浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 544-558.DOI: 10.3969/j.issn.1004-1524.20230443
刘慧春(), 许雯婷, 周江华, 张加强, 史小华, 朱开元()
收稿日期:
2023-04-10
出版日期:
2024-03-25
发布日期:
2024-04-09
作者简介:
刘慧春(1979—),女,湖北武汉人,博士,副研究员,主要从事江南牡丹资源收集、遗传育种及抗逆性机理研究。E-mail:lhuichun@163.com
通讯作者:
*朱开元,E-mail: 基金资助:
LIU Huichun(), XU Wenting, ZHOU Jianghua, ZHANG Jiaqiang, SHI Xiaohua, ZHU Kaiyuan()
Received:
2023-04-10
Online:
2024-03-25
Published:
2024-04-09
摘要:
涝害胁迫是限制牡丹种植、生长和高产的最主要的非生物胁迫之一。为了阐明牡丹在涝害胁迫下的作用机制,研究进行了转录组学分析,并开发了SSR标记。利用高通量测序对6个由涝害处理的幼苗和对照的mRNA构建的cDNA文库进行测序。通过组装总共获得73 925个基因,创建了牡丹的初始参考转录组数据库。其中780个被鉴定为涝害早期反应基因,其中155个基因上调,625个基因下调。功能分析表明,参与转录因子信号调节、DNA复制、核糖体和嘧啶代谢的基因表达的改变可能在牡丹对涝害胁迫的反应中发挥重要作用。基于这些高通量转录组测序数据,挖掘出5 204个SSR标记。在这些标记中,二核苷酸重复占58.13%,三核苷酸重复占27.11%,四核苷酸重复占7.24%。在牡丹耐涝性状靶基因相关的功能注释基因中,发现了110对SSR标记引物,筛选出45对引物,其中12对能扩增出清晰的条带,多态性SSR标记引物占引物总数的26.67%。研究结果不仅有助于阐明牡丹的涝害反应机制,同时也为耐涝牡丹品种的分子标记辅助选择育种提供了宝贵的基因组资源和科学依据。
中图分类号:
刘慧春, 许雯婷, 周江华, 张加强, 史小华, 朱开元. 基于牡丹涝害胁迫的转录组分析及SSR引物开发[J]. 浙江农业学报, 2024, 36(3): 544-558.
LIU Huichun, XU Wenting, ZHOU Jianghua, ZHANG Jiaqiang, SHI Xiaohua, ZHU Kaiyuan. Transcriptomic analysis and simple sequence repeat markers development of Paeonia suffruticosa L. in responses to waterlogging stress[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 544-558.
图2 unigene BLASTX比对结果的物种分布图 A,葡萄;B,核桃;C,可可;D,土瓶草; E,莲藕;F,酸枣;G,梅花;H,麻疯树;I,柑橘; J,木豆。
Fig.2 Species distribution of unigene BLASTX results A, Vitis vinifera; B, Juglans regia; C, Theobroma cacao; D, Cephalotus follicularis; E, Nelumbo nucifera; F, Ziziphus jujuba; G, Prunus mume; H, Jatropha curcas; I, Citrus sinensis; J, Cajanus cajan.
图3 涝害胁迫下牡丹差异表达基因的GO分类图 a-q,生物过程(a,再生产;b,免疫系统过程;c,代谢过程;d,细胞过程;e,再生过程;f,生物黏附;g,信号传导;h,多细胞生物过程;i,发展过程;j,增长;k,单体过程;l,韵律过程;m,对刺激的反应;n,本地化;o,多生物过程;p,生物调控;q,细胞成分组织或生物发生); r-z,A-F,细胞成分 (r,细胞外区域;s,细胞;t,膜;u,病毒粒子;v,细胞连接;w,细胞外基质;x,膜封闭管腔;y,大分子复合物;z,细胞器;A,细胞外基质成分;B,细胞器部分;C,病毒粒子部分;D,膜部分;E,细胞部分;F,超分子纤维); G-Q,分子功能 (G,转录因子活性、蛋白质结合;H,核酸结合转录因子活性;I,催化活性;J,信号转换器活动;K,结构分子活性;L,转运蛋白活性;M,绑定;N,电子载体活性;O,抗氧化活性;P,分子转导活性;Q,分子功能调节剂)。
Fig.3 GO classification map of differentially expressed genes during waterlogging stress in P. suffruticosa a-q, Biological process (a, reproduction; b, immune system process; c, metabolic process; d, cellular process; e, reproductive process; f, biological adhesion; g, signaling; h, multicellular organismal process; I, developmental process; j, growth; k, single-organism process; l, rhythmic process; m, response to stimulus; n, localization; o, multi-organism process; p, biological regulation; q, cellular component organization or biogenesis) ; r-z, A-F, Cellular component (r, extracellular region; s, cell; t, membrane; u, virion; v, cell junction; w, extracellular matrix; x, membrane-enclosed lumen; y, macromolecular complex; z, organelle; A, extracellular matrix component; B, organelle part; C, virion part; D, membrane part; E, cell part; F, supramolecular fiber) ; G-Q, Molecular function (G, transcription factor activity, protein binding; H, nucleic acid binding transcription factor activity; I, catalytic activity; J, signal transducer activity; K, structural molecule activity; L, transporter activity; M, binding; N, electron carrier activity; O, antioxidant activity; P, molecular transducer activity; Q, molecular function regulator).
图4 涝害胁迫下牡丹差异表达基因的KOG分类和分析 A,RNA加工和修饰;B,染色质结构和动力学;C,能源产生与转换;D,细胞周期控制、细胞分裂、染色体分割;E,氨基酸运输和代谢;F,核苷酸运输和代谢;G,碳水化合物运输和代谢;H,辅酶运输和代谢;I,脂质运输和代谢;J,翻译、核糖体结构与生物发生;K,转录;L,复制、重组和修复;M,细胞壁/膜/包膜生物发生;N,细胞运动性;O,翻译后修饰、蛋白质转运蛋白、伴侣蛋白;P,无机离子运输和代谢;Q,次生代谢产物的生物合成、运输和分解代谢;R,仅通用功能预测;S,功能未知;T,信号转导机制;U,细胞内运输、分泌和囊泡运输;V,防御机制;W,细胞外结构;Y,核结构;Z,细胞骨架。
Fig.4 KOG classification and analysis of differentially expressed genes during waterlogging stress in P. suffruticosa A, RNA processing and modification; B, Chromatin structure and dynamics; C, Energy production and conversion; D, Cell cycle control, cell division, chromosome partitioning; E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; G, Carbohydrate transport and metabolism; H, Coenzyme transport and metabolism; I, Lipid transport and metabolism; J, Translation, ribosomal structure and biogenesis; K, Transcription; L, Replication, recombination and repair; M, Cell wall/membrane/envelope biogenesis; N, Cell motility; O, Posttranslational modification, protein turnover, chaperones; P, Inorganic ion transport and metabolism; Q, Secondary metabolites biosynthesis, transport and catabolism; R, General function prediction only; S, Function unknown; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and vesicular transport; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, Cytoskeletion.
