浙江农业学报 ›› 2024, Vol. 36 ›› Issue (2): 308-324.DOI: 10.3969/j.issn.1004-1524.20230117
田晓明(), 向光锋, 牟村, 吕浩, 马涛, 朱路, 彭静, 张敏, 何艳
收稿日期:
2023-02-09
出版日期:
2024-02-25
发布日期:
2024-03-05
作者简介:
田晓明(1986—),女,湖南湘潭人,博士,高级工程师,研究方向为珍贵树种选育、珍稀濒危植物保护与利用。E-mail:tianxiaoming1986@126.com
基金资助:
TIAN Xiaoming(), XIANG Guangfeng, MOU Cun, LYU Hao, MA Tao, ZHU Lu, PENG Jing, ZHANG Min, HE Yan
Received:
2023-02-09
Online:
2024-02-25
Published:
2024-03-05
摘要:
为探究软荚红豆(Ormosia semicastrata)、花榈木(Ormosia henryi)、木荚红豆(Ormosia xylocarpa)和鄂西红豆(Ormosia hosiei)等4种红豆属植物在干旱胁迫与复水处理条件下的生理响应机制和种间耐旱性差异,采用盆栽控水试验法进行干旱胁迫试验。试验分别设置了对照组(CK)、轻度干旱组(LD)、中度干旱组(MD)和重度干旱组(SD)4个处理组,干旱胁迫28 d后进行复水处理,分别于第0、7、14、21、28、42天(复水后第14天)测定植物形态、生理和光合特性等指标的变化,利用主成分分析法和隶属函数分析法对4种植物的耐旱性进行综合评价。结果表明,SD处理组4种红豆属植物均出现明显的旱害症状,木荚红豆旱害症状出现最早也最严重,鄂西红豆则表现最轻。4种植物生理指标随干旱胁迫程度增加和胁迫时间延长,叶片相对含水量(RWC)呈降低趋势,电导率(REC)和丙二醛(MDA)含量则逐渐升高,超氧化物歧化酶(SOD)活性、可溶性蛋白(SP)和叶绿素含量(CHL)呈先升后降趋势,叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)逐渐降低,胞间CO2浓度(Ci)呈先降后升趋势。复水处理14 d后,除木荚红豆SD处理组植株死亡无法恢复外,4种红豆属植物各处理组出现的旱害症状均得到缓解;同时,RWC、SOD活性、SP和CHL含量、Pn、Gs、Tr呈上升趋势,而REC、MDA含量呈下降趋势,各树种SD处理组指标变化最为显著。通过主成分分析法筛选出REC、Pn、Gs和Tr为4种红豆属植物耐旱性评价关键指标;通过隶属函数分析法综合评价4种红豆属植物的耐旱能力,从强到弱排序依次为:鄂西红豆、花榈木、木荚红豆、软荚红豆。研究结果可为红豆属植物的保护、耐旱性育种和栽培应用提供理论依据。
中图分类号:
田晓明, 向光锋, 牟村, 吕浩, 马涛, 朱路, 彭静, 张敏, 何艳. 四种红豆属植物耐旱性综合评价[J]. 浙江农业学报, 2024, 36(2): 308-324.
TIAN Xiaoming, XIANG Guangfeng, MOU Cun, LYU Hao, MA Tao, ZHU Lu, PENG Jing, ZHANG Min, HE Yan. Drought tolerance evaluation of four species of Ormosia[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 308-324.
简称 Abbreviation | 名称 Name | 来源 Source | 株高 Plant height/cm | 地径 Ground diameter/mm |
---|---|---|---|---|
RJ | 软荚红豆Ormosia semicastrata | 湖南省通道县Tongdao County, Hunan Province | 37.2~42.4 | 6.42~7.59 |
HLM | 花榈木Ormosia henryi | 湖南省长沙县Changsha County, Hunan Province | 39.3~45.5 | 8.87~10.37 |
MJ | 木荚红豆Ormosia xylocarpa | 湖南省江华县Jianghua County, Hunan Province | 50.5~55.6 | 10.69~14.45 |
EX | 鄂西红豆Ormosia hosiei | 湖北省恩施市Enshi City, Hubei Province | 21.1~27.4 | 4.38~5.51 |
表1 供试材料与简称
Table 1 Test material and abbreviation
简称 Abbreviation | 名称 Name | 来源 Source | 株高 Plant height/cm | 地径 Ground diameter/mm |
---|---|---|---|---|
RJ | 软荚红豆Ormosia semicastrata | 湖南省通道县Tongdao County, Hunan Province | 37.2~42.4 | 6.42~7.59 |
HLM | 花榈木Ormosia henryi | 湖南省长沙县Changsha County, Hunan Province | 39.3~45.5 | 8.87~10.37 |
MJ | 木荚红豆Ormosia xylocarpa | 湖南省江华县Jianghua County, Hunan Province | 50.5~55.6 | 10.69~14.45 |
EX | 鄂西红豆Ormosia hosiei | 湖北省恩施市Enshi City, Hubei Province | 21.1~27.4 | 4.38~5.51 |
图1 不同干旱胁迫处理28 d时4种红豆属植物的形态特征 RJ,软荚红豆;HLM,花榈木;MJ,木荚红豆;EX,鄂西红豆。CK,对照组;LD,轻度干旱胁迫;MD,中度干旱胁迫;SD,重度干旱胁迫。下同。
Fig.1 Morphological characteristics of four species of Ormosia under different drought stress treatments for 28 days RJ, Ormosia semicastrata; HLM, Ormosia henryi; MJ, Ormosia xylocarpa; EX, Ormosia hosiei. CK, Control group; LD, Mild drought stress; MD, Moderate drought stress; SD, Severe drought stress. The same as below.
