浙江农业学报 ›› 2024, Vol. 36 ›› Issue (12): 2774-2783.DOI: 10.3969/j.issn.1004-1524.20231166
李秋铷1,2(), 蔡晶晶3, 李华2, 俞海平4, 裘高扬2, 刘俊丽2, 郭彬2,*(
)
收稿日期:
2023-10-01
出版日期:
2024-12-25
发布日期:
2024-12-27
作者简介:
李秋铷(1996—),女,广东清远人,硕士研究生,主要从事农业资源与环境方面的研究。E-mail:451733421@qq.com
通讯作者:
*郭彬,E-mail:ndgb@163.com
基金资助:
LI Qiuru1,2(), CAI Jingjing3, LI Hua2, YU Haiping4, QIU Gaoyang2, LIU Junli2, GUO Bin2,*(
)
Received:
2023-10-01
Online:
2024-12-25
Published:
2024-12-27
摘要:
为了明确无机与有机材料对水体中镉(Cd)的吸附,以及对土壤Cd的钝化效果差异,选择粉煤灰、硅藻土、椰壳炭、麦饭石、蛭石粉、凹凸棒粉、蒙脱石粉、腐殖酸、香榧壳蒲、米糠、聚丙烯酰胺、壳聚糖12种钝化材料,采用电镜观察、Cd溶液水体吸附与土壤钝化培养试验,比较各类材料的表面性状、Cd最大吸附量,以及对土壤有效态Cd含量和土壤理化性质的影响。结果表明: 腐殖酸、香榧壳蒲、蒙脱石粉、蛭石粉、凹凸棒粉、硅藻土等材料的表面呈颗粒或层状结构,结构较为松散。不同材料对水体中的Cd均具有较好的吸附性能,最大吸附量从高到低依次为腐殖酸(22.08 mg·g-1)>香榧壳蒲(21.99 mg·g-1)>蒙脱石粉(16.24 mg·g-1)>椰壳炭(15.63 mg·g-1)>蛭石粉(13.81 mg·g-1)>凹凸棒粉(12.67 mg·g-1)>粉煤灰(10.22 mg·g-1)>聚丙烯酰胺(9.20 mg·g-1)>米糠(8.72 mg·g-1)>硅藻土(5.90 mg·g-1)>壳聚糖(4.79 mg·g-1)>麦饭石(3.65 mg·g-1)。将这12种材料施入土壤后(施用量1%),除聚丙烯酰胺和硅藻土外,土壤有效态Cd含量显著(P<0.05)降低,降幅在10.66%~32.68%,其中,凹凸棒粉和香榧壳蒲处理的土壤有效态Cd含量降幅最大,分别为32.68%和28.95%。研究成果可为土壤重金属钝化材料的选择提供参考。
中图分类号:
李秋铷, 蔡晶晶, 李华, 俞海平, 裘高扬, 刘俊丽, 郭彬. 几种无机与有机材料对镉的吸附和钝化效果比较[J]. 浙江农业学报, 2024, 36(12): 2774-2783.
LI Qiuru, CAI Jingjing, LI Hua, YU Haiping, QIU Gaoyang, LIU Junli, GUO Bin. Comparison of adsorption and passivation effects of inorganic and organic materials on cadmium[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2774-2783.