功能组 Functional groups | 富集P值 Enriched P value | 基因数量 Gene number |
---|---|---|
生物进程Biological processes | ||
核小体组织Nucleosome organization | 5.73×10-57 | 49 |
蛋白质-DNA复合物亚单位组织Protein-DNA complex subunit organization | 1.48×10-56 | 49 |
染色体组织Chromosome organization | 3.60×10-50 | 55 |
蛋白质复合物亚单位组织Protein complex subunit organization | 2.69×10-49 | 54 |
染色质组织Chromatin organization | 4.54×10-48 | 51 |
大分子复合物亚单位组织Macromolecular complex subunit organization | 1.94×10-44 | 56 |
细胞器组织Organelle organization | 5.84×10-44 | 60 |
单元元件组织Cellular component organization | 1.77×10-41 | 68 |
细胞成分组织或生物发生Cellular component organization or biogenesis | 2.53×10-39 | 68 |
二价金属离子输送Divalent metal ion transport | 1.20×10-9 | 13 |
分子功能Molecular functions | ||
蛋白质二聚化活性Protein dimerization activity | 8.09×10-51 | 49 |
蛋白质结合Protein binding | 2.16×10-36 | 63 |
核酸结合Nucleic acid binding | 1.09×10-32 | 58 |
杂环化合物结合Heterocyclic compound binding | 7.96×10-14 | 83 |
结合Binding | 3.10×10-13 | 112 |
有机环状化合物结合Organic cyclic compound binding | 4.95×10-13 | 83 |
微管蛋白结合Tubulin binding | 2.54×10-4 | 6 |
DNA聚合酶活性DNA polymerase activity | 3.59×10-4 | 4 |
运动活性Motor activity | 8.52×10-4 | 5 |
细胞骨架蛋白结合Cytoskeletal protein binding | 1.45×10-3 | 6 |
细胞成分Cellular components | ||
无膜细胞器Non-membrane-bounded organelle | 3.68×10-35 | 69 |
细胞内无膜细胞器Intracellular non-membrane-bounded organelle | 3.68×10-35 | 69 |
膜封闭官腔Membrane-enclosed lumen | 8.35×10-20 | 35 |
核腔Nuclear lumen | 8.35×10-20 | 35 |
细胞器腔Organelle lumen | 8.35×10-20 | 35 |
细胞器内腔Intracellular organelle lumen | 8.35×10-20 | 35 |
核部件Nuclear part | 9.44×10-19 | 35 |
核Nucleus | 2.22×10-18 | 35 |
细胞内细胞器Intracellular organelle | 5.98×10-14 | 95 |
细胞器Organelle | 6.90×10-14 | 95 |
表1 GO类别下最富集的30个功能组
Table 1 Top 30 most enriched functional groups under GO categories
功能组 Functional groups | 富集P值 Enriched P value | 基因数量 Gene number |
---|---|---|
生物进程Biological processes | ||
核小体组织Nucleosome organization | 5.73×10-57 | 49 |
蛋白质-DNA复合物亚单位组织Protein-DNA complex subunit organization | 1.48×10-56 | 49 |
染色体组织Chromosome organization | 3.60×10-50 | 55 |
蛋白质复合物亚单位组织Protein complex subunit organization | 2.69×10-49 | 54 |
染色质组织Chromatin organization | 4.54×10-48 | 51 |
大分子复合物亚单位组织Macromolecular complex subunit organization | 1.94×10-44 | 56 |
细胞器组织Organelle organization | 5.84×10-44 | 60 |
单元元件组织Cellular component organization | 1.77×10-41 | 68 |
细胞成分组织或生物发生Cellular component organization or biogenesis | 2.53×10-39 | 68 |
二价金属离子输送Divalent metal ion transport | 1.20×10-9 | 13 |
分子功能Molecular functions | ||
蛋白质二聚化活性Protein dimerization activity | 8.09×10-51 | 49 |
蛋白质结合Protein binding | 2.16×10-36 | 63 |
核酸结合Nucleic acid binding | 1.09×10-32 | 58 |
杂环化合物结合Heterocyclic compound binding | 7.96×10-14 | 83 |
结合Binding | 3.10×10-13 | 112 |
有机环状化合物结合Organic cyclic compound binding | 4.95×10-13 | 83 |
微管蛋白结合Tubulin binding | 2.54×10-4 | 6 |
DNA聚合酶活性DNA polymerase activity | 3.59×10-4 | 4 |
运动活性Motor activity | 8.52×10-4 | 5 |
细胞骨架蛋白结合Cytoskeletal protein binding | 1.45×10-3 | 6 |
细胞成分Cellular components | ||
无膜细胞器Non-membrane-bounded organelle | 3.68×10-35 | 69 |
细胞内无膜细胞器Intracellular non-membrane-bounded organelle | 3.68×10-35 | 69 |
膜封闭官腔Membrane-enclosed lumen | 8.35×10-20 | 35 |
核腔Nuclear lumen | 8.35×10-20 | 35 |
细胞器腔Organelle lumen | 8.35×10-20 | 35 |
细胞器内腔Intracellular organelle lumen | 8.35×10-20 | 35 |
核部件Nuclear part | 9.44×10-19 | 35 |
核Nucleus | 2.22×10-18 | 35 |
细胞内细胞器Intracellular organelle | 5.98×10-14 | 95 |
细胞器Organelle | 6.90×10-14 | 95 |
KEGG途径 KEGG pathways | 富集P值 Enriched P value | 基因数量 Gene number |
---|---|---|
DNA复制DNA replication | 1.04×10-15 | 84 |
核糖体Ribosome | 3.74×10-6 | 604 |
嘧啶代谢Pyrimidine metabolism | 5.20×10-4 | 230 |
吞噬体Phagosome | 1.48×10-3 | 112 |
基底切除修复Base excision repair | 3.31×10-3 | 75 |
内质网中的蛋白质加工Protein processing in endoplasmic reticulum | 4.59×10-3 | 363 |
嘌呤代谢Purine metabolism | 5.29×10-3 | 264 |
不匹配修复Mismatch repair | 6.52×10-3 | 61 |