处理 Treatment | 株高相对生长量Relative growth of plant height/cm | 地径相对生长量Relative growth of diameter/mm | ||||||
---|---|---|---|---|---|---|---|---|
RJ | HLM | MJ | EX | RJ | HLM | MJ | EX | |
CK | 4.70±0.61 a | 1.30±0.22 b | 1.57±0.25 a | 1.47±0.20 a | 0.37±0.07 b | 0.33±0.04 a | 0.16±0.02 a | 0.21±0.02 a |
LD | 1.60±0.54 b | 2.84±0.36 a | 1.00±0.26 b | 1.13±0.26 b | 0.49±0.04 a | 0.23±0.04 b | 0.09±0.01 b | 0.17±0.02 b |
MD | 0.96±0.23 bc | 0.92±0.18 c | 0.73±0.25 bc | 0.76±0.13 c | 0.13±0.03 c | 0.20±0.02 b | 0.08±0.02 b | 0.15±0.02 c |
SD | 1.12±0.30 c | 0.82±0.20 c | 0.40±0.10 c | 0.63±0.11 c | 0.11±0.01 c | 0.21±0.04 b | 0.09±0.03 b | 0.12±0.02 d |
表2 干旱胁迫下4种红豆属植物的株高和地径相对生长量
Table 2 Relative growth of plant height and ground diameter of four species of Ormosia under drought stress
处理 Treatment | 株高相对生长量Relative growth of plant height/cm | 地径相对生长量Relative growth of diameter/mm | ||||||
---|---|---|---|---|---|---|---|---|
RJ | HLM | MJ | EX | RJ | HLM | MJ | EX | |
CK | 4.70±0.61 a | 1.30±0.22 b | 1.57±0.25 a | 1.47±0.20 a | 0.37±0.07 b | 0.33±0.04 a | 0.16±0.02 a | 0.21±0.02 a |
LD | 1.60±0.54 b | 2.84±0.36 a | 1.00±0.26 b | 1.13±0.26 b | 0.49±0.04 a | 0.23±0.04 b | 0.09±0.01 b | 0.17±0.02 b |
MD | 0.96±0.23 bc | 0.92±0.18 c | 0.73±0.25 bc | 0.76±0.13 c | 0.13±0.03 c | 0.20±0.02 b | 0.08±0.02 b | 0.15±0.02 c |
SD | 1.12±0.30 c | 0.82±0.20 c | 0.40±0.10 c | 0.63±0.11 c | 0.11±0.01 c | 0.21±0.04 b | 0.09±0.03 b | 0.12±0.02 d |
图2 干旱胁迫下4种红豆属植物叶片的相对含水量 不同小写字母表示同一时间不同处理的差异显著(P<0.05);不同大写字母表示同一处理下不同时间的差异显著(P<0.05)。下同。
Fig.2 Relative water content in leaves of four species of Ormosia under drought stress Different lowercase letters showed significant differences between different treatments at the same time (P<0.05); Different capital letters showed significant differences at different times under the same treatment (P<0.05). The same as below.
物种 Species | 处理组 Treatment | 不同时间(d)的丙二醛含量Malondialdehyde content at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 0.025 abA | 0.022 abA | 0.021 bC | 0.029 aC | 0.027 abC | 0.026 abB |
LD | 0.027 bA | 0.028 bA | 0.027 bB | 0.030 bBC | 0.041 aB | 0.029 bAB | |
MD | 0.021 cA | 0.027 bcA | 0.029 bAB | 0.033 bB | 0.047 aAB | 0.029 bAB | |
SD | 0.022 dA | 0.031 cA | 0.032 cA | 0.040 bA | 0.055 aA | 0.034 bcA | |
HLM | CK | 0.030 aA | 0.0320 aA | 0.030 aB | 0.030 aB | 0.032 aC | 0.030 aA |
LD | 0.030 bA | 0.032 abA | 0.035 abAB | 0.037 abA | 0.037 aBC | 0.031 abA | |
MD | 0.030 cA | 0.034 bcA | 0.036 abcAB | 0.038 abA | 0.041 aB | 0.032 bcA | |
SD | 0.029 eA | 0.034 dA | 0.039 cA | 0.043 bA | 0.049 aA | 0.035 dA | |
MJ | CK | 0.043 aA | 0.043 aB | 0.043 aB | 0.043 aB | 0.043 aD | 0.039 aA |
LD | 0.044 bcA | 0.043 bcB | 0.050 aA | 0.045 bcB | 0.048 abC | 0.042 cA | |
MD | 0.041 cA | 0.045 bcAB | 0.050 abA | 0.050 abA | 0.054 aB | 0.042 cA | |
SD | 0.042 dA | 0.049 cA | 0.054 bA | 0.056 bA | 0.060 aA | 0.045 dA | |
EX | CK | 0.030 aA | 0.029 aA | 0.030 aB | 0.031 aC | 0.031 aB | 0.027 aA |
LD | 0.027 bA | 0.029 abA | 0.035 aAB | 0.034 abBC | 0.034 abB | 0.028 abA | |
MD | 0.030 bA | 0.029 bA | 0.037 aA | 0.039 aAB | 0.038 aB | 0.029 bA | |
SD | 0.027 bA | 0.030 bA | 0.042 aA | 0.041 aA | 0.048 aA | 0.032 bA |
表3 干旱胁迫下4种红豆属植物的MDA含量
Table 3 Malondialdehyde content of four species of Ormosia under drought stress μmol·g-1
物种 Species | 处理组 Treatment | 不同时间(d)的丙二醛含量Malondialdehyde content at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 0.025 abA | 0.022 abA | 0.021 bC | 0.029 aC | 0.027 abC | 0.026 abB |
LD | 0.027 bA | 0.028 bA | 0.027 bB | 0.030 bBC | 0.041 aB | 0.029 bAB | |
MD | 0.021 cA | 0.027 bcA | 0.029 bAB | 0.033 bB | 0.047 aAB | 0.029 bAB | |
SD | 0.022 dA | 0.031 cA | 0.032 cA | 0.040 bA | 0.055 aA | 0.034 bcA | |
HLM | CK | 0.030 aA | 0.0320 aA | 0.030 aB | 0.030 aB | 0.032 aC | 0.030 aA |
LD | 0.030 bA | 0.032 abA | 0.035 abAB | 0.037 abA | 0.037 aBC | 0.031 abA | |
MD | 0.030 cA | 0.034 bcA | 0.036 abcAB | 0.038 abA | 0.041 aB | 0.032 bcA | |
SD | 0.029 eA | 0.034 dA | 0.039 cA | 0.043 bA | 0.049 aA | 0.035 dA | |
MJ | CK | 0.043 aA | 0.043 aB | 0.043 aB | 0.043 aB | 0.043 aD | 0.039 aA |
LD | 0.044 bcA | 0.043 bcB | 0.050 aA | 0.045 bcB | 0.048 abC | 0.042 cA | |
MD | 0.041 cA | 0.045 bcAB | 0.050 abA | 0.050 abA | 0.054 aB | 0.042 cA | |