材料 Material | pH | Cd含量 Cd content/ (mg·kg-1) | 来源 Source |
---|---|---|---|
粉煤灰Fly ash | 10.19 | 0.35 | 河北宗润矿产品有限公司Hebei Zongrun Mineral Products Co., Ltd. |
硅藻土Diatomite | 10.12 | 0.26 | 天津市致远化学试剂有限公司Tianjin Zhiyuan Chemical Reagent Co., Ltd. |
椰壳炭Coconut shell charcoal | 9.98 | 0.17 | 平顶山市绿之原活性炭有限公司 |
Pingdingshan Green Source Activated Carbon Co., Ltd. | |||
麦饭石Medical stone | 8.78 | 0.27 | 河北宗润矿产品有限公司Hebei Zongrun Mineral Products Co., Ltd. |
蛭石粉Vermiculite powder | 8.63 | 0.22 | 燕西矿产品加工厂Yanxi Mineral Products Processing Plant |
凹凸棒粉Attapulgite powder | 8.58 | 0.08 | 灵寿县德航矿产品有限公司 |
Lingshou County Dehang Mineral Products Co., Ltd. | |||
蒙脱石粉Montmorillonite powder | 7.80 | 0.23 | 古丈县山麟石语矿产品有限公司 |
Guzhang County Shanlin Shiyu Mineral Products Co., Ltd. | |||
腐殖酸Humic acid | 6.93 | 0.17 | 潢川县至诚农资销售部 |
Huangchuan County Zhicheng Agricultural Materials Sales Department | |||
香榧壳蒲Chinese torreya shell | 6.64 | 0.13 | 诸暨香榧园Zhuji Chinese Torreya Garden |
米糠Rice bran | 6.54 | — | 嘉兴品硕商贸有限公司Jiaxing Pinshuo Trading Co., Ltd. |
聚丙烯酰胺Polyacrylamide | 5.93 | 0.11 | 巩义市银尚环保科技有限公司 |
Gongyi Yinshang Environmental Protection Technology Co., Ltd. | |||
壳聚糖Chitosan | 4.05 | — | 国药集团化学试剂有限公司Sinopharm Chemical Reagent Co., Ltd. |
表1 钝化材料的pH值、镉含量和来源
Table 1 pH, cadmium content and sources of passivators
材料 Material | pH | Cd含量 Cd content/ (mg·kg-1) | 来源 Source |
---|---|---|---|
粉煤灰Fly ash | 10.19 | 0.35 | 河北宗润矿产品有限公司Hebei Zongrun Mineral Products Co., Ltd. |
硅藻土Diatomite | 10.12 | 0.26 | 天津市致远化学试剂有限公司Tianjin Zhiyuan Chemical Reagent Co., Ltd. |
椰壳炭Coconut shell charcoal | 9.98 | 0.17 | 平顶山市绿之原活性炭有限公司 |
Pingdingshan Green Source Activated Carbon Co., Ltd. | |||
麦饭石Medical stone | 8.78 | 0.27 | 河北宗润矿产品有限公司Hebei Zongrun Mineral Products Co., Ltd. |
蛭石粉Vermiculite powder | 8.63 | 0.22 | 燕西矿产品加工厂Yanxi Mineral Products Processing Plant |
凹凸棒粉Attapulgite powder | 8.58 | 0.08 | 灵寿县德航矿产品有限公司 |
Lingshou County Dehang Mineral Products Co., Ltd. | |||
蒙脱石粉Montmorillonite powder | 7.80 | 0.23 | 古丈县山麟石语矿产品有限公司 |
Guzhang County Shanlin Shiyu Mineral Products Co., Ltd. | |||
腐殖酸Humic acid | 6.93 | 0.17 | 潢川县至诚农资销售部 |
Huangchuan County Zhicheng Agricultural Materials Sales Department | |||
香榧壳蒲Chinese torreya shell | 6.64 | 0.13 | 诸暨香榧园Zhuji Chinese Torreya Garden |
米糠Rice bran | 6.54 | — | 嘉兴品硕商贸有限公司Jiaxing Pinshuo Trading Co., Ltd. |
聚丙烯酰胺Polyacrylamide | 5.93 | 0.11 | 巩义市银尚环保科技有限公司 |
Gongyi Yinshang Environmental Protection Technology Co., Ltd. | |||
壳聚糖Chitosan | 4.05 | — | 国药集团化学试剂有限公司Sinopharm Chemical Reagent Co., Ltd. |
图1 供试12种钝化材料的扫描电镜图(5 000×) A,腐殖酸;B,香榧壳蒲;C,椰壳炭;D,聚丙烯酰胺;E,米糠;F,壳聚糖;G,蒙脱石粉;H,蛭石粉;I,凹凸棒粉;J,粉煤灰;K,硅藻土;L,麦饭石。
Fig.1 Scanning electron microscope (SEM) images (5 000×) of 12 passivators A, Humic acid; B, Chinese torreya shell; C, Coconut shell charcoal; D, Polyacrylamide; E, Rice bran; F, Chitosan; G, Montmorillonite powder;H, Vermiculite powder; I, Attapulgite powder; J, Fly ash; K, Diatomite; L, Medical stone.