半胱氨酸和蛋氨酸代谢Cysteine and methionine metabolism | 1.68×10-2 | 136 |
同源重组Homologous recombination | 1.69×10-2 | 77 |
核苷酸切除修复Nucleotide excision repair | 3.09×10-2 | 90 |
表2 最富集的11个KEGG途径
Table 2 Top 11 most enriched KEGG pathways
KEGG途径 KEGG pathways | 富集P值 Enriched P value | 基因数量 Gene number |
---|---|---|
DNA复制DNA replication | 1.04×10-15 | 84 |
核糖体Ribosome | 3.74×10-6 | 604 |
嘧啶代谢Pyrimidine metabolism | 5.20×10-4 | 230 |
吞噬体Phagosome | 1.48×10-3 | 112 |
基底切除修复Base excision repair | 3.31×10-3 | 75 |
内质网中的蛋白质加工Protein processing in endoplasmic reticulum | 4.59×10-3 | 363 |
嘌呤代谢Purine metabolism | 5.29×10-3 | 264 |
不匹配修复Mismatch repair | 6.52×10-3 | 61 |
半胱氨酸和蛋氨酸代谢Cysteine and methionine metabolism | 1.68×10-2 | 136 |
同源重组Homologous recombination | 1.69×10-2 | 77 |
核苷酸切除修复Nucleotide excision repair | 3.09×10-2 | 90 |
重复类型 Repeat type | 重复数量Repeat number | 总数 Total | 占比 Percentage/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ≥15 | |||
二核苷酸Dinucleotide | 1 084 | 656 | 513 | 350 | 241 | 110 | 17 | 1 | 9 | 44 | 3 025 | 58.13 | ||
三核苷酸Trinucleotide | 901 | 292 | 149 | 38 | 12 | 9 | 1 | 1 | 2 | 3 | 3 | 1 411 | 27.11 | |
四核苷酸Tetranucleotide | 296 | 61 | 11 | 6 | 1 | 1 | 1 | 377 | 7.24 | |||||
五核苷酸Pentanucleotide | 104 | 21 | 3 | 128 | 2.46 | |||||||||
六核苷酸Hexanucleotide | 176 | 61 | 8 | 10 | 4 | 1 | 2 | 1 | 263 | 5.05 | ||||
合计Total | 5 204 | 100 |
表3 牡丹耐涝相关unigene中SSR的类型、数量和分布频率
Table 3 Type, number and distribution frequency of SSRs in Paeonia suffruticosa waterlogging related unigenes
重复类型 Repeat type | 重复数量Repeat number | 总数 Total | 占比 Percentage/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ≥15 | |||
二核苷酸Dinucleotide | 1 084 | 656 | 513 | 350 | 241 | 110 | 17 | 1 | 9 | 44 | 3 025 | 58.13 | ||
三核苷酸Trinucleotide | 901 | 292 | 149 | 38 | 12 | 9 | 1 | 1 | 2 | 3 | 3 | 1 411 | 27.11 | |
四核苷酸Tetranucleotide | 296 | 61 | 11 | 6 | 1 | 1 | 1 | 377 | 7.24 | |||||
五核苷酸Pentanucleotide | 104 | 21 | 3 | 128 | 2.46 | |||||||||
六核苷酸Hexanucleotide | 176 | 61 | 8 | 10 | 4 | 1 | 2 | 1 | 263 | 5.05 | ||||
合计Total | 5 204 | 100 |
重复基序类型 Repeat motif type | 主要重复基序 Main repeat motif | 重复次数 Repeat times | SSR重复的百分比 Percentage of SSR repetition/% | SSR重复总体占比 Percentage of total SSR repetition/% |
---|---|---|---|---|
二核苷酸Dinucleotide | AG/CT | 2153 | 71.2 | 41.4 |
AT/AT | 513 | 17.0 | 9.9 | |
AC/CT | 352 | 11.6 | 6.8 | |
三核苷酸Trinucleotide | AAG/CCT | 362 | 25.7 | 7.0 |
ACC/GGT | 277 | 19.6 | 5.3 | |
ATC/ATG | 196 | 13.9 | 3.8 | |
AAT/ATT | 154 | 10.9 | 3.0 | |
AGC/CTG | 133 | 9.4 | 2.6 | |
AAC/GTT | 109 | 7.7 | 2.1 | |
AGG/CCT | 101 | 7.2 | 1.9 | |
四核苷酸Tetranucleotide | AAAT/ATTT | 171 | 45.4 | 3.3 |
38 | 10.1 | 0.7 | ||
35 | 9.3 | 0.7 |
表4 牡丹涝害转录组SSR重复基序的类型和频率分布
Table 4 Types and frequency distribution of SSR repeat motifs in the waterlogging transcriptome of Paeonia suffruticosa
重复基序类型 Repeat motif type | 主要重复基序 Main repeat motif | 重复次数 Repeat times | SSR重复的百分比 Percentage of SSR repetition/% | SSR重复总体占比 Percentage of total SSR repetition/% |
---|---|---|---|---|
二核苷酸Dinucleotide | AG/CT | 2153 | 71.2 | 41.4 |
AT/AT | 513 | 17.0 | 9.9 | |
AC/CT | 352 | 11.6 | 6.8 | |
三核苷酸Trinucleotide | AAG/CCT | 362 | 25.7 | 7.0 |
ACC/GGT | 277 | 19.6 | 5.3 | |
ATC/ATG | 196 | 13.9 | 3.8 | |
AAT/ATT | 154 | 10.9 | 3.0 | |
AGC/CTG | 133 | 9.4 | 2.6 | |
AAC/GTT | 109 | 7.7 | 2.1 | |
AGG/CCT | 101 | 7.2 | 1.9 | |
四核苷酸Tetranucleotide | AAAT/ATTT | 171 | 45.4 | 3.3 |
38 | 10.1 | 0.7 | ||
35 | 9.3 | 0.7 |
引物名称 Primers name | 引物序列 Primer sequence (5'-3') | 重复基序 Repeat motif | Tm/℃ | 片段长度 Fragment length/bp |
---|---|---|---|---|
Ps01017 | F:CTTTCGAGAACCGCATTTTC R:ATCGAAACACGACCCACTTC | (TGA)5 | 59.9 | 223 |
Ps01382 | F:TGGGAGAGCATTATCAAGGG R:GAAAACCTAATCCCCAATGC | (GA)8 | 60.0 | 122 |
Ps02163 | F:GAGCCGCGGTGATATATGTT R:CCGCGAAATTTCTTCGATAA | (GA)9 | 60.1 | 228 |
Ps04601 | F:TCCACGAACCAAACACTGAA R:TCTTTGTGATCTGGTGCTGC | (TTTA)4 | 60.1 | 251 |
Ps06615 | F:AAGAAGGAAGGCGTACACGA R:CACTCCCAACCAAATAACCAA | (AG)10 | 59.8 | 174 |