SD | 0.042 dA | 0.049 cA | 0.054 bA | 0.056 bA | 0.060 aA | 0.045 dA | |
EX | CK | 0.030 aA | 0.029 aA | 0.030 aB | 0.031 aC | 0.031 aB | 0.027 aA |
LD | 0.027 bA | 0.029 abA | 0.035 aAB | 0.034 abBC | 0.034 abB | 0.028 abA | |
MD | 0.030 bA | 0.029 bA | 0.037 aA | 0.039 aAB | 0.038 aB | 0.029 bA | |
SD | 0.027 bA | 0.030 bA | 0.042 aA | 0.041 aA | 0.048 aA | 0.032 bA |
物种 Species | 处理组 Treatment | 不同时间(d)的相对电导率Relative conductivity at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 21.68 aA | 21.99 aB | 22.71 aB | 23.95 aC | 20.54 aD | 23.31 aB |
LD | 22.80 cA | 26.86 bcA | 29.55 abA | 34.16 aB | 28.4 bC | 27.03 bcAB | |
MD | 23.63 cA | 27.60 cA | 32.47 bA | 35.24 abB | 38.33 aB | 25.78 cAB | |
SD | 23.05 cA | 28.56 bcA | 32.55 bA | 50.38 aA | 50.73 aA | 29.05 bA | |
HLM | CK | 22.29 bA | 26.63 aAB | 24.3 abC | 19.2 cC | 23.53 bD | 23.54 bC |
LD | 25.23 bA | 24.25 bBC | 26.47 bC | 32.48 aB | 34.74 aC | 26.92 bB | |
MD | 24.54 dA | 20.82 dC | 31.57 bcB | 34.58 bB | 39.95 aB | 29.81 cAB | |
SD | 23.29 eA | 29.46 dA | 35.13 cA | 40.42 bA | 45.63 aA | 30.85 dA | |
MJ | CK | 23.01 aA | 22.7 aC | 24.09 aC | 22.66 aD | 22.9 aC | 25.78 aB |
LD | 20.87 bA | 26.37 aB | 24.29 abC | 27.27 aC | 27.1 aC | 25.24 aB | |
MD | 21.20 dA | 26.36 cB | 30.79 bB | 38.1 aB | 40.85 aB | 28.83 bcB | |
SD | 23.64 dA | 33.25 cA | 38.92 bA | 43.23 bA | 51.94 aA | 38.29 bcA | |
EX | CK | 22.52 abA | 24.45 aAB | 21.69 abC | 22.63 abC | 19.91 bD | 23.66 aA |
LD | 23.22 bcA | 21.26 cB | 24.72 abcBC | 25.54 abB | 28.17 aC | 23.28 bcA | |
MD | 21.04 cA | 27.93 bA | 27.15 bAB | 25.90 bB | 32.80 aB | 25.22 bA | |
SD | 24.36 dA | 27.94 cdA | 29.14 cA | 33.69 bA | 38.15 aA | 27.72 cdA |
表4 干旱胁迫下4种红豆属植物的相对电导率
Table 4 Relative conductivity of four species of Ormosia under drought stress %
物种 Species | 处理组 Treatment | 不同时间(d)的相对电导率Relative conductivity at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 21.68 aA | 21.99 aB | 22.71 aB | 23.95 aC | 20.54 aD | 23.31 aB |
LD | 22.80 cA | 26.86 bcA | 29.55 abA | 34.16 aB | 28.4 bC | 27.03 bcAB | |
MD | 23.63 cA | 27.60 cA | 32.47 bA | 35.24 abB | 38.33 aB | 25.78 cAB | |
SD | 23.05 cA | 28.56 bcA | 32.55 bA | 50.38 aA | 50.73 aA | 29.05 bA | |
HLM | CK | 22.29 bA | 26.63 aAB | 24.3 abC | 19.2 cC | 23.53 bD | 23.54 bC |
LD | 25.23 bA | 24.25 bBC | 26.47 bC | 32.48 aB | 34.74 aC | 26.92 bB | |
MD | 24.54 dA | 20.82 dC | 31.57 bcB | 34.58 bB | 39.95 aB | 29.81 cAB | |
SD | 23.29 eA | 29.46 dA | 35.13 cA | 40.42 bA | 45.63 aA | 30.85 dA | |
MJ | CK | 23.01 aA | 22.7 aC | 24.09 aC | 22.66 aD | 22.9 aC | 25.78 aB |
LD | 20.87 bA | 26.37 aB | 24.29 abC | 27.27 aC | 27.1 aC | 25.24 aB | |
MD | 21.20 dA | 26.36 cB | 30.79 bB | 38.1 aB | 40.85 aB | 28.83 bcB | |
SD | 23.64 dA | 33.25 cA | 38.92 bA | 43.23 bA | 51.94 aA | 38.29 bcA | |
EX | CK | 22.52 abA | 24.45 aAB | 21.69 abC | 22.63 abC | 19.91 bD | 23.66 aA |
LD | 23.22 bcA | 21.26 cB | 24.72 abcBC | 25.54 abB | 28.17 aC | 23.28 bcA | |
MD | 21.04 cA | 27.93 bA | 27.15 bAB | 25.90 bB | 32.80 aB | 25.22 bA | |
SD | 24.36 dA | 27.94 cdA | 29.14 cA | 33.69 bA | 38.15 aA | 27.72 cdA |
物种 Species | 处理组 Treatment | 不同时间(d)的可溶性蛋白含量Soluble protein content at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 4.21 aA | 4.18 aA | 3.77 abB | 3.75 abAB | 4.19 aA | 3.62 bA |
LD | 3.84 bA | 4.18 abA | 4.22 abAB | 4.30 abA | 4.48 aA | 3.71 bA | |
MD | 3.79 bA | 4.26 abA | 4.28 abA | 4.10 abAB | 4.37 aA | 3.04 cB | |
SD | 4.10 aA | 4.27 aA | 4.57 aA | 3.50 bB | 2.95 bB | 3.37 bAB | |
HLM | CK | 12.57 aA | 13.08 aA | 12.36 aA | 11.71 aC | 12.42 aAB | 12.50 aA |
LD | 11.87 aA | 13.21 aA | 13.17 aA | 12.94 aB | 12.70 aAB | 12.65 aA | |
MD | 13.42 aA | 13.43 aA | 13.58 aA | 14.07 aA | 14.09 aA | 13.94 aA | |
SD | 12.11 bcA | 12.62 bcA | 13.69 abA | 14.88 aA | 11.46 cB | 12.60 bcA | |
MJ | CK | 11.68 aA | 11.52 aA | 11.40 aC | 10.91 aA | 11.06 aA | 11.24 aA |
LD | 12.15 aA | 12.18 aA | 12.08 aBC | 12.68 aA | 12.64 aA | 10.55 bA | |
MD | 12.15 aA | 12.47 aA | 12.94 aB | 13.25 aA | 12.47 aA | 12.45 aA | |
SD | 11.89 bA | 12.4 bA | 14.75 aA | 11.35 bA | 8.70 cB | 10.90 bA | |
EX | CK | 15.26 aA | 14.60 aB | 14.85 aB | 15.01 aAB | 14.91 aAB | 15.09 aA |
LD | 15.15 aAB | 14.49 aB | 14.97 aB | 15.38 aA | 14.58 aB | 14.60 aA | |
MD | 14.96 bB | 15.00 bAB | 15.44 abB | 15.97 aA | 15.54 abA | 14.12 cA | |