图2 无机类(A)和有机类(B)钝化材料对Cd的吸附等温曲线 M1,粉煤灰;M2,蛭石粉;M3,凹凸棒粉;M4,硅藻土;M5,麦饭石;M6,蒙脱石粉;M7,米糠;M8,椰壳炭;M9,香榧壳蒲;M10,壳聚糖;M11,聚丙烯酰胺;M12,腐殖酸。
Fig.2 Isothermal adsorption curve of cadmium by inorganic (A) and organic (B) passivators M1, Fly ash; M2, Vermiculite powder; M3 Attapulgite powder; M4, Diatomite; M5, Medical stone; M6, Montmorillonite powder; M7, Rice bran; M8, Coconut shell charcoal; M9, Chinese torreya shell; M10, Chitosan; M11, Polyacrylamide; M12, Humic acid.
材料 Material | 朗缪尔模型Langmuir model | 弗罗因德利希模型Freundlich model | |||||
---|---|---|---|---|---|---|---|
Qm/(mg·g-1) | b | MBC | R2 | KF/(mg·g-1) | n | R2 | |
腐殖酸Humic acid | 22.08 | 0.524 | 11.57 | 0.987 | 2.05 | 6.517 | 0.886 |
香榧壳蒲Chinese torreya shell | 21.99 | 0.034 | 0.75 | 0.868 | 1.70 | 1.341 | 0.966 |
椰壳炭Coconut shell charcoal | 15.63 | 0.439 | 6.86 | 0.989 | 4.22 | 5.745 | 0.849 |
聚丙烯酰胺Polyacrylamide | 9.20 | 0.007 | 0.06 | 0.938 | 1.57 | 0.182 | 0.951 |
米糠Rice bran | 8.72 | 0.078 | 0.68 | 0.980 | 3.64 | 2.021 | 0.945 |
壳聚糖Chitiosan | 4.79 | 0.043 | 0.21 | 0.992 | 3.80 | 1.051 | 0.823 |
蒙脱石粉Montmorillonite powder | 16.24 | 0.128 | 2.08 | 0.971 | 2.81 | 3.277 | 0.953 |
蛭石粉Vermiculite powder | 13.81 | 0.148 | 2.04 | 0.986 | 3.60 | 3.619 | 0.996 |
凹凸棒粉Attapulgite powder | 12.67 | 0.096 | 1.22 | 0.984 | 4.11 | 3.452 | 0.972 |
粉煤灰Fly ash | 10.22 | 1.515 | 15.48 | 0.999 | 5.47 | 4.542 | 0.826 |
硅藻土Diatomite | 5.90 | 0.030 | 0.18 | 0.955 | 3.54 | 1.103 | 0.836 |
麦饭石Medical stone | 3.65 | -0.145 | -0.53 | 0.976 | 8.92 | 2.223 | 0.551 |
表2 12种钝化材料对镉吸附等温线模型的特征值
Table 2 Characteristic values of adsorption isotherm model for cadmium by 12 passivators
材料 Material | 朗缪尔模型Langmuir model | 弗罗因德利希模型Freundlich model | |||||
---|---|---|---|---|---|---|---|
Qm/(mg·g-1) | b | MBC | R2 | KF/(mg·g-1) | n | R2 | |
腐殖酸Humic acid | 22.08 | 0.524 | 11.57 | 0.987 | 2.05 | 6.517 | 0.886 |
香榧壳蒲Chinese torreya shell | 21.99 | 0.034 | 0.75 | 0.868 | 1.70 | 1.341 | 0.966 |
椰壳炭Coconut shell charcoal | 15.63 | 0.439 | 6.86 | 0.989 | 4.22 | 5.745 | 0.849 |
聚丙烯酰胺Polyacrylamide | 9.20 | 0.007 | 0.06 | 0.938 | 1.57 | 0.182 | 0.951 |
米糠Rice bran | 8.72 | 0.078 | 0.68 | 0.980 | 3.64 | 2.021 | 0.945 |
壳聚糖Chitiosan | 4.79 | 0.043 | 0.21 | 0.992 | 3.80 | 1.051 | 0.823 |
蒙脱石粉Montmorillonite powder | 16.24 | 0.128 | 2.08 | 0.971 | 2.81 | 3.277 | 0.953 |
蛭石粉Vermiculite powder | 13.81 | 0.148 | 2.04 | 0.986 | 3.60 | 3.619 | 0.996 |