Ps08889 | F:GAGAGAAGCTCCGTTGTTGG R:GAATTACAACACCCCATGCC | (AGA)6 | 60.0 | 260 |
Ps11111 | F:AGAATCCTCCCCTTCTTCCA R:CACCAGAGGTGAAGGTGGTT | (TC)6 | 60.0 | 186 |
Ps11416 | F:ATGATTATGCTCCAGCAGCC R:ACCCCCATCTCTAGGAGGAA | (TGA)5 | 60.2 | 103 |
Ps11993 | F:AGGCCGAGCTCCACATGTAT R:TGCGGAGGATGAGTTCTTCT | (CT)7 | 61.9 | 257 |
Ps14499 | F:GCAGGGCAGGACTCTCTATG R:AAGCCCAGTCGAGCAGATTA | (TA)9 | 59.9 | 167 |
Ps17872 | F:TACCTGTCTCGAACTCCCCA R:CTATGAGGGACCAGAGAGCG | (CT)10 | 60.6 | 200 |
Ps18852 | F:CCAGAGCCACATGCCTTATT R:ATGTCATCTGAGGTTTCGGC | (CCGTGT)4 | 60.0 | 269 |
Ps25388 | F:CCGTGTAGATCTGGTTCGGT R:TCACCGCTGAATCAGAACAG | (TA)7 | 59.9 | 168 |
Ps28246 | F:ACCTCCTTCTTTAGCGCTCC R:CCGCCAATTTCAGAGAGAGA | (TC)8 | 59.9 | 245 |
Ps29032 | F:TCCCACATTCTTGTGCAGAG R:GTTTGGGGAAATTGGGAACT | (TA)6 | 60.0 | 259 |
Ps29541 | F:GTGAGAGGATGAAACGGGAA R:ACAACAAATCCCTCACTCGC | (TC)8 | 60.1 | 272 |
Ps29681 | F:CGAAATGGTGAGACACGAAG R:AATCTCAAACGGCTCATTGG | (GA)6 | 60.0 | 198 |
Ps30272 | F:CCGGGACTATTTTCTAGCCC R:CAAAACTCCATCAGCAGCAG | (GAC)6 | 59.9 | 259 |
Ps31923 | F:CCATAACAGCGGTGAGGATT R:TATGCGAGCCATCTCCTTTT | (AG)7 | 59.9 | 183 |
Ps33766 | F:CTCGGGTGTTGGAGTTCATT R:TGTCGCCCTGTCTCTCTTTT | (GA)8 | 59.9 | 132 |
Ps34118-1 | F:TCTTGCCATTTCCTTGAAGC R:AAGGTGGCACGAGCATTAAC | (CT)8 | 60.3 | 207 |
Ps34118-2 | F:ATGGCCGTAGCATAGTGTCC R:CACAAGAGGCCAACACGTAA | (AT)7 | 59.9 | 233 |
Ps34343 | F:GGGTTGGGAGGGATTAAGAA R:CACAATTCGGACACAGCATC | (TGG)5 | 60.1 | 165 |
Ps34446 | F:TCAGGGTTTTAGCTCGAGGA R:CTCCTTTGCCCATTGTCATC | (AG)6 | 59.9 | 142 |
Ps35645-1 | F:CACAAAGCAACCACCCTTTT R:GCATCTGCATCTGGCTCATA | (ATGTAG)4 | 60.0 | 179 |
Ps35645-2 | F:GCAGAGTCGATCCTGGCTAC R:GGGTACGTCTGCAACCTTGT | (TC)6 | 60.0 | 238 |
Ps44241 | F:GCCATCGAAACTTTTGAACC R:TTCCGGAAAAATGAAAGACG | (CT)9 | 60.0 | 148 |
Ps45222 | F:TTAGGATGAAAATCGGCTGG R:TCTTTTTAAGACCCAGACTCTTTGA | (GA)10 | 60.0 | 197 |
Ps45971 | F:AAAACGTGTGGCCTCAAAAC R:GCGACGAATCAGGAGAGAAC | (AGA)5 | 60.0 | 204 |
Ps46734 | F:CCATACCGTGCATATGACCA R:CAGCGCATCAATACCTCAAA | (TC)6 | 60.2 | 142 |
Ps47595 | F:TCGCCTTGTATACCTTTCCG R:AGTGCAGTCCTTCTCGAATCT | (TC)7tt(TC)7 | 60.0 | 147 |
Ps48286 | F:CTCTCCTCTTCCAGACACGC R:GCAGAAAGAACCAAACCCAA | (TG)6 | 60.1 | 177 |
Ps49879 | F:ATAGGCAACGCCATGTTTTC R:CTCCCCTCTCTTTGGCTCTT | (GA)8 | 59.9 | 110 |
Ps51526 | F:GCGAGGGGATAAAACTAGGG R:GTGCTTTCCTGAAACCCAAC | (TA)6 | 59.9 | 176 |
Ps54582 | F:GAGAGAGATAGAGGGCGCAA R:TCACCTCCGATTCGTAAACC | (TCT)5 | 59.9 | 230 |
Ps54679 | F:TGTACTTGGGCATCACCAGA R:TTAAGGGCAGCTCGGACTAA | (TC)8 | 60.1 | 257 |
Ps55401 | F:AGCCTTAATCGGTCGAACCT R:TTGTGCCAGACACCAAGAAG | (GAT)6 | 60.0 | 272 |
Ps55802 | F:CCCAAGTTTTTCCCTTCTCA R:GGTGGACTTTGACACGGACT | (TTA)5 | 60.0 | 144 |
Ps57846 | F:TCCATACGCATTCTTTTCCC R:GGAGCCCAAGCGTAACAATA | (AGC)6 | 59.9 | 276 |
Ps57972 | F:ATTGTTTCCGGGACCACTTC R:GTTTGGTAGGGGTTTTGGCT | (ACC)5 | 61.1 | 223 |
Ps58678 | F:AAGGCCGGTAAGAAGCTACC R:TTCCCTAGAGGTGATGGTGG | (AGA)5 | 59.9 | 249 |
Ps58726 | F:TCGAGTACCTTGAGGAGCGT R:CAGATGGGCTTCTGCTTGTT | (AGA)5 | 60.3 | 262 |
Ps60834 | F:TCCCTCTCTTTTCTCACTGCAT R:GGTGCATGACTGGGAGGTAT | (TG)6 | 60.3 | 152 |
Ps64449 | F:GTTGCCCCTCTCCTTCTCTT R:CTCTCTCCTTGCCGCTCTTA | (AT)6 | 59.8 | 168 |
Ps67490 | F:GAACAAAAGCCTTGCCTCTG R:TACGATAGGCCACAACCACA | (CT)10 | 59.9 | 262 |
表5 牡丹涝害胁迫相关的SSR引物开发
Table 5 SSR primers developed from genes related to waterlogging stress in Paeonia suffruticosa
引物名称 Primers name | 引物序列 Primer sequence (5'-3') | 重复基序 Repeat motif | Tm/℃ | 片段长度 Fragment length/bp |
---|---|---|---|---|
Ps01017 | F:CTTTCGAGAACCGCATTTTC R:ATCGAAACACGACCCACTTC | (TGA)5 | 59.9 | 223 |
Ps01382 | F:TGGGAGAGCATTATCAAGGG R:GAAAACCTAATCCCCAATGC | (GA)8 | 60.0 | 122 |
Ps02163 | F:GAGCCGCGGTGATATATGTT R:CCGCGAAATTTCTTCGATAA | (GA)9 | 60.1 | 228 |
Ps04601 | F:TCCACGAACCAAACACTGAA R:TCTTTGTGATCTGGTGCTGC | (TTTA)4 | 60.1 | 251 |
Ps06615 | F:AAGAAGGAAGGCGTACACGA R:CACTCCCAACCAAATAACCAA | (AG)10 | 59.8 | 174 |
Ps08889 | F:GAGAGAAGCTCCGTTGTTGG R:GAATTACAACACCCCATGCC | (AGA)6 | 60.0 | 260 |