SD | 15.23 bcA | 15.48 bA | 16.73 aA | 14.10 cdB | 12.38 eC | 13.79 dA |
表5 干旱胁迫下4种红豆属植物的可溶性蛋白含量
Table 5 Soluble protein content of four species of Ormosia under drought stress mg·g-1
物种 Species | 处理组 Treatment | 不同时间(d)的可溶性蛋白含量Soluble protein content at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 4.21 aA | 4.18 aA | 3.77 abB | 3.75 abAB | 4.19 aA | 3.62 bA |
LD | 3.84 bA | 4.18 abA | 4.22 abAB | 4.30 abA | 4.48 aA | 3.71 bA | |
MD | 3.79 bA | 4.26 abA | 4.28 abA | 4.10 abAB | 4.37 aA | 3.04 cB | |
SD | 4.10 aA | 4.27 aA | 4.57 aA | 3.50 bB | 2.95 bB | 3.37 bAB | |
HLM | CK | 12.57 aA | 13.08 aA | 12.36 aA | 11.71 aC | 12.42 aAB | 12.50 aA |
LD | 11.87 aA | 13.21 aA | 13.17 aA | 12.94 aB | 12.70 aAB | 12.65 aA | |
MD | 13.42 aA | 13.43 aA | 13.58 aA | 14.07 aA | 14.09 aA | 13.94 aA | |
SD | 12.11 bcA | 12.62 bcA | 13.69 abA | 14.88 aA | 11.46 cB | 12.60 bcA | |
MJ | CK | 11.68 aA | 11.52 aA | 11.40 aC | 10.91 aA | 11.06 aA | 11.24 aA |
LD | 12.15 aA | 12.18 aA | 12.08 aBC | 12.68 aA | 12.64 aA | 10.55 bA | |
MD | 12.15 aA | 12.47 aA | 12.94 aB | 13.25 aA | 12.47 aA | 12.45 aA | |
SD | 11.89 bA | 12.4 bA | 14.75 aA | 11.35 bA | 8.70 cB | 10.90 bA | |
EX | CK | 15.26 aA | 14.60 aB | 14.85 aB | 15.01 aAB | 14.91 aAB | 15.09 aA |
LD | 15.15 aAB | 14.49 aB | 14.97 aB | 15.38 aA | 14.58 aB | 14.60 aA | |
MD | 14.96 bB | 15.00 bAB | 15.44 abB | 15.97 aA | 15.54 abA | 14.12 cA | |
SD | 15.23 bcA | 15.48 bA | 16.73 aA | 14.10 cdB | 12.38 eC | 13.79 dA |
物种 Species | 处理组 Treatment | 不同时间(d)的SOD活性 SOD activity at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 1 883.16 aA | 1 962.42 aA | 1 831.66 aB | 1 871.25 aB | 2 016.22 aB | 2 080.92 aA |
LD | 1 906.07 aA | 1 915.09 aA | 2 063.32 aB | 2 006.37 aB | 2 117.12 aB | 2 039.83 aA | |
MD | 1 988.54 aA | 2 360.35 aA | 2 006.21 aB | 2 131.87 aB | 2 576.58 aA | 2 152.90 aA | |
SD | 1 859.56 bA | 2 355.83 abA | 2 413.41 abA | 2 753.98 aA | 1 888.29 bB | 2 074.08 bA | |
HLM | CK | 551.09 cA | 627.10 bcB | 752.76 abcB | 842.38 abcC | 911.71 abB | 935.57 aA |
LD | 591.06 cA | 731.98 cAB | 1 251.40 abAB | 1 572.98 aB | 1 675.67 aA | 1 011.53 bcA | |
MD | 630.24 dA | 861.25 dAB | 1 755.43 bA | 2 212.87 aA | 1 655.59 bA | 1 262.47 cA | |
SD | 653.95 cA | 1 000.36 cA | 1 551.83 bA | 2 207.78 aA | 940.54 cB | 1 065.06 cA | |
MJ | CK | 1 161.28 aA | 1 308.31 aA | 1 453.14 aB | 1 416.00 aB | 1 486.49 aA | 1 399.11 aA |
LD | 1 008.48 cA | 1 205.15 bcA | 1 608.94 abB | 1 608.35 abB | 1 875.06 aA | 1 556.30 abA | |
MD | 998.85 dA | 1 187.62 cdA | 2 026.07 abAB | 2146.02 aA | 1 659.46 abcA | 1 553.73 bcA | |
SD | 1 079.27 cA | 1 297.11 bcA | 2 574.18 aA | 1 688.15 bB | 1 318.92 bcA | 1 413.60 bcA | |
EX | CK | 1 040.09 aA | 1 039.48 aA | 1 200.00 aB | 1 079.73 aB | 905.24 aB | 1 093.18 aA |
LD | 888.89 bA | 1 159.17 aA | 1 316.70 aAB | 1 145.06 aB | 1 214.60 aA | 1 106.82 abA | |
MD | 1 082.13 bA | 1 344.99 abA | 1 350.71 abAB | 1 732.32 aA | 1 033.89 bAB | 1 090.99 bA | |
SD | 1 001.38 bA | 1 456.82 aA | 1 698.33 aA | 1 083.49 bB | 630.66 cC | 895.75 bcA |
表6 干旱胁迫下4种红豆属植物的SOD活性
Table 6 SOD activity of four species of Ormosia under drought stress U·g-1
物种 Species | 处理组 Treatment | 不同时间(d)的SOD活性 SOD activity at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 1 883.16 aA | 1 962.42 aA | 1 831.66 aB | 1 871.25 aB | 2 016.22 aB | 2 080.92 aA |
LD | 1 906.07 aA | 1 915.09 aA | 2 063.32 aB | 2 006.37 aB | 2 117.12 aB | 2 039.83 aA | |
MD | 1 988.54 aA | 2 360.35 aA | 2 006.21 aB | 2 131.87 aB | 2 576.58 aA | 2 152.90 aA | |
SD | 1 859.56 bA | 2 355.83 abA | 2 413.41 abA | 2 753.98 aA | 1 888.29 bB | 2 074.08 bA | |
HLM | CK | 551.09 cA | 627.10 bcB | 752.76 abcB | 842.38 abcC | 911.71 abB | 935.57 aA |
LD | 591.06 cA | 731.98 cAB | 1 251.40 abAB | 1 572.98 aB | 1 675.67 aA | 1 011.53 bcA | |
MD | 630.24 dA | 861.25 dAB | 1 755.43 bA | 2 212.87 aA | 1 655.59 bA | 1 262.47 cA | |
SD | 653.95 cA | 1 000.36 cA | 1 551.83 bA | 2 207.78 aA | 940.54 cB | 1 065.06 cA | |
MJ | CK | 1 161.28 aA | 1 308.31 aA | 1 453.14 aB | 1 416.00 aB | 1 486.49 aA | 1 399.11 aA |
LD | 1 008.48 cA | 1 205.15 bcA | 1 608.94 abB | 1 608.35 abB | 1 875.06 aA | 1 556.30 abA | |
MD | 998.85 dA | 1 187.62 cdA | 2 026.07 abAB | 2146.02 aA | 1 659.46 abcA | 1 553.73 bcA | |
SD | 1 079.27 cA | 1 297.11 bcA | 2 574.18 aA | 1 688.15 bB | 1 318.92 bcA | 1 413.60 bcA | |