凹凸棒粉Attapulgite powder | 12.67 | 0.096 | 1.22 | 0.984 | 4.11 | 3.452 | 0.972 |
粉煤灰Fly ash | 10.22 | 1.515 | 15.48 | 0.999 | 5.47 | 4.542 | 0.826 |
硅藻土Diatomite | 5.90 | 0.030 | 0.18 | 0.955 | 3.54 | 1.103 | 0.836 |
麦饭石Medical stone | 3.65 | -0.145 | -0.53 | 0.976 | 8.92 | 2.223 | 0.551 |
图3 不同钝化材料对土壤有效态Cd含量的影响 CK,不添加任何钝化材料(空白对照);T1~T12处理分别添加聚丙烯酰胺、硅藻土、蒙脱石粉、壳聚糖、麦饭石、椰壳炭、蛭石粉、米糠、粉煤灰、腐殖酸、香榧壳蒲、凹凸棒粉。柱上无相同字母的表示差异显著(P<0.05)。
Fig.3 Effects of passivators on content of available Cd in soil CK, No passivator is applied (blank control). T1-T12 represent treatments with addition of polyacrylamide, diatomite, montmorillonite powder, chitiosan, medical stone, coconut shell charcoal, vermiculite powder, rice bran, fly ash, humic acid, Chinese torreya shell, attapulgite powder, respectively. Bars marked without the same letters indicate significant difference at P<0.05.
处理 Treatment | pH | SOM/ (g·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | AN/ (mg·kg-1) | TN/ (g·kg-1) |
---|---|---|---|---|---|---|
CK | 5.30±0.03 g | 25.48±0.24 cd | 27.80±7.91 bc | 71.79±1.03 d | 164.50±1.21 d | 1.50±0.07 abc |
T1 | 5.40±0.08 fg | 25.31±0.04 cd | 20.00±6.55 c | 75.25±0.40 d | 229.60±11.27 a | 1.55±0.02 a |
T2 | 5.37±0.15 g | 24.97±0.56 cde | 30.93±9.01 bc | 73.79±0.32 d | 162.17±22.25 d | 1.48±0.03 bc |
T3 | 5.89±0.12 bc | 24.65±0.91 de | 35.80±4.37 b | 75.41±0.68 d | 203.23±11.55 b | 1.43±0.05 c |
T4 | 5.04±0.01 h | 30.30±0.82 a | 30.50±0.46 bc | 70.78±0.95 d | 162.87±7.87 d | 1.46±0.05 bc |
T5 | 6.04±0.14 b | 24.94±0.44 cde | 33.93±9.73 bc | 73.29±0.52 d | 162.40±1.85 d | 1.50±0.05 abc |
T6 | 5.47±0.04 fg | 24.87±0.43 cde | 21.27±2.41 c | 114.80±3.97 b | 161.23±2.02 d | 1.44±0.01 c |
T7 | 5.71±0.05 de | 24.96±0.40 cde | 30.77±4.32 bc | 77.03±0.96 d | 160.77±4.10 d | 1.45±0.04 c |
T8 | 5.68±0.06 de | 25.44±0.51 cd | 38.87±2.24 b | 97.20±1.16 c | 191.57±4.66 bc | 1.47±0.01 bc |
T9 | 5.93±0.05 b | 25.80±0.22 c | 35.77±0.15 b | 72.81±1.78 d | 166.60±19.85 d | 1.45±0.02 c |
T10 | 5.56±0.11 ef | 27.77±0.63 b | 37.13±4.23 b | 71.83±1.25 d | 172.67±7.01 d | 1.47±0.03 bc |
T11 | 5.75±0.04 cd | 27.24±0.30 b | 52.57±14.50 a | 339.23±27.38 a | 165.90±7.41 d | 1.53±0.01 ab |
T12 | 6.86±0.19 a | 24.27±0.14 e | 27.20±11.18 bc | 74.49±1.73 d | 179.67±7.08 cd | 1.46±0.02 bc |
表3 不同钝化材料对土壤理化性质的影响
Table 3 Effect of passivators on soil physicochemical properties
处理 Treatment | pH | SOM/ (g·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | AN/ (mg·kg-1) | TN/ (g·kg-1) |
