浙江农业学报 ›› 2025, Vol. 37 ›› Issue (6): 1301-1308.DOI: 10.3969/j.issn.1004-1524.20241073
收稿日期:
2024-12-09
出版日期:
2025-06-25
发布日期:
2025-07-08
作者简介:
张智(1982—),男,浙江台州人,硕士,农艺师,主要从事植物营养与土壤改良技术研究。E-mail:zzlz@zju.edu.cn
基金资助:
ZHANG Zhi1(), HE Haohao1, YU Miao1, XU Jianfeng2
Received:
2024-12-09
Online:
2025-06-25
Published:
2025-07-08
摘要: 采用连续3 a的田间定位试验,研究化肥减量配施不同土壤改良剂在阻控农田土壤酸化、提高水稻产量上的效果。试验共设置9个处理:CK,不施肥;CF,农民习惯施肥;RF,化肥减量;T1,化肥减量+猪粪;T2,化肥减量+石灰;T3,化肥减量+农巧施土壤改良剂;T4,化肥减量+有机土壤改良剂;T5,化肥减量+丰收延土壤改良剂;T6,化肥减量+高钙土壤改良剂。结果表明:与CF处理相比,T1~T6处理的土壤pH值显著(P<0.05)升高0.44~1.39,土壤交换性H+、交换性Al3+含量和交换性酸总量分别显著降低22.8%~39.7%、33.3%~69.4%、30.8%~60.4%,土壤交换性Ca2+含量、阳离子交换量、交换性盐基离子总量和盐基饱和度分别显著增长63.2%~120.5%、9.8%~18.5%、56.4%~95.4%、42.2%~66.5%;T1、T4、T5处理的早稻产量分别显著提高了20.5%、16.7%、9.9%。综合考虑土壤酸化阻控和水稻增产效应,化肥减量+有机土壤改良剂(3 000 kg·hm-2)是该试验条件下较理想的土壤改良模式。
中图分类号:
张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308.
ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield[J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308.
处理 Treatment | pH值 pH value | 交换性H+含量 Exchangeable H+ content/ (cmol·kg-1) | 交换性Al3+含量 Exchangeable Al3+ content/ (cmol·kg-1) | 交换性酸总量 Exchangeable acidity/ (cmol·kg-1) |
---|---|---|---|---|
CK | 4.81±0.15 d | 0.48±0.06 a | 1.29±0.16 a | 1.77±0.22 a |
CF | 4.70±0.13 d | 0.45±0.08 a | 1.37±0.20 a | 1.82±0.28 a |
RF | 4.75±0.15 d | 0.47±0.09 a | 1.36±0.19 a | 1.83±0.25 a |
T1 | 5.14±0.16 c | 0.35±0.04 b | 0.91±0.07 b | 1.26±0.11 b |
T2 | 6.09±0.22 a | 0.30±0.03 b | 0.42±0.06 d | 0.72±0.08 d |
T3 | 5.22±0.16 c | 0.33±0.03 b | 0.92±0.08 b | 1.25±0.09 b |
T4 | 5.31±0.15 c | 0.32±0.03 b | 0.89±0.07 b | 1.22±0.09 b |
T5 | 5.80±0.26 b | 0.34±0.04 b | 0.74±0.08 bc | 1.08±0.05 bc |
T6 | 5.58±0.28 b | 0.27±0.03 b | 0.55±0.03 cd | 0.83±0.03 cd |
表1 不同处理的土壤pH值及交换性H+、Al3+含量和交换性酸总量
Table 1 Soil pH value, exchangeable H+ and Al3+content and exchangeable acidity under treatments
处理 Treatment | pH值 pH value | 交换性H+含量 Exchangeable H+ content/ (cmol·kg-1) | 交换性Al3+含量 Exchangeable Al3+ content/ (cmol·kg-1) | 交换性酸总量 Exchangeable acidity/ (cmol·kg-1) |
---|---|---|---|---|
CK | 4.81±0.15 d | 0.48±0.06 a | 1.29±0.16 a | 1.77±0.22 a |
CF | 4.70±0.13 d | 0.45±0.08 a | 1.37±0.20 a | 1.82±0.28 a |
RF | 4.75±0.15 d | 0.47±0.09 a | 1.36±0.19 a | 1.83±0.25 a |
T1 | 5.14±0.16 c | 0.35±0.04 b | 0.91±0.07 b | 1.26±0.11 b |