EX | CK | 1 040.09 aA | 1 039.48 aA | 1 200.00 aB | 1 079.73 aB | 905.24 aB | 1 093.18 aA |
LD | 888.89 bA | 1 159.17 aA | 1 316.70 aAB | 1 145.06 aB | 1 214.60 aA | 1 106.82 abA | |
MD | 1 082.13 bA | 1 344.99 abA | 1 350.71 abAB | 1 732.32 aA | 1 033.89 bAB | 1 090.99 bA | |
SD | 1 001.38 bA | 1 456.82 aA | 1 698.33 aA | 1 083.49 bB | 630.66 cC | 895.75 bcA |
指标 Index | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
MDA | -0.782 | -0.078 | 0.457 |
RWC | 0.785 | -0.334 | -0.385 |
REC | -0.914 | 0.142 | 0.220 |
SOD | -0.218 | -0.816 | -0.363 |
CHL | -0.086 | 0.698 | -0.596 |
SP | 0.311 | 0.818 | -0.103 |
Pn | 0.968 | -0.066 | 0.075 |
Gs | 0.949 | -0.034 | 0.264 |
Ci | 0.568 | 0.175 | 0.574 |
Tr | 0.908 | -0.049 | 0.125 |
贡献特征值Eigenvalue | 5.199 | 1.998 | 1.323 |
贡献率 | 51.989 | 19.979 | 13.232 |
Contribution rate/% | |||
累计贡献率 | 51.989 | 71.967 | 85.199 |
Cumulative contribution rate/% |
表7 各综合指标系数与各主成分贡献率
Table 7 Coefficient of each comprehensive index and contribution rate of each principal component
指标 Index | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
MDA | -0.782 | -0.078 | 0.457 |
RWC | 0.785 | -0.334 | -0.385 |
REC | -0.914 | 0.142 | 0.220 |
SOD | -0.218 | -0.816 | -0.363 |
CHL | -0.086 | 0.698 | -0.596 |
SP | 0.311 | 0.818 | -0.103 |
Pn | 0.968 | -0.066 | 0.075 |
Gs | 0.949 | -0.034 | 0.264 |
Ci | 0.568 | 0.175 | 0.574 |
Tr | 0.908 | -0.049 | 0.125 |
贡献特征值Eigenvalue | 5.199 | 1.998 | 1.323 |
贡献率 | 51.989 | 19.979 | 13.232 |
Contribution rate/% | |||
累计贡献率 | 51.989 | 71.967 | 85.199 |
Cumulative contribution rate/% |
名称Name | 处理Treatment | X1 | X2 | X3 | U(X1) | U(X2) | U(X3) | D | 排名Rank |
---|---|---|---|---|---|---|---|---|---|
RJ | CK | 2.229 | -2.045 | -0.421 | 0.673 | 0.046 | 0.307 | 0.469 | 7 |
LD | 0.401 | -2.013 | -0.709 | 0.456 | 0.054 | 0.230 | 0.326 | 13 | |
MD | -1.642 | -2.236 | -0.991 | 0.213 | 0.000 | 0.154 | 0.154 | 15 | |
SD | -3.440 | -1.448 | 0.958 | 0.000 | 0.189 | 0.677 | 0.150 | 16 | |
HLM | CK | 2.571 | 0.776 | 0.410 | 0.713 | 0.724 | 0.530 | 0.687 | 2 |
LD | 0.326 | 0.509 | -1.314 | 0.447 | 0.660 | 0.067 | 0.438 | 8 | |
MD | -1.297 | 1.315 | -1.565 | 0.254 | 0.853 | 0.000 | 0.355 | 10 | |
SD | -2.038 | 1.893 | 0.289 | 0.166 | 0.992 | 0.498 | 0.411 | 9 | |
MJ | CK | 2.853 | -0.896 | 1.512 | 0.747 | 0.322 | 0.826 | 0.659 | 3 |
LD | -0.294 | -0.807 | -0.549 | 0.373 | 0.343 | 0.273 | 0.351 | 11 | |
MD | -1.449 | -0.133 | 0.327 | 0.236 | 0.505 | 0.508 | 0.342 | 12 | |
SD | -3.220 | 0.052 | 2.160 | 0.026 | 0.550 | 1.000 | 0.300 | 14 | |
EX | CK | 4.988 | 0.526 | 0.916 | 1.000 | 0.664 | 0.666 | 0.869 | 1 |
LD | 1.148 | 1.091 | -0.958 | 0.544 | 0.800 | 0.163 | 0.545 | 4 | |
MD | -0.149 | 1.926 | -0.860 | 0.391 | 1.000 | 0.189 | 0.502 | 5 | |
SD | -0.987 | 1.489 | 0.798 | 0.291 | 0.895 | 0.634 | 0.486 | 6 | |
权重Weight | 0.610 | 0.234 | 0.155 |
表8 四种植物各处理的综合指标值、隶属值、D值与排名
Table 8 The comprehensive index value, subordinate value, D value and ranking of each treatment of four plants
名称Name | 处理Treatment | X1 | X2 | X3 | U(X1) | U(X2) | U(X3) | D | 排名Rank |
---|---|---|---|---|---|---|---|---|---|
RJ | CK | 2.229 | -2.045 | -0.421 | 0.673 | 0.046 | 0.307 | 0.469 | 7 |
LD | 0.401 | -2.013 | -0.709 | 0.456 | 0.054 | 0.230 | 0.326 | 13 | |
MD | -1.642 | -2.236 | -0.991 | 0.213 | 0.000 | 0.154 | 0.154 | 15 | |
SD | -3.440 | -1.448 | 0.958 | 0.000 | 0.189 | 0.677 | 0.150 | 16 | |
HLM | CK | 2.571 | 0.776 | 0.410 | 0.713 | 0.724 | 0.530 | 0.687 | 2 |
LD | 0.326 | 0.509 | -1.314 | 0.447 | 0.660 | 0.067 | 0.438 | 8 | |
MD | -1.297 | 1.315 | -1.565 | 0.254 | 0.853 | 0.000 | 0.355 | 10 | |
SD | -2.038 | 1.893 | 0.289 | 0.166 | 0.992 | 0.498 | 0.411 | 9 | |
MJ | CK | 2.853 | -0.896 | 1.512 | 0.747 | 0.322 | 0.826 | 0.659 | 3 |
LD | -0.294 | -0.807 | -0.549 | 0.373 | 0.343 | 0.273 | 0.351 | 11 | |
MD | -1.449 | -0.133 | 0.327 | 0.236 | 0.505 | 0.508 | 0.342 | 12 | |
SD | -3.220 | 0.052 | 2.160 | 0.026 | 0.550 | 1.000 | 0.300 | 14 | |
EX | CK | 4.988 | 0.526 | 0.916 | 1.000 | 0.664 | 0.666 | 0.869 | 1 |
LD | 1.148 | 1.091 | -0.958 | 0.544 | 0.800 | 0.163 | 0.545 | 4 | |
MD | -0.149 | 1.926 | -0.860 | 0.391 | 1.000 | 0.189 | 0.502 | 5 | |
SD | -0.987 | 1.489 | 0.798 | 0.291 | 0.895 | 0.634 | 0.486 | 6 | |
权重Weight | 0.610 | 0.234 | 0.155 |