Ps11111 | F:AGAATCCTCCCCTTCTTCCA R:CACCAGAGGTGAAGGTGGTT | (TC)6 | 60.0 | 186 |
Ps11416 | F:ATGATTATGCTCCAGCAGCC R:ACCCCCATCTCTAGGAGGAA | (TGA)5 | 60.2 | 103 |
Ps11993 | F:AGGCCGAGCTCCACATGTAT R:TGCGGAGGATGAGTTCTTCT | (CT)7 | 61.9 | 257 |
Ps14499 | F:GCAGGGCAGGACTCTCTATG R:AAGCCCAGTCGAGCAGATTA | (TA)9 | 59.9 | 167 |
Ps17872 | F:TACCTGTCTCGAACTCCCCA R:CTATGAGGGACCAGAGAGCG | (CT)10 | 60.6 | 200 |
Ps18852 | F:CCAGAGCCACATGCCTTATT R:ATGTCATCTGAGGTTTCGGC | (CCGTGT)4 | 60.0 | 269 |
Ps25388 | F:CCGTGTAGATCTGGTTCGGT R:TCACCGCTGAATCAGAACAG | (TA)7 | 59.9 | 168 |
Ps28246 | F:ACCTCCTTCTTTAGCGCTCC R:CCGCCAATTTCAGAGAGAGA | (TC)8 | 59.9 | 245 |
Ps29032 | F:TCCCACATTCTTGTGCAGAG R:GTTTGGGGAAATTGGGAACT | (TA)6 | 60.0 | 259 |
Ps29541 | F:GTGAGAGGATGAAACGGGAA R:ACAACAAATCCCTCACTCGC | (TC)8 | 60.1 | 272 |
Ps29681 | F:CGAAATGGTGAGACACGAAG R:AATCTCAAACGGCTCATTGG | (GA)6 | 60.0 | 198 |
Ps30272 | F:CCGGGACTATTTTCTAGCCC R:CAAAACTCCATCAGCAGCAG | (GAC)6 | 59.9 | 259 |
Ps31923 | F:CCATAACAGCGGTGAGGATT R:TATGCGAGCCATCTCCTTTT | (AG)7 | 59.9 | 183 |
Ps33766 | F:CTCGGGTGTTGGAGTTCATT R:TGTCGCCCTGTCTCTCTTTT | (GA)8 | 59.9 | 132 |
Ps34118-1 | F:TCTTGCCATTTCCTTGAAGC R:AAGGTGGCACGAGCATTAAC | (CT)8 | 60.3 | 207 |
Ps34118-2 | F:ATGGCCGTAGCATAGTGTCC R:CACAAGAGGCCAACACGTAA | (AT)7 | 59.9 | 233 |
Ps34343 | F:GGGTTGGGAGGGATTAAGAA R:CACAATTCGGACACAGCATC | (TGG)5 | 60.1 | 165 |
Ps34446 | F:TCAGGGTTTTAGCTCGAGGA R:CTCCTTTGCCCATTGTCATC | (AG)6 | 59.9 | 142 |
Ps35645-1 | F:CACAAAGCAACCACCCTTTT R:GCATCTGCATCTGGCTCATA | (ATGTAG)4 | 60.0 | 179 |
Ps35645-2 | F:GCAGAGTCGATCCTGGCTAC R:GGGTACGTCTGCAACCTTGT | (TC)6 | 60.0 | 238 |
Ps44241 | F:GCCATCGAAACTTTTGAACC R:TTCCGGAAAAATGAAAGACG | (CT)9 | 60.0 | 148 |
Ps45222 | F:TTAGGATGAAAATCGGCTGG R:TCTTTTTAAGACCCAGACTCTTTGA | (GA)10 | 60.0 | 197 |
Ps45971 | F:AAAACGTGTGGCCTCAAAAC R:GCGACGAATCAGGAGAGAAC | (AGA)5 | 60.0 | 204 |
Ps46734 | F:CCATACCGTGCATATGACCA R:CAGCGCATCAATACCTCAAA | (TC)6 | 60.2 | 142 |
Ps47595 | F:TCGCCTTGTATACCTTTCCG R:AGTGCAGTCCTTCTCGAATCT | (TC)7tt(TC)7 | 60.0 | 147 |
Ps48286 | F:CTCTCCTCTTCCAGACACGC R:GCAGAAAGAACCAAACCCAA | (TG)6 | 60.1 | 177 |
Ps49879 | F:ATAGGCAACGCCATGTTTTC R:CTCCCCTCTCTTTGGCTCTT | (GA)8 | 59.9 | 110 |
Ps51526 | F:GCGAGGGGATAAAACTAGGG R:GTGCTTTCCTGAAACCCAAC | (TA)6 | 59.9 | 176 |
Ps54582 | F:GAGAGAGATAGAGGGCGCAA R:TCACCTCCGATTCGTAAACC | (TCT)5 | 59.9 | 230 |
Ps54679 | F:TGTACTTGGGCATCACCAGA R:TTAAGGGCAGCTCGGACTAA | (TC)8 | 60.1 | 257 |
Ps55401 | F:AGCCTTAATCGGTCGAACCT R:TTGTGCCAGACACCAAGAAG | (GAT)6 | 60.0 | 272 |
Ps55802 | F:CCCAAGTTTTTCCCTTCTCA R:GGTGGACTTTGACACGGACT | (TTA)5 | 60.0 | 144 |
Ps57846 | F:TCCATACGCATTCTTTTCCC R:GGAGCCCAAGCGTAACAATA | (AGC)6 | 59.9 | 276 |
Ps57972 | F:ATTGTTTCCGGGACCACTTC R:GTTTGGTAGGGGTTTTGGCT | (ACC)5 | 61.1 | 223 |
Ps58678 | F:AAGGCCGGTAAGAAGCTACC R:TTCCCTAGAGGTGATGGTGG | (AGA)5 | 59.9 | 249 |
Ps58726 | F:TCGAGTACCTTGAGGAGCGT R:CAGATGGGCTTCTGCTTGTT | (AGA)5 | 60.3 | 262 |
Ps60834 | F:TCCCTCTCTTTTCTCACTGCAT R:GGTGCATGACTGGGAGGTAT | (TG)6 | 60.3 | 152 |
Ps64449 | F:GTTGCCCCTCTCCTTCTCTT R:CTCTCTCCTTGCCGCTCTTA | (AT)6 | 59.8 | 168 |
Ps67490 | F:GAACAAAAGCCTTGCCTCTG R:TACGATAGGCCACAACCACA | (CT)10 | 59.9 | 262 |
图10 SSR引物Ps18852, Ps28246, Ps29032, Ps29541和 Ps30272在9个牡丹品种中的扩增结果
Fig.10 Polymorphism of Ps18852, Ps28246, Ps29032, Ps29541, and Ps30272 of SSR primers in 9 samples of P. suffruticosa
引物 Primers | 观测等位基因数 Observed number of alleles (Na) | 有效等位基因数 Effective number of alleles (Ne) | Nei’s基因多样性 Nei’s gene diversity index (H) | Shannon信息指数 Shannon’s information index (I) | 多态性位点 Polymorphic sites | 多态性百分比 Polymorphic percentage/% |
---|---|---|---|---|---|---|
Ps02163 | 2.000 0 | 1.371 1 | 0.244 2 | 0.396 1 | 14 | 100 |
P04601 | 1.833 3 | 1.487 2 | 0.285 6 | 0.428 2 | 10 | 83.33 |
Ps17872 | 1.857 1 | 1.405 1 | 0.259 9 | 0.404 3 | 6 | 85.71 |
Ps18852 | 2.000 0 | 1.413 7 | 0.264 5 | 0.422 7 | 5 | 100 |
Ps28246 | 1.777 8 | 1.294 4 | 0.192 8 | 0.310 2 | 7 | 77.78 |
Ps29032 | 1.333 3 | 1.266 7 | 0.148 1 | 0.212 2 | 1 | 33.33 |