---|---|---|---|---|---|---|
CK | 5.30±0.03 g | 25.48±0.24 cd | 27.80±7.91 bc | 71.79±1.03 d | 164.50±1.21 d | 1.50±0.07 abc |
T1 | 5.40±0.08 fg | 25.31±0.04 cd | 20.00±6.55 c | 75.25±0.40 d | 229.60±11.27 a | 1.55±0.02 a |
T2 | 5.37±0.15 g | 24.97±0.56 cde | 30.93±9.01 bc | 73.79±0.32 d | 162.17±22.25 d | 1.48±0.03 bc |
T3 | 5.89±0.12 bc | 24.65±0.91 de | 35.80±4.37 b | 75.41±0.68 d | 203.23±11.55 b | 1.43±0.05 c |
T4 | 5.04±0.01 h | 30.30±0.82 a | 30.50±0.46 bc | 70.78±0.95 d | 162.87±7.87 d | 1.46±0.05 bc |
T5 | 6.04±0.14 b | 24.94±0.44 cde | 33.93±9.73 bc | 73.29±0.52 d | 162.40±1.85 d | 1.50±0.05 abc |
T6 | 5.47±0.04 fg | 24.87±0.43 cde | 21.27±2.41 c | 114.80±3.97 b | 161.23±2.02 d | 1.44±0.01 c |
T7 | 5.71±0.05 de | 24.96±0.40 cde | 30.77±4.32 bc | 77.03±0.96 d | 160.77±4.10 d | 1.45±0.04 c |
T8 | 5.68±0.06 de | 25.44±0.51 cd | 38.87±2.24 b | 97.20±1.16 c | 191.57±4.66 bc | 1.47±0.01 bc |
T9 | 5.93±0.05 b | 25.80±0.22 c | 35.77±0.15 b | 72.81±1.78 d | 166.60±19.85 d | 1.45±0.02 c |
T10 | 5.56±0.11 ef | 27.77±0.63 b | 37.13±4.23 b | 71.83±1.25 d | 172.67±7.01 d | 1.47±0.03 bc |
T11 | 5.75±0.04 cd | 27.24±0.30 b | 52.57±14.50 a | 339.23±27.38 a | 165.90±7.41 d | 1.53±0.01 ab |
T12 | 6.86±0.19 a | 24.27±0.14 e | 27.20±11.18 bc | 74.49±1.73 d | 179.67±7.08 cd | 1.46±0.02 bc |
[1] | 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5):10-11. |
The national soil pollution survey bulletin[J]. China Environmental Protection Industry, 2014(5):10-11. (in Chinese) | |
[2] | 徐隆华, 王佳盟, 韩研科, 等. 轻中度污染耕地安全利用与治理修复技术措施探讨[J]. 农业开发与装备, 2022(3):121-123. |
XU L H, WANG J M, HAN Y K, et al. Discussion on the technical measures of safe utilization and treatment of light and moderate polluted cultivated land[J]. Agricultural Development & Equipments, 2022(3):121-123. (in Chinese) | |
[3] | XU D M, FU R B, WANG J X, et al. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: available stabilizing materials and associated evaluation methods: a critical review[J]. Journal of Cleaner Production, 2021, 321:128730. |
[4] | HE L L, HUANG D Y, ZHANG Q, et al. Meta-analysis of the effects of liming on soil pH and cadmium accumulation in crops[J]. Ecotoxicology and Environmental Safety, 2021, 223:112621. |
[5] | DE LⅣERA J, MCLAUGHLIN M J, HETTIARACHCHI G M, et al. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions[J]. Science of the Total Environment, 2011, 409(8):1489-1497. |