T2 | 6.09±0.22 a | 0.30±0.03 b | 0.42±0.06 d | 0.72±0.08 d |
T3 | 5.22±0.16 c | 0.33±0.03 b | 0.92±0.08 b | 1.25±0.09 b |
T4 | 5.31±0.15 c | 0.32±0.03 b | 0.89±0.07 b | 1.22±0.09 b |
T5 | 5.80±0.26 b | 0.34±0.04 b | 0.74±0.08 bc | 1.08±0.05 bc |
T6 | 5.58±0.28 b | 0.27±0.03 b | 0.55±0.03 cd | 0.83±0.03 cd |
处理 Treatment | 交换性Ca2+含量 Exchangeable Ca2+ content/ (cmol·kg-1) | 交换性Mg2+含量 Exchangeable Mg2+ content/ (cmol·kg-1) | 交换性K+含量 Exchangeable K+ content/ (cmol·kg-1) | 交换性Na+含量 Exchangeable Na+ content/ (cmol·kg-1) | 交换性盐基 离子总量 Base-exchangeable ions content/ (cmol·kg-1) | CEC/ (cmol·kg-1) | 盐基饱和度 Base saturation/% |
---|---|---|---|---|---|---|---|
CK | 2.62±0.28 bc | 0.87±0.14 d | 0.09±0.01 d | 0.11±0.01 a | 3.69±0.15 c | 6.89±0.41 cd | 53.78±5.25 c |
CF | 1.94±0.33 d | 0.73±0.08 d | 0.12±0.02 c | 0.12±0.02 a | 2.91±0.23 d | 6.66±0.26 d | 42.85±5.15 d |
RF | 2.38±0.17 cd | 0.69±0.07 d | 0.12±0.01 c | 0.11±0.01 a | 3.30±0.12 cd | 6.79±0.22 d | 48.69±3.00 cd |
T1 | 3.17±0.11 b | 1.12±0.07 bc | 0.15±0.02 b | 0.12±0.01 a | 4.56±0.07 b | 7.31±0.35 bc | 62.38±2.29 b |
T2 | 4.28±0.65 a | 1.19±0.12 ab | 0.12±0.01 c | 0.10±0.03 a | 5.69±0.79 a | 7.85±0.38 ab | 72.31±6.99 a |
T3 | 4.01±0.57 a | 0.87±0.19 d | 0.13±0.01 c | 0.11±0.02 a | 5.13±0.73 ab | 7.49±0.14 ab | 68.31±8.30 ab |
T4 | 3.85±0.36 a | 1.36±0.12 a | 0.17±0.02 ab | 0.11±0.01 a | 5.50±0.49 a | 7.90±0.30 a | 69.52±3.46 ab |
T5 | 4.10±0.27 a | 1.24±0.08 ab | 0.18±0.01 a | 0.10±0.03 a | 5.63±0.37 a | 7.70±0.30 ab | 73.03±1.94 a |
T6 | 4.12±0.45 a | 0.92±0.20 cd | 0.13±0.02 c | 0.11±0.02 a | 5.28±0.27 a | 7.51±0.23 ab | 70.26±2.41 ab |
表2 不同处理的土壤阳离子交换量(CEC)、交换性盐基离子含量与盐基饱和度
Table 2 Soil cation exchange capacity (CEC), contents of base-exchangeable ions and base saturation under treatments
处理 Treatment | 交换性Ca2+含量 Exchangeable Ca2+ content/ (cmol·kg-1) | 交换性Mg2+含量 Exchangeable Mg2+ content/ (cmol·kg-1) | 交换性K+含量 Exchangeable K+ content/ (cmol·kg-1) | 交换性Na+含量 Exchangeable Na+ content/ (cmol·kg-1) | 交换性盐基 离子总量 Base-exchangeable ions content/ (cmol·kg-1) | CEC/ (cmol·kg-1) | 盐基饱和度 Base saturation/% |
---|---|---|---|---|---|---|---|
CK | 2.62±0.28 bc | 0.87±0.14 d | 0.09±0.01 d | 0.11±0.01 a | 3.69±0.15 c | 6.89±0.41 cd | 53.78±5.25 c |
CF | 1.94±0.33 d | 0.73±0.08 d | 0.12±0.02 c | 0.12±0.02 a | 2.91±0.23 d | 6.66±0.26 d | 42.85±5.15 d |
