 1205-1216. |
[6] | 李丽艳, 谭海霞, 李婧, 王连龙, 杜迎辉, 徐志文. 耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响[J]. 浙江农业学报, 2022, 34(6): 1268-1276. |
[7] | 杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
[8] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[9] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[10] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[11] | 贾利强, 赵秋芳, 陈曙, 丁波. 玉米转录因子bZIP G亚家族基因的表达模式[J]. 浙江农业学报, 2022, 34(2): 221-231. |
[12] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅生长与离子分布的影响[J]. 浙江农业学报, 2022, 34(1): 79-88. |
[13] | 杨超, 刘敏竹, 李强, 韩涛, 彭良志, 凌丽俐, 付行政, 淳长品, 曹立, 何义仲. 发光二极管(LED)光质对金秋砂糖橘幼苗生长发育和光合特性的影响[J]. 浙江农业学报, 2022, 34(1): 89-97. |
[14] | 熊雪, 赵丽娜, 杨森林, SAMIAH Arif, 张屹东. 甜瓜CmCIPK家族全基因组鉴定和逆境条件下的表达分析[J]. 浙江农业学报, 2021, 33(9): 1625-1639. |
[15] | 郑钢, 顾翠花, 王杰, 林琳. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650-1659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||