[6] | 刘雪梅, 屈凌霄. 土壤重金属污染钝化修复技术研究进展[J]. 应用化工, 2022, 51(6):1799-1803. |
LIU X M, QU L X. Research progress of passivation remediation technology for soil heavy metal pollution[J]. Applied Chemical Industry, 2022, 51(6):1799-1803. (in Chinese with English abstract) | |
[7] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000:30-57. |
[8] | 李亮亮, 张大庚, 李天来, 等. 土壤有效态重金属提取剂选择的研究[J]. 土壤, 2008, 40(5):819-823. |
LI L L, ZHANG D G, LI T L, et al. On relation between heavy metal available contents of soil determined by different extractants and of maize organs[J]. Soils, 2008, 40(5):819-823. (in Chinese with English abstract) | |
[9] | 王一锟, 梁婷, 周国朋, 等. 不同生物质炭的镉吸附特征及对云南土壤镉污染的调控效应[J]. 土壤学报, 2024, 61(1):151-162. |
WANG Y K, LIANG T, ZHOU G P, et al. Cadmium adsorption characteristics of different biochar and their regulatory effects on soil Cd pollution, in Yunnan[J]. Acta Pedologica Sinica, 2024, 61(1):151-162. (in Chinese with English abstract) | |
[10] | 夏瑶, 娄运生, 杨超光, 等. 几种水稻土对磷的吸附与解吸特性研究[J]. 中国农业科学, 2002, 35(11):1369-1374. |
XIA Y, LOU Y S, YANG C G, et al. Characteristics of phosphate adsorption and desorption in paddy soils[J]. Scientia Agricultura Sinica, 2002, 35(11):1369-1374. (in Chinese with English abstract) | |
[11] | 杭小帅, 周健民, 王火焰, 等. 粘土矿物修复重金属污染土壤[J]. 环境工程学报, 2007, 1(9):113-120. |
HANG X S, ZHOU J M, WANG H Y, et al. Remediation of heavy metal contaminated soils using clay minerals[J]. Chinese Journal of Environmental Engineering, 2007, 1(9):113-120. (in Chinese with English abstract) | |
[12] | 王丹丽, 关子川, 王恩德. 腐殖质对重金属离子的吸附作用[J]. 黄金, 2003, 24(1):47-49. |
WANG D L, GUAN Z C, WANG E D. Adsorption of heavy metal ions onto humus[J]. Gold, 2003, 24(1):47-49. (in Chinese with English abstract) | |
[13] | 朱霞萍, 白德奎, 李锡坤, 等. 镉在蒙脱石等粘土矿物上的吸附行为研究[J]. 岩石矿物学杂志, 2009, 28(6):643-648. |
ZHU X P, BAI D K, LI X K, et al. The adsorption behaviors of montmorillonite and some other clay minerals for cadmium[J]. Acta Petrologica et Mineralogica, 2009, 28(6):643-648. (in Chinese with English abstract) | |
[14] | 马烁, 熊双莲, 熊力, 等. 铁改性海泡石吸附镉和砷效果及其影响因素[J]. 水处理技术, 2019, 45(10):73-77. |
MA S, XIONG S L, XIONG L, et al. Adsorption efficiency of cadmium and arsenic by iron-modified sepiolite and its influencing factors[J]. Technology of Water Treatment, 2019, 45(10):73-77. (in Chinese with English abstract) | |
[15] | 李丽, 刘中, 宁阳, 等. 不同类型粘土矿物对镉吸附与解吸行为的研究[J]. 山西农业大学学报(自然科学版), 2017, 37(1):60-66. |