RF | 2.38±0.17 cd | 0.69±0.07 d | 0.12±0.01 c | 0.11±0.01 a | 3.30±0.12 cd | 6.79±0.22 d | 48.69±3.00 cd |
T1 | 3.17±0.11 b | 1.12±0.07 bc | 0.15±0.02 b | 0.12±0.01 a | 4.56±0.07 b | 7.31±0.35 bc | 62.38±2.29 b |
T2 | 4.28±0.65 a | 1.19±0.12 ab | 0.12±0.01 c | 0.10±0.03 a | 5.69±0.79 a | 7.85±0.38 ab | 72.31±6.99 a |
T3 | 4.01±0.57 a | 0.87±0.19 d | 0.13±0.01 c | 0.11±0.02 a | 5.13±0.73 ab | 7.49±0.14 ab | 68.31±8.30 ab |
T4 | 3.85±0.36 a | 1.36±0.12 a | 0.17±0.02 ab | 0.11±0.01 a | 5.50±0.49 a | 7.90±0.30 a | 69.52±3.46 ab |
T5 | 4.10±0.27 a | 1.24±0.08 ab | 0.18±0.01 a | 0.10±0.03 a | 5.63±0.37 a | 7.70±0.30 ab | 73.03±1.94 a |
T6 | 4.12±0.45 a | 0.92±0.20 cd | 0.13±0.02 c | 0.11±0.02 a | 5.28±0.27 a | 7.51±0.23 ab | 70.26±2.41 ab |
处理 Treatment | 有机质含量 Organic matter content/ (g·kg-1) | 全氮含量 Total N content/ (g·kg-1) | 碱解氮含量 Available N content/ (mg·kg-1) | 有效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 15.2±0.6 de | 1.09±0.03 cd | 86.9±8.0 d | 43.6±3.4 f | 41.7±4.5 f |
CF | 16.7±1.0 c | 1.17±0.04 b | 92.7±0.9 cd | 84.4±1.8 a | 76.0±2.0 b |
RF | 16.8±0.8 c | 1.15±0.01 bc | 95.5±1.0 c | 65.1±1.4 c | 73.7±3.8 b |
T1 | 19.8±0.3 a | 1.25±0.06 a | 111.4±3.5 a | 84.2±0.3 a | 84.3±2.1 a |
T2 | 15.0±0.1 e | 1.03±0.04 d | 106.7±0.9 ab | 46.0±0.7 f | 37.3±2.3 g |
T3 | 18.4±0.6 b | 1.17±0.02 b | 101.5±3.6 b | 64.8±2.8 cd | 58.0±1.0 d |
T4 | 18.0±0.7 b | 1.18±0.06 b | 104.8±5.5 b | 72.2±0.8 b | 68.7±2.3 c |
T5 | 18.5±0.4 b | 1.15±0.02 bc | 103.7±2.2 b | 61.7±1.0 d | 53.3±3.2 e |
T6 | 16.3±0.6 cd | 1.11±0.04 bc | 105.1±0.9 b | 55.5±1.0 e | 56.0±4.0 de |
表3 不同处理的土壤养分含量
Table 3 Soil nutrients content under treatments
处理 Treatment | 有机质含量 Organic matter content/ (g·kg-1) | 全氮含量 Total N content/ (g·kg-1) | 碱解氮含量 Available N content/ (mg·kg-1) | 有效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 15.2±0.6 de | 1.09±0.03 cd | 86.9±8.0 d | 43.6±3.4 f | 41.7±4.5 f |
CF | 16.7±1.0 c | 1.17±0.04 b | 92.7±0.9 cd | 84.4±1.8 a | 76.0±2.0 b |
RF | 16.8±0.8 c | 1.15±0.01 bc | 95.5±1.0 c | 65.1±1.4 c | 73.7±3.8 b |
T1 | 19.8±0.3 a | 1.25±0.06 a | 111.4±3.5 a | 84.2±0.3 a | 84.3±2.1 a |
T2 | 15.0±0.1 e | 1.03±0.04 d | 106.7±0.9 ab | 46.0±0.7 f | 37.3±2.3 g |
T3 | 18.4±0.6 b | 1.17±0.02 b | 101.5±3.6 b | 64.8±2.8 cd | 58.0±1.0 d |