Ps30272 | 1.833 3 | 1.265 1 | 0.177 9 | 0.295 1 | 5 | 83.33 |
Ps34118-1 | 1.833 3 | 1.351 7 | 0.217 0 | 0.343 4 | 5 | 83.33 |
Ps34118-2 | 1.500 0 | 1.060 4 | 0.053 9 | 0.109 6 | 1 | 50.00 |
Ps35645 | 2.000 0 | 1.692 6 | 0.397 2 | 0.581 8 | 5 | 100 |
Ps54679 | 2.000 0 | 1.479 4 | 0.297 7 | 0.462 5 | 10 | 100 |
Ps55401 | 2.000 0 | 1.573 6 | 0.332 2 | 0.497 4 | 3 | 100 |
Mean | 1.830 7 | 1.388 4 | 0.256 1 | 0.372 0 | 6 | 83.00 |
表6 十二个SSR引物在9个牡丹品种中的遗传多样性指数
Table 6 Genetic diversity index for 12 SSR primers among 9 Paeonia suffruticosa cultivars
引物 Primers | 观测等位基因数 Observed number of alleles (Na) | 有效等位基因数 Effective number of alleles (Ne) | Nei’s基因多样性 Nei’s gene diversity index (H) | Shannon信息指数 Shannon’s information index (I) | 多态性位点 Polymorphic sites | 多态性百分比 Polymorphic percentage/% |
---|---|---|---|---|---|---|
Ps02163 | 2.000 0 | 1.371 1 | 0.244 2 | 0.396 1 | 14 | 100 |
P04601 | 1.833 3 | 1.487 2 | 0.285 6 | 0.428 2 | 10 | 83.33 |
Ps17872 | 1.857 1 | 1.405 1 | 0.259 9 | 0.404 3 | 6 | 85.71 |
Ps18852 | 2.000 0 | 1.413 7 | 0.264 5 | 0.422 7 | 5 | 100 |
Ps28246 | 1.777 8 | 1.294 4 | 0.192 8 | 0.310 2 | 7 | 77.78 |
Ps29032 | 1.333 3 | 1.266 7 | 0.148 1 | 0.212 2 | 1 | 33.33 |
Ps30272 | 1.833 3 | 1.265 1 | 0.177 9 | 0.295 1 | 5 | 83.33 |
Ps34118-1 | 1.833 3 | 1.351 7 | 0.217 0 | 0.343 4 | 5 | 83.33 |
Ps34118-2 | 1.500 0 | 1.060 4 | 0.053 9 | 0.109 6 | 1 | 50.00 |
Ps35645 | 2.000 0 | 1.692 6 | 0.397 2 | 0.581 8 | 5 | 100 |
Ps54679 | 2.000 0 | 1.479 4 | 0.297 7 | 0.462 5 | 10 | 100 |
Ps55401 | 2.000 0 | 1.573 6 | 0.332 2 | 0.497 4 | 3 | 100 |
Mean | 1.830 7 | 1.388 4 | 0.256 1 | 0.372 0 | 6 | 83.00 |
[1] | NAGALAKSHMI U, WAERN K, SNYDER M. RNA-Seq: a method for comprehensive transcriptome analysis[J]. Current Protocols in Molecular Biology, 2010, Chapter 4: Unit4.11.1-Unit4.1113. |
[2] | OZSOLAK F, MILOS P M. RNA sequencing: advances, challenges and opportunities[J]. Nature Reviews Genetics, 2011, 12(2): 87-98. |
[3] | LAUXMANN M A, BRUN B, BORSANI J, et al. Transcriptomic profiling during the post-harvest of heat-treated Dixiland Prunus persica fruits: common and distinct response to heat and cold[J]. PLoS One, 2012, 7(12): e51052. |
[4] | ROCHETA M, COITO J L, RAMOS M J N, et al. Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions[J]. BMC Plant Biology, 2016, 16(1): 224. |
[5] | XU X W, CHEN M Y, JI J, et al. Comparative RNA-Seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation[J]. BMC Plant Biology, 2017, 17(1): 129. |
[6] | ZHU Y M, LI J N, DUANMU H Z, et al. Comparative transcriptome profiling of Glycine soja roots under salinity and alkalinity stresses using RNA-Seq[J]. Journal of Northeast Agricultural University(English Edition), 2018, 25(3): 29-43. |
[7] | LENK I, FISHER L H C, VICKERS M, et al. Transcriptional and metabolomic analyses indicate that cell wall properties are associated with drought tolerance in Brachypodium distachyon[J]. International Journal of Molecular Sciences, 2019, 20(7): 1758. |
[8] | ZHANG X X, LIU X, ZHOU M H, et al. PacBio full-length sequencing integrated with RNA-Seq reveals the molecular mechanism of waterlogging and its recovery in Paeonia ostii[J]. Frontiers in Plant Science, 2022, 13: 1030584. |
[9] | DER J P, BARKER M S, WICKETT N J, et al. De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum[J]. BMC Genomics, 2011, 12: 99. |
[10] | 周丽霞, 肖勇, 杨耀东. 油棕转录组SSR标记开发研究[J]. 广东农业科学, 2014, 41(14): 136-138, 143. |
ZHOU L X, XIAO Y, YANG Y D. Development of SSR markers in oil palm(Elaeis guineensis) based on information from transcriptome sequencing[J]. Guangdong Agricultural Sciences, 2014, 41(14): 136-138, 143. (in Chinese with English abstract) | |
[11] | 赵瑞娟, 薛华柏, 王磊, 等. 梨属植物SSR分子标记核心引物的筛选及其聚类分析[J]. 果树学报, 2017, 34(10): 1229-1238. |
ZHAO R J, XUE H B, WANG L, et al. Core primers screening for SSR markers and cluster analysis in the plants of Pyrus spp[J]. Journal of Fruit Science, 2017, 34(10): 1229-1238. (in Chinese with English abstract) | |