[1] | ABDELGAWAD H, FARFAN-VIGNOLO E R, VOS D D, et al. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes[J]. Plant Science, 2015, 231: 1-10. |
[2] | VURUKONDA S S, VARDHARAJULA S, SHRIVASTAVA M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiological Research, 2016, 184: 13-24. |
[3] | 熊仕发, 吴立文, 陈益存, 等. 不同种源白栎幼苗叶片对干旱胁迫的响应及抗旱性评价[J]. 生态学杂志, 2020, 39(12): 3924-3933. |
XIONG S F, WU L W, CHEN Y C, et al. Response of leaf of Quercus fabri seedlings from different provenances to drought stress and drought resistance evaluation[J]. Chinese Journal of Ecology, 2020, 39(12): 3924-3933. (in Chinese with English abstract) | |
[4] | 刘涛, 陈海荣, 汪成忠, 等. 干旱和盐胁迫下百子莲的抗逆生理研究[J]. 浙江农业学报, 2022, 34(12): 2669-2681. |
LIU T, CHEN H R, WANG C Z, et al. Physiology of stress resistance of Agapanthus praecox under drought and salt stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2669-2681. (in Chinese with English abstract) | |
[5] | 郭丽, 梁俊林, 赵永辉, 等. 四川省3种乡土树种幼苗对干旱胁迫的光合生理响应[J]. 四川农业大学学报, 2017, 35(4): 516-522. |
GUO L, LIANG J L, ZHAO Y H, et al. Photosynthetic physiological response to drought stress of three native tree species seedlings in Sichuan[J]. Journal of Sichuan Agricultural University, 2017, 35(4): 516-522. (in Chinese with English abstract) | |
[6] | 薛鑫, 张芊, 吴金霞. 植物体内活性氧的研究及其在植物抗逆方面的应用[J]. 生物技术通报, 2013(10): 6-11. |
XUE X, ZHANG Q, WU J X. Research of reactive oxygen species in plants and its application on stress tolerance[J]. Biotechnology Bulletin, 2013(10): 6-11. (in Chinese with English abstract) | |
[7] | BLUM A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant, Cell & Environment, 2017, 40(1): 4-10. |
[8] | 芮雯奕, 田云录, 张纪林, 等. 干旱胁迫对6个树种叶片光合特性的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(1): 68-72. |
RUI W Y, TIAN Y L, ZHANG J L, et al. Effect of drought stress on photosynthetic characteristic of six tree species[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2012, 36(1): 68-72. (in Chinese with English abstract) | |
[9] | SIO-SE MARDEH A, AHMADI A, POUSTINI K, et al. Evaluation of drought resistance indices under various environmental conditions[J]. Field Crops Research, 2006, 98(2/3): 222-229. |
[10] | 王小东, 刘鹏, 刘美娟, 等. 中国红豆属植物生物与生态学特征研究现状[J]. 植物科学学报, 2018, 36(3): 440-451. |
WANG X D, LIU P, LIU M J, et al. Biology and ecology research status of Ormosia species in China[J]. Plant Science Journal, 2018, 36(3): 440-451. (in Chinese with English abstract) | |
[11] | 孟宪帅, 韦小丽. 不同水分环境对花榈木幼苗生理生化的影响[J]. 山地农业生物学报, 2011, 30(3): 215-220. |
MENG X S, WEI X L. Effects of water conditions on the physiological and biochemical characters of young Ormosia henryi seedlings[J]. Journal of Mountain Agriculture and Biology, 2011, 30(3): 215-220. (in Chinese with English abstract) | |
[12] | 葛萌, 安常蓉, 韦小丽. 光照强度和水分对花榈木幼苗结瘤及生理特性的影响[J]. 中南林业科技大学学报, 2022, 42(2): 27-35. |
GE M, AN C R, WEI X L. Influence of light intensity and water content on nodulation and physiological characteristics of Ormosia henryi seedlings[J]. Journal of Central South University of Forestry & Technology, 2022, 42(2): 27-35. (in Chinese with English abstract) | |
[13] | 蔡永萍. 植物生理学实验指导[M]. 北京: 中国农业大学出版社, 2014. |
[14] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[15] | 徐新娟, 李勇超. 2种植物相对电导率测定方法比较[J]. 江苏农业科学, 2014, 42(7): 311-312. |
XU X J, LI Y C. Comparison of two methods for measuring relative conductivity of plants[J]. Jiangsu Agricultural Sciences, 2014, 42(7): 311-312. (in Chinese) | |
[16] | 郑钢, 顾翠花, 王杰, 等. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650-1659. |
ZHENG G, GU C H, WANG J, et al. Effects of drought stress on photosynthetic characteristics and several physiological and biochemical indexes of Heimia myrtifolia Cham. et Schlechtend[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1650-1659. (in Chinese with English abstract) | |
[17] | 蔺豆豆, 赵桂琴, 琚泽亮, 等. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121. |
LIN D D, ZHAO G Q, JU Z L, et al. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage[J]. Acta Prataculturae Sinica, 2021, 30(11): 108-121. (in Chinese with English abstract) | |
[18] | 王竞红, 陈鹏, 陈艾, 等. 3种观赏草苗期对干旱胁迫的响应及抗旱性评价[J]. 草业科学, 2019, 36(5): 1266-1274. |
WANG J H, CHEN P, CHEN A, et al. Effects of drought stress on physiological and growth characteristics of the seedlings of three ornamental grasses[J]. Pratacultural Science, 2019, 36(5): 1266-1274. (in Chinese with English abstract) | |