LI L, LIU Z, NING Y, et al. Study on cadmium adsorption-desorption behavior of diffrent clay minerals[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2017, 37(1):60-66. (in Chinese with English abstract) | |
[16] | 王荐, 李仁英, 何跃, 等. 凹凸棒石和海泡石对镉离子的吸附效果[J]. 生态与农村环境学报, 2016, 32(6):986-991. |
WANG J, LI R Y, HE Y, et al. Effects of attapulgite and sepiolite adsorbing cadmium in aqueous solution[J]. Journal of Ecology and Rural Environment, 2016, 32(6):986-991. (in Chinese with English abstract) | |
[17] | WANG W J, CHEN H, WANG A Q. Adsorption characteristics of Cd(Ⅱ) from aqueous solution onto activated palygorskite[J]. Separation and Purification Technology, 2007, 55(2):157-164. |
[18] | 吕福荣, 刘艳. 腐殖酸对钴、镉作用的研究[J]. 腐植酸, 2008(1):40. |
LÜ F R, LIU Y. Effect of humic acid on cobalt and cadmium[J]. Humic Acid, 2008(1):40. (in Chinese) | |
[19] | 陈荣平, 张银龙, 马爱军, 等. 腐殖酸改性及其对镉的吸附特性[J]. 南京林业大学学报(自然科学版), 2014, 38(4):102-106. |
CHEN R P, ZHANG Y L, MA A J, et al. Study on the modification of humic acid and its adsorption to cadmium[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(4):102-106. (in Chinese with English abstract) | |
[20] | WU Y, LIU Z, YANG G X, et al. Combined effect of humic acid and vetiver grass on remediation of cadmium-polluted water[J]. Ecotoxicology and Environmental Safety, 2022, 244:114026. |
[21] | 邵坤, 赵改红, 赵朝辉. 腐植酸改性强化磁铁矿吸附水体中铅镉的实验研究[J]. 岩矿测试, 2019, 38(6):715-723. |
SHAO K, ZHAO G H, ZHAO C H. Enhancement of Pb and Cd adsorption in water samples by magnetite using humic acid as modifier[J]. Rock and Mineral Analysis, 2019, 38(6):715-723. (in Chinese with English abstract) | |
[22] | JIN X Z, WU X W, ZHANG H Y, et al. Novel humic acid-based carbon materials:adsorption thermodynamics and kinetics for cadmium(Ⅱ) ions[J]. Colloid and Polymer Science, 2018, 296(3):537-546. |
[23] | 李丹阳, 刘玉玲, 董思俊, 等. 多种吸附材料动静态吸附实验研究[C]// 第九届重金属污染防治技术及风险评价研讨会论文集. 武汉: 中国环境科学学会, 2019:130-139. |
[24] | 牟海燕, 蒋茜茜, 吴晨伟, 等. 五种土壤胶体对重金属镉的吸附特征研究[J]. 四川大学学报(自然科学版), 2019, 56(6):1125-1130. |
MOU H Y, JIANG Q Q, WU C W, et al. Study on the adsorption characteristics of cadmium by five soil colloids[J]. Journal of Sichuan University(Natural Science Edition), 2019, 56(6):1125-1130. (in Chinese with English abstract) | |
[25] | 姜淼, 王维业, 王一鹏, 等. 重金属污染土壤的无机固化稳定材料研究进展[J]. 环境保护科学, 2021, 47(4):1-9. |