[12] | FAN M, GAO Y K, GAO Y H, et al. Characterization and development of EST-SSR markers from transcriptome sequences of Chrysanthemum (Chrysanthemum×morifolium Ramat.)[J]. HortScience, 2019, 54(5): 772-778. |
[13] | 贺丹, 吴芳芳, 张佼蕊, 等. 牡丹转录组SSR信息分析及其分子标记开发[J]. 江苏农业学报, 2019, 35(6): 1428-1433. |
HE D, WU F F, ZHANG J R, et al. Analysis of SSR information in transcriptome and development of molecular markers in Paeonia suffruticosa[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(6): 1428-1433. (in Chinese with English abstract) | |
[14] | 张艳丽, 王雁, 李正红, 等. 基于牡丹EST信息的滇牡丹SSR标记开发[J]. 林业科学研究, 2011, 24(2): 171-175. |
ZHANG Y L, WANG Y, LI Z H, et al. SSRs marking of Paeonia delavayi based on peony EST data[J]. Forest Research, 2011, 24(2): 171-175. (in Chinese with English abstract) | |
[15] | WU J, CAI C F, CHENG F Y, et al. Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences[J]. Molecular Breeding, 2014, 34(4): 1853-1866. |
[16] | 韩平, 阮成江, 丁健, 等. RNA-Seq技术开发紫斑牡丹目的基因SSR标记[J]. 分子植物育种, 2019, 17(11): 3665-3673. |
HAN P, RUAN C J, DING J, et al. Development of SSR markers of target-genes in Paeonia suffruticosa var. papaveracea kerner by RNA-Seq technology[J]. Molecular Plant Breeding, 2019, 17(11): 3665-3673. (in Chinese with English abstract) | |
[17] | 罗柳明, 李荣琛, 李紫瑶, 等. 基于RNA-Seq牡丹SSR标记开发及通用性分析[J]. 分子植物育种, 2021, 19(3): 889-898. |
LUO L M, LI R C, LI Z Y, et al. Development and general analysis of SSR markers in tree peony flower color gene based on transcriptome sequencing[J]. Molecular Plant Breeding, 2021, 19(3): 889-898. (in Chinese with English abstract) | |
[18] | LI H B, LI N, YANG S Z, et al. Transcriptomic analysis of Casuarina equisetifolia L. in responses to cold stress[J]. Tree Genetics & Genomes, 2017, 13(1): 7. |
[19] | CHO E K, CHOI Y J. A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants[J]. Biotechnology Letters, 2009, 31(4): 597-606. |
[20] | JUNGKUNZ I, LINK K, VOGEL F, et al. AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV[J]. The Plant Journal, 2011, 66(6): 983-995. |
[21] | ZHANG W X, CHU Y G, DING C J, et al. Transcriptome sequencing of transgenic poplar (Populus×euramericana ‘Guariento’) expressing multiple resistance genes[J]. BMC Genetics, 2014, 15(Suppl 1): S7. |
[22] | ARORA K, PANDA K K, MITTAL S, et al. RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize[J]. Scientific Reports, 2017, 7: 10950. |
[23] | ZENG N B, YANG Z J, ZHANG Z F, et al. Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress[J]. International Journal of Molecular Sciences, 2019, 20(6): 1359. |
[24] | NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432. |
[25] | ZHANG J Y, HUANG S N, MO Z H, et al. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in kiwifruit under waterlogging stress[J]. Molecular Breeding, 2015, 35(11): 208. |
[26] | REN C G, KONG C C, YAN K, et al. Elucidation of the molecular responses to waterlogging in Sesbania cannabina roots by transcriptome profiling[J]. Scientific Reports, 2017, 7: 9256. |
[27] | 于月华, 倪志勇, 梁小莉, 等. 棉花转录因子基因GhMYB的克隆及特征分析[J]. 棉花学报, 2015, 27(1): 31-38. |
YU Y H, NI Z Y, LIANG X L, et al. Cloning and characterization of a transcription factor gene GhMYB from Gossypium hirsuturm L[J]. Cotton Science, 2015, 27(1): 31-38. (in Chinese with English abstract) | |
[28] | 林延慧, 唐力琼, 徐靖, 等. 大豆响应涝害bZIP基因Glyma04g04170的生物信息学分析及互作蛋白预测[J]. 大豆科学, 2020, 39(5): 727-733. |
LIN Y H, TANG L Q, XU J, et al. Bioinformatics analysis and interacting protein prediction of soybean bZIP gene Glyma04g04170 in response to submergence stress[J]. Soybean Science, 2020, 39(5): 727-733. (in Chinese with English abstract) | |
[29] | CHARPENTIER M J E, WILLIAMS C V, DREA C M. Inbreeding depression in ring-tailed lemurs (Lemur catta): genetic diversity predicts parasitism, immunocompetence, and survivorship[J]. Conservation Genetics, 2008, 9(6): 1605-1615. |
[30] | 丘立杭, 罗含敏, 陈荣发, 等. 基于RNA-Seq的甘蔗主茎和分蘖茎转录组建立及初步分析[J]. 基因组学与应用生物学, 2018, 37(3): 1271-1279. |