[19] | 李欢, 陈雷, 王晨静, 等. 4个观赏甘薯品种的抗旱性比较[J]. 浙江农业学报, 2015, 27(11): 1945-1952. |
LI H, CHEN L, WANG C J, et al. Evaluation of the drought tolerance of four ornamental sweetpotato cultivars[J]. Acta Agriculturae Zhejiangensis, 2015, 27(11): 1945-1952. (in Chinese with English abstract) | |
[20] | 倪川, 王智苑, 郑雯, 等. 干旱胁迫对马银花形态和生理指标的影响[J]. 福建林业科技, 2021, 48(2): 19-24. |
NI C, WANG Z Y, ZHENG W, et al. The influence of drought stress on Rhododendron ovatum on morphology and physiological indexes[J]. Journal of Fujian Forestry Science and Technology, 2021, 48(2): 19-24. (in Chinese with English abstract) | |
[21] | 冯芳芳, 魏清江, 苏受婷, 等. 干旱胁迫对2种柑橘幼苗生长形态、渗透调节物质含量和抗氧化酶活性的影响[J]. 浙江农业学报, 2017, 29(9): 1515-1523. |
FENG F F, WEI Q J, SU S T, et al. Effect of drought on growth morphology, osmolyte content and antioxidant enzyme activity of two citrus seedlings[J]. Acta Agriculturae Zhejiangensis, 2017, 29(9): 1515-1523. (in Chinese with English abstract) | |
[22] | 赵英, 吴敏, 邓平, 等. 干旱与复水对2种蟛蜞菊生长及生理生化特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(4): 113-122. |
ZHAO Y, WU M, DENG P, et al. Effects of drought and rewatering on growth and physiology characteristics of Wedelia chinensis and Wedelia trilobata[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(4): 113-122. (in Chinese with English abstract) | |
[23] | 赵珍妮, 童再康, 赖江. 4种高山杜鹃容器苗对持续干旱胁迫和复水的生理响应研究[J]. 江苏林业科技, 2021, 48(5): 13-19. |
ZHAO Z N, TONG Z K, LAI J. Physiological response of four azalea seedlings after drought stress and rewatering[J]. Journal of Jiangsu Forestry Science & Technology, 2021, 48(5): 13-19. (in Chinese with English abstract) | |
[24] | 赵洁, 郎莹, 吴畏, 等. 土壤极端干旱对金银花光合生理生化特性的影响[J]. 西北植物学报, 2017, 37(12): 2444-2451. |
ZHAO J, LANG Y, WU W, et al. Effects of soil extreme drought on photo-physiological and photo-biochemical characteristics of Lonicera japonica thunb[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(12): 2444-2451. (in Chinese with English abstract) | |
[25] | 毛永成, 刘璐, 王小德. 干旱胁迫对3种槭树科植物生理特性的影响[J]. 浙江农林大学学报, 2016, 33(1): 60-64. |
MAO Y C, LIU L, WANG X D. Effect of drought stress on physiological characteristics of three plants of Aceraceae[J]. Journal of Zhejiang A & F University, 2016, 33(1): 60-64. (in Chinese with English abstract) | |
[26] | 刘洋, 王娟, 白婷玉, 等. 4种园林植物幼苗对干旱胁迫的生长和生理响应[J]. 干旱区资源与环境, 2021, 35(4): 173-179. |
LIU Y, WANG J, BAI T Y, et al. Growth and physiological responses of seedlings of four garden plants to drought stress[J]. Journal of Arid Land Resources and Environment, 2021, 35(4): 173-179. (in Chinese with English abstract) | |
[27] | 王德信, 杨晓莹. 玉米幼苗对干旱胁迫的生理响应[J]. 贵州农业科学, 2018, 46(4): 26-29. |
WANG D X, YANG X Y. Physiological response of maize seedlings under drought stress[J]. Guizhou Agricultural Sciences, 2018, 46(4): 26-29. (in Chinese with English abstract) | |
[28] | 刘球, 李志辉, 吴际友, 等. 红椿幼苗对干旱胁迫及复水生理响应的典型相关分析[J]. 西北农林科技大学学报(自然科学版), 2015, 43(10): 35-44. |
LIU Q, LI Z H, WU J Y, et al. Canonical correlation analysis on leaf physiological responses of Toona cilliate Roem.seedlings to drought stress and rewatering[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(10): 35-44. (in Chinese with English abstract) | |
[29] | APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373-399. |
[30] | 许令明, 曹昀, 汤思文, 等. 干旱胁迫及复水对花叶芦竹生理特性的影响[J]. 中国水土保持科学, 2020, 18(3): 59-66. |
XU L M, CAO Y, TANG S W, et al. Effects of drought stress and rewatering on physiological characteristics of Arundo donax var. versicolor[J]. Science of Soil and Water Conservation, 2020, 18(3): 59-66. (in Chinese with English abstract) | |
[31] | NAYYAR H, SINGH S, KAUR S, et al. Differential sensitivity of Macrocarpa and microcarpa types of chickpea (Cicer arietinum L.) to water stress: association of contrasting stress response with oxidative injury[J]. Journal of Integrative Plant Biology, 2006, 48(11): 1318-1329. |
[32] | 孙娅楠, 赵杨, 赵渊祥, 等. 棕榈幼苗光合和叶绿素荧光对干旱胁迫及复水的响应[J]. 中南林业科技大学学报, 2021, 41(9): 45-52. |
SUN Y N, ZHAO Y, ZHAO Y X, et al. Effects of drought and rewatering on photosynthetic characteristics and chlorophyll fluorescence of Trachycarpus fortunei seedlings[J]. Journal of Central South University of Forestry & Technology, 2021, 41(9): 45-52. (in Chinese with English abstract) | |