JIANG M, WANG W Y, WANG Y P, et al. Research status of inorganic solidification/stabilization amendments for heavy metal-contaminated soil[J]. Environmental Protection Science, 2021, 47(4):1-9. (in Chinese with English abstract) | |
[26] | 任超, 朱利文, 李竞天, 等. 不同钝化剂对弱酸性镉污染土壤的钝化效果[J]. 生态与农村环境学报, 2022, 38(3):383-390. |
REN C, ZHU L W, LI J T, et al. Study on the passivation effect of different treatments on weakly acidic cadmium polluted soil[J]. Journal of Ecology and Rural Environment, 2022, 38(3):383-390. (in Chinese with English abstract) | |
[27] | LI J R, XU Y M. Use of clay to remediate cadmium contaminated soil under different water management regimes[J]. Ecotoxicology and Environmental Safety, 2017, 141:107-112. |
[28] | ZHANG Q, CHEN H F, HUANG D Y, et al. Water managements limit heavy metal accumulation in rice: dual effects of iron-plaque formation and microbial communities[J]. The Science of the Total Environment, 2019, 687:790-799. |
[29] | LIAO G J, WU Q H, FENG R W, et al. Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies[J]. Journal of Environmental Management, 2016, 170:116-122. |
[1] | 肖银润, 马吉平, 王赟萍, 王素贞, 钟国祥, 熊小文, 张诚. 三种钝化剂对土壤重金属和羊肚菌子实体重金属含量的影响[J]. 浙江农业学报, 2024, 36(7): 1646-1656. |
[2] | 董爱琴, 陈院华, 杨涛, 徐昌旭, 程丽群, 谢杰. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 2024, 36(3): 600-612. |
[3] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
[4] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
[5] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
[6] | 韩静, 朱依婷, 郑驰, 马莉红, 张亚男, 曾秋艳, 刘书亮, 陈姝娟. 毛豆壳生物炭的活化及其对甲萘威的吸附性能[J]. 浙江农业学报, 2023, 35(9): 2202-2211. |
[7] | 袁太艳, 严正娟, 黄成东, 张志业, 王辛龙. 聚磷酸铵在紫色土壤中的吸附-解吸特征[J]. 浙江农业学报, 2023, 35(2): 403-416. |
[8] | 林小兵, 张鸿燕, 张秋梅, 周利军, 徐德胜, 郭乃嘉, 邱祥凤, 黄海平. 基于多指标的镉低积累水稻品种筛选[J]. 浙江农业学报, 2023, 35(11): 2507-2515. |
[9] | 宋盼盼, 常会庆, 李岚坤, 王启震. 叶面阻控剂在轻度镉污染石灰性麦田上的降镉效果[J]. 浙江农业学报, 2023, 35(11): 2655-2663. |
[10] | 王建兵, 王金涛, 颜可昕, 郭小兰, 王盾, 戴洪文. 豆瓣菜在镉铅复合污染条件下的镉铅积累特性[J]. 浙江农业学报, 2023, 35(11): 2664-2672. |
[11] | 范丽莹, 范婷婷, 仝宗军, 梁立韵, 赵志勇, 陈辉, 周昌艳, 赵晓燕. 镉胁迫对不同品种羊肚菌镉富集规律与抗氧化系统的影响[J]. 浙江农业学报, 2023, 35(10): 2321-2331. |
[12] | 季洋洋, 张鹏, 刘小强, 董贞汝, 张伟, 樊霆. 纳米银胁迫下黄曲霉(Aspergillus flavus)TL-F3的氧化应激响应及其吸附能力[J]. 浙江农业学报, 2023, 35(1): 128-137. |
[13] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
[14] | 黄锋, 邢建平, 符少怀, 潘攀, 吴琳, 刘贝贝, 陈淼. 不同安全利用技术对琼北地区稻菜轮作系统镉削减的效果[J]. 浙江农业学报, 2022, 34(8): 1725-1733. |
[15] | 邰粤鹰, 何腾兵, 陈小然, 张旺, 黄啸云, 刘鸿雁, 高珍冉. 叶面喷施阻控剂对常淹水稻田水稻吸收转运镉的影响[J]. 浙江农业学报, 2022, 34(6): 1248-1257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||