QIU L H, LUO H M, CHEN R F, et al. Establishment and preliminary analysis on transcriptome of sugarcane between stalk and tiller based on RNA-Seq technology[J]. Genomics and Applied Biology, 2018, 37(3): 1271-1279. (in Chinese with English abstract) | |
[31] | 闫蕊, 阮成江, 杜维, 等. RNA-Seq技术开发油茶目的基因SSR标记[J]. 分子植物育种, 2018, 16(8): 2540-2548. |
YAN R, RUAN C J, DU W, et al. Development of SSR markers for target-genes derived from Camellia oleifera by RNA-Seq technology[J]. Molecular Plant Breeding, 2018, 16(8): 2540-2548. (in Chinese with English abstract) | |
[32] | GUAN L H, SUHARYANTO, SHIRAISHI S. Isolation and characterization of tetranucleotide microsatellite loci in Pinus massoniana(Pinaceae)[J]. American Journal of Botany, 2011, 98(8): e216-e217. |
[33] | FENG S G, HE R F, LU J J, et al. Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars[J]. Frontiers in Genetics, 2016, 7: 113. |
[34] | 赵彤, 常圣鑫, 冷青云, 等. 基于三角梅转录组测序的SSR分子标记的开发[J]. 分子植物育种, 2019, 17(13): 4331-4341. |
ZHAO T, CHANG S X, LENG Q Y, et al. Development of SSR molecular markers based on transcriptome sequencing of Bougainvillea[J]. Molecular Plant Breeding, 2019, 17(13): 4331-4341. (in Chinese with English abstract) | |
[35] | 王书珍, 张羽佳, 黄诗颖, 等. 基于锦绣杜鹃花蕾转录组的SSR标记开发及应用[J]. 林业科学研究, 2019, 32(3): 97-104. |
WANG S Z, ZHANG Y J, HUANG S Y, et al. Development and application of SSR markers based on buds transcriptomic data of Rhododendron pulchrum Planch[J]. Forest Research, 2019, 32(3): 97-104. (in Chinese with English abstract) | |
[36] | 杨志刚, 朱栋, 罗兵, 等. 三十七个山东牡丹品种DNA指纹图谱构建与EST-SSR标记遗传多样性分析[J]. 北方园艺, 2015(7): 77-81. |
YANG Z G, ZHU D, LUO B, et al. Construction of fingerprint and analysis of genetic diversity with EST-SSR markers for thirty-seven peony cultivars in Shandong[J]. Northern Horticulture, 2015(7): 77-81. (in Chinese with English abstract) | |
[37] | SINGH H, DESHMUKH R K, SINGH A, et al. Highly variable SSR markers suitable for rice genotyping using agarose gels[J]. Molecular Breeding, 2010, 25(2): 359-364. |
[38] | 李荣华, 王直亮, 陈静芳, 等. 菜薹转录组中SSR信息与可用性分析[J]. 园艺学报, 2016, 43(9): 1816-1824. |
LI R H, WANG Z L, CHEN J F, et al. Analysis of SSR information in transcriptome and their usability in flowering Chinese cabbage[J]. Acta Horticulturae Sinica, 2016, 43(9): 1816-1824. (in Chinese with English abstract) | |
[39] | ZHANG H Y, WEI L B, MIAO H M, et al. Development and validation of genic-SSR markers in sesame by RNA-Seq[J]. BMC Genomics, 2012, 13: 316. |
[1] | 乔红雍, 袁涛, 赵信勇, 杨会岩. 不同株龄鲁菏红细根内生微生物群落变化特征[J]. 浙江农业学报, 2024, 36(1): 115-126. |
[2] | 李雪松, 孙达锋, 刘绍雄, 张俊波, 岳万松, 李建英, 华蓉. 基于大球盖菇基因组的SSR分子标记开发及指纹数据库应用[J]. 浙江农业学报, 2024, 36(1): 84-93. |
[3] | 谢梅琼, 王龙江, 何余容, 吕利华. 玫烟色棒束孢转录组测序及潜在致病相关基因分析[J]. 浙江农业学报, 2023, 35(9): 2169-2180. |
[4] | 徐红霞, 李晓颖, 葛航, 朱启轩, 陈俊伟. 基于转录组分析内源激素在调控枇杷花发育进程中的作用[J]. 浙江农业学报, 2023, 35(7): 1648-1661. |
[5] | 罗勤川, 唐伟, 马居奎, 陈晶伟, 杨冬静, 高方园, 孙厚俊, 谢逸萍, 张成玲. 腐皮镰刀菌侵染甘薯的转录组分析[J]. 浙江农业学报, 2023, 35(5): 1097-1107. |
[6] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
[7] | 杨清, 刘胜红, 黄二宾, 杜嵘宇, 王芳, 邓佳. 经羧甲基壳聚糖诱导的葡萄柚果实转录组WRKY基因分析及抗性相关基因挖掘[J]. 浙江农业学报, 2023, 35(3): 598-614. |
[8] | 李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328. |
[9] | 徐悦, 汪少敏, 谭晓菁, 罗英杰, 常婧一, 邓会, 刘秀丽, 崔维军, 周洁, 吴月燕, 严成其, 王栩鸣. D3基因在抗病防卫反应中的转录调控研究[J]. 浙江农业学报, 2023, 35(12): 2763-2774. |
[10] | 贺嵘, 赵恺, 贺玉娇, 阿拉腾苏和, 王爱君, 宁静, 韩若霜, 孙贵荣, 张国盛. 基于转录组测序与定量PCR技术挖掘北沙柳株型相关候选基因[J]. 浙江农业学报, 2023, 35(10): 2332-2345. |
[11] | 叶梅荣, 黄守程, 王晓鹏, 刘爱荣, 崔峰, 康健. 基于Iso-Seq技术的野生马齿苋叶片转录组分析[J]. 浙江农业学报, 2023, 35(1): 67-78. |
[12] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[13] | 古咸彬, 陆玲鸿, 宋根华, 肖金平, 张慧琴. 褪黑素预处理对桃耐涝性的调控效应[J]. 浙江农业学报, 2022, 34(9): 1911-1924. |
[14] | 吕倩, 骆巧, 罗雪, 陈久兵, 马莉, 罗正中, 姚学萍, 余树民, 沈留红, 曹随忠. 基于高通量测序技术分析奶牛场垫沙和橡胶垫卧床中的菌群差异[J]. 浙江农业学报, 2022, 34(7): 1377-1385. |
[15] | 王斯亮, 邵越, 闫成进. 草地贪夜蛾在玉米-小麦寄主转换中的转录组分析[J]. 浙江农业学报, 2022, 34(6): 1236-1247. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||