[33] | 任迎虹, 尹福强, 刘松青, 等. 不同桑品种在干旱胁迫下叶绿素、水分饱和亏及丙二醛的变化规律研究[J]. 西南农业学报, 2016, 29(11): 2583-2587. |
REN Y H, YIN F Q, LIU S Q, et al. Effects of drought stress on mulberry varieties of chlorophyll, water saturation deficit and malondialdehyde[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(11): 2583-2587. (in Chinese with English abstract) | |
[34] | WANG N, CHEN H, WANG L. Physiological acclimation of Dicranostigma henanensis to soil drought stress and rewatering[J]. Acta Societatis Botanicorum Poloniae, 2021, 90: 1-11. |
[35] | 杨肖华, 郭圣茂, 冯美玲, 等. 干旱胁迫及复水对射干光合作用和叶绿素荧光特性的影响[J]. 江西农业大学学报, 2018, 40(3): 525-532. |
YANG X H, GUO S M, FENG M L, et al. Effects of drought stress and re-watering on the characteristics of photosynthesis and chlorophyll fluorescence of Blackberry lily[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(3): 525-532. (in Chinese with English abstract) | |
[36] | 李伟成, 田新立, 盛海燕, 等. 干旱胁迫和复水对浙江楠光合与根系生长的影响[J]. 生态科学, 2019, 38(3): 182-188. |
LI W C, TIAN X L, SHENG H Y, et al. Effects of drought stress and re-watering on photosynthesis and root growth of Phoebe chekiangensis[J]. Ecological Science, 2019, 38(3): 182-188. (in Chinese with English abstract) | |
[37] | 胡莹冰, 胡筱璇, 张旻桓, 等. 干旱胁迫对3种蚊母树植物的生长及生理影响[J/OL]. 分子植物育种, (2022-11-18)[2023-01-31]. https://kns.cnki.net/kcms/detail/46.1068.s.20221117.1104.004.html. |
HU Y B, HU X X, ZHANG M H, et al. Effects of drought stress on the growth and physiology of three Distylium plants[J/OL]. Molecular Plant Breeding, (2022-11-18) [2023-01-31]. https://kns.cnki.net/kcms/detail/46.1068.s.20221117.1104.004.html. (in Chinese with English abstract) | |
[38] | 李海霞, 米银法, 陈双臣. 干旱胁迫下6种观赏牡丹生理响应及耐旱性评价[J]. 江苏农业科学, 2022, 50(7): 131-139. |
LI H X, MI Y F, CHEN S C. Physiological response and drought tolerance evaluation of six ornamental peony species under drought stress[J]. Jiangsu Agricultural Sciences, 2022, 50(7): 131-139. (in Chinese) | |
[39] | 任倩倩, 孙纪霞, 张德顺, 等. 干旱胁迫下不同绣球品种生理响应与抗旱性评价[J]. 浙江农业学报, 2021, 33(10): 1852-1860. |
REN Q Q, SUN J X, ZHANG D S, et al. Physiological response and drought resistance evaluation of different Hydrangea varieties under drought stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1852-1860. (in Chinese with English abstract) | |
[40] | 张军. 小麦骨干亲本小偃22抗旱耐寒适应性分析及对其衍生品种的遗传贡献[D]. 杨凌: 西北农林科技大学, 2014. |
ZHANG J. Analysis on drought and cold resistance of main parent Xiaoyan22 and its genetic contribution to derived lines[D]. Yangling: Northwest A & F University, 2014. (in Chinese with English abstract) | |
[41] | 贾民隆, 张晓纲, 梁峥, 等. 20个不同品系萱草的耐旱性筛选与评价[J]. 种子, 2021, 40(6): 90-95. |
JIA M L, ZHANG X G, LIANG Z, et al. Screening and evaluation of drought tolerance of 20 different Hemerocallis lines[J]. Seed, 2021, 40(6): 90-95. (in Chinese with English abstract) |
[1] | 汪颖, 王尖, 冯子珊, 汪宝根, 吴新义, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴晓花. 瓠瓜果实品质性状因子分析和综合评价[J]. 浙江农业学报, 2024, 36(2): 334-343. |
[2] | 曾小春, 李随成, 史官清, 邢泽宇. “双碳”目标背景下基于熵权TOPSIS法的区域农业高质量发展水平综合评价——基于变化速度特征视角[J]. 浙江农业学报, 2023, 35(4): 962-972. |
[3] | 林先玉, 李紫倩, 柏松, 罗军, 屈燕. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析[J]. 浙江农业学报, 2023, 35(11): 2611-2620. |
[4] | 魏茜雅, 梁腊梅, 林欣琪, 秦中维, 李映志. 褪黑素种子引发处理对干旱胁迫下朝天椒生长与生理特性的影响[J]. 浙江农业学报, 2023, 35(10): 2378-2388. |
[5] | 刘艺平, 张一琪, 苏少文, 刘红利, 贺丹, 孔德政. 不同品种荷花耐盐碱性评价及鉴定指标筛选[J]. 浙江农业学报, 2023, 35(1): 103-111. |
[6] | 杨海龙, 王晖, 雷锦超, 蔡金洋. 浙江省早籼稻种质资源的表型多样性分析与评价[J]. 浙江农业学报, 2022, 34(8): 1571-1581. |
[7] | 杨蕾, 洪林, 刘兆俊, 杨海健, 王武. 六个金柑品种果实品质与营养综合评价[J]. 浙江农业学报, 2022, 34(3): 534-547. |
[8] | 莫言玲, 张文静, 罗亚兰, 曾静, 陈静静, 刘义华. 宽柄芥种质资源农艺性状与营养品质性状鉴定与评价[J]. 浙江农业学报, 2022, 34(2): 317-328. |
[9] | 李欣燕, 王方玲, 张明月, 邵志晖, 王俊, 阳苇丽, 赵铭钦. 干旱胁迫下保水剂对雪茄烟叶碳氮代谢和中性香气物质含量的影响[J]. 浙江农业学报, 2022, 34(12): 2610-2621. |
[10] | 刘涛, 陈海荣, 汪成忠, 任丽, 张荻. 干旱和盐胁迫下百子莲的抗逆生理研究[J]. 浙江农业学报, 2022, 34(12): 2669-2681. |
[11] | 冯彩军, 宋瑞娇, 宋凌宇, 张松, 齐军仓. 2,4-表芸苔素内酯浸种对干旱胁迫下大麦种子萌发期淀粉代谢的影响[J]. 浙江农业学报, 2022, 34(10): 2112-2120. |
[12] | 郑钢, 顾翠花, 王杰, 林琳. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650-1659. |
[13] | 贺鹏, 张涛, 宋海云, 郑树芳, 覃振师, 谭秋锦, 黄锡云, 汤秀华, 许鹏, 陈海生, 王文林. 适于开口加工澳洲坚果HAES695最佳采收期的确定[J]. 浙江农业学报, 2021, 33(8): 1489-1496. |
[14] | 张发明, 丁峰, 王坪. 中国粮食主产区农业高质量发展水平评价与时空演变[J]. 浙江农业学报, 2021, 33(1): 150-160. |
[15] | 牛素贞, 安红卫, 宋勤飞, 陈正武. 贵州野生茶树立地土壤养分状况分析及综合评价[J]. 浙江农业学报, 2020, 32(6): 1039-1048. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||