[1] |
刘涛, 陈海荣, 汪成忠, 等. 干旱和盐胁迫下百子莲的抗逆生理研究[J]. 浙江农业学报, 2022, 34(12): 2669-2681.
|
|
LIU T, CHEN H R, WANG C Z, et al. Physiology of stress resistance of Agapanthus praecox under drought and salt stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2669-2681. (in Chinese with English abstract)
|
[2] |
孟玉平, 曹秋芬, 郭慧娜, 等. NaCl和PEG6000胁迫下枣组培苗中ZjAPX的表达[J]. 山西农业科学, 2013, 41(2): 107-109, 125.
|
|
MENG Y P, CAO Q F, GUO H N, et al. Expression of ZjAPX in vitro jujube plant tissue culture by salt and drought stress[J]. Journal of Shanxi Agricultural Sciences, 2013, 41(2): 107-109, 125. (in Chinese with English abstract)
|
[3] |
韩春苗. 铜钱树砧抗枣疯病相关miRNAs鉴定及其功能研究[D]. 合肥: 安徽农业大学, 2019.
|
|
HAN C M. Identification functional study of jujube witche’s broom resistance acquired from Chinese Paliurus rootstock relative microRNAs[D]. Hefei: Anhui Agricultural University, 2019. (in Chinese with English abstract)
|
[4] |
王晓丽. CaCl2对NaCl胁迫下酸枣幼苗氮代谢及microRNA表达的影响[D]. 石河子: 石河子大学, 2019.
|
|
WANG X L. Effect of CaCl2 on the nitrogen metabolism and the expression of microRNA in sour jujube seedlings under NaCl stress[D]. Shihezi: Shihezi University, 2019. (in Chinese with English abstract)
|
[5] |
韩雪杨, 刘宁, 温鑫, 等. 植物发育相关miR828基因家族靶基因预测及生物信息学分析[J]. 浙江农业学报, 2023, 35(3): 515-522.
|
|
HAN X Y, LIU N, WEN X, et al. Prediction and bioinformatics analysis of target genes of plant development-related miR828 gene family[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 515-522. (in Chinese with English abstract)
|
[6] |
MANASSERO N G, VIOLA I L, WELCHEN E, et al. TCP transcription factors: architectures of plant form[J]. Biomolecular Concepts, 2013, 4(2): 111-127.
|
[7] |
LI S T. The Arabidopsis thaliana TCP transcription factors: a broadening horizon beyond development[J]. Plant Signaling & Behavior, 2015, 10(7): e1044192.
|
[8] |
GONZALEZ D H. Plant transcription factors: evolutionary, structural, and functional aspects[M]. Amsterdam: Academic Press/Elsevier, 2016.
|
[9] |
李艳鹏, 魏娜, 翟庆妍, 等. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析[J]. 草业学报, 2023, 32(4): 101-111.
|
|
LI Y P, WEI N, ZHAI Q Y, et al. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress[J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111. (in Chinese with English abstract)
|
[10] |
SUN X D, WANG C D, XIANG N, et al. Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor[J]. Plant Biotechnology Journal, 2017, 15(10): 1284-1294.
|
[11] |
王利彬. 大豆苗期干旱和高温胁迫应答机制研究及关键转录因子的筛选[D]. 哈尔滨: 东北农业大学, 2018.
|
|
WANG L B. The study on response mechanism and screening of key factors under drought and high temperature stresses in soybean (Glycine max(L.)Merrill)[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese with English abstract)
|
[12] |
陈国梁, 祖欢欢, 薛宝平, 等. 枣TCP转录因子鉴定与生物信息学分析[J]. 分子植物育种, 2019, 17(9): 2821-2827.
|
|
CHEN G L, ZU H H, XUE B P, et al. Identification and bioinformatics analysis of the TCP transcription factor family in Ziziphus jujuba[J]. Molecular Plant Breeding, 2019, 17(9): 2821-2827. (in Chinese with English abstract)
|
[13] |
ZHANG L H, LI Y, YANG J W, et al. Genome-wide identification of drought-responsive microRNAs and their target genes in Chinese jujube by deep sequencing[J]. Genes & Genomics, 2023, 45(2): 231-245.
|
[14] |
CHOU K C, SHEN H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6): e11335.
|
[15] |
SUN G L, STEWART C N JR, XIAO P, et al. microRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress[J]. PLoS One, 2012, 7(3): e32017.
|
[16] |
SUNKAR R, ZHU J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. The Plant Cell, 2004, 16(8): 2001-2019.
|
[17] |
NAG A, KING S, JACK T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22534-22539.
|
[18] |
SCHOMMER C, PALATNIK J F, AGGARWAL P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biology, 2008, 6(9): e230.
|
[19] |
ZHOU M, LI D Y, LI Z G, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiology, 2013, 161(3): 1375-1391.
|
[20] |
PALATNIK J F, ALLEN E, WU X L, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263.
|
[21] |
WANG B, SUN Y F, SONG N, et al. microRNAs involving in cold, wounding and salt stresses in Triticum aestivum L[J]. Plant Physiology and Biochemistry, 2014, 80: 90-96.
|
[22] |
HIVRALE V, ZHENG Y, PULI C O R, et al. Characterization of drought- and heat-responsive microRNAs in switchgrass[J]. Plant Science, 2016, 242: 214-223.
|
[23] |
ALLEN R S, LI J Y, STAHLE M I, et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(41): 16371-16376.
|
[24] |
DOERNER P. Phosphate starvation signaling: a threesome controls systemic Pi homeostasis[J]. Current Opinion in Plant Biology, 2008, 11(5): 536-540.
|
[25] |
VANNINI C, LOCATELLI F, BRACALE M, et al. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J]. The Plant Journal, 2004, 37(1): 115-127.
|
[26] |
CHIOU T J. The role of microRNAs in sensing nutrient stress[J]. Plant, Cell & Environment, 2007, 30(3): 323-332.
|
[27] |
CHEN G L, ZU H H, XUE B P, et al. Identification and bioinformatics analysis of the TCP transcription factor family in Ziziphus jujuba[J]. Molecular Plant Breeding, 2019, 17(9): 2821-2827.
|
[28] |
ALMEIDA D M, GREGORIO G B, OLIVEIRA M M, et al. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype[J]. Plant Molecular Biology, 2017, 93(1): 61-77.
|
[29] |
CAO Z H, ZHANG S Z, WANG R K, et al. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants[J]. PLoS One, 2013, 8(7): e69955.
|
[30] |
SEO P J, XIANG F N, QIAO M, et al. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis[J]. Plant Physiology, 2009, 151(1): 275-289.
|