T4 | 18.0±0.7 b | 1.18±0.06 b | 104.8±5.5 b | 72.2±0.8 b | 68.7±2.3 c |
T5 | 18.5±0.4 b | 1.15±0.02 bc | 103.7±2.2 b | 61.7±1.0 d | 53.3±3.2 e |
T6 | 16.3±0.6 cd | 1.11±0.04 bc | 105.1±0.9 b | 55.5±1.0 e | 56.0±4.0 de |
处理 Treatment | 有效穗数 Effective panicles/ (104 hm-2) | 每穗粒数 Spikelets per panicle | 结实率 Seed setting rate/% | 千粒重 1 000-grain weight/g | 产量 Yield/ (kg·hm-2) |
---|---|---|---|---|---|
CK | 257.95±10.39 b | 84.44±0.84 c | 83.31±0.43 a | 26.07±0.91 a | 4 740±128 f |
CF | 296.22±23.06 a | 100.17±13.07 abc | 82.24±2.79 a | 25.77±0.45 a | 5 742±697 de |
RF | 286.24±23.06 ab | 102.95±13.44 ab | 81.84±1.75 a | 25.87±0.40 a | 5 781±522 de |
T1 | 299.55±13.21 a | 116.33±0.89 a | 80.30±1.17 a | 25.83±0.60 a | 6 918±321 a |
T2 | 284.57±19.97 ab | 115.41±3.87 a | 80.32±1.63 a | 25.53±0.70 a | 6 126±419 cd |
T3 | 281.24±16.05 ab | 97.87±6.17 bc | 80.42±0.74 a | 25.80±1.66 a | 5 642±480 e |
T4 | 276.25±20.18 ab | 114.13±19.34 ab | 82.98±1.40 a | 25.87±0.55 a | 6 699±510 ab |
T5 | 272.92±17.53 ab | 108.21±8.32 ab | 82.43±2.24 a | 26.00±1.32 a | 6 309±476 bc |
T6 | 281.24±7.63 ab | 106.48±4.75 ab | 83.01±2.59 a | 25.73±0.25 a | 5 976±303 cde |
表4 不同处理的水稻产量及其构成要素
Table 4 Rice yield and yield components under treatments
处理 Treatment | 有效穗数 Effective panicles/ (104 hm-2) | 每穗粒数 Spikelets per panicle | 结实率 Seed setting rate/% | 千粒重 1 000-grain weight/g | 产量 Yield/ (kg·hm-2) |
---|---|---|---|---|---|
CK | 257.95±10.39 b | 84.44±0.84 c | 83.31±0.43 a | 26.07±0.91 a | 4 740±128 f |
CF | 296.22±23.06 a | 100.17±13.07 abc | 82.24±2.79 a | 25.77±0.45 a | 5 742±697 de |
RF | 286.24±23.06 ab | 102.95±13.44 ab | 81.84±1.75 a | 25.87±0.40 a | 5 781±522 de |
T1 | 299.55±13.21 a | 116.33±0.89 a | 80.30±1.17 a | 25.83±0.60 a | 6 918±321 a |
T2 | 284.57±19.97 ab | 115.41±3.87 a | 80.32±1.63 a | 25.53±0.70 a | 6 126±419 cd |
T3 | 281.24±16.05 ab | 97.87±6.17 bc | 80.42±0.74 a | 25.80±1.66 a | 5 642±480 e |
T4 | 276.25±20.18 ab | 114.13±19.34 ab | 82.98±1.40 a | 25.87±0.55 a | 6 699±510 ab |
T5 | 272.92±17.53 ab | 108.21±8.32 ab | 82.43±2.24 a | 26.00±1.32 a | 6 309±476 bc |
T6 | 281.24±7.63 ab | 106.48±4.75 ab | 83.01±2.59 a | 25.73±0.25 a | 5 976±303 cde |
[1] | MENG C, TIAN D S, ZENG H, et al. Global soil acidification impacts on belowground processes[J]. Environmental Research Letters, 2019, 14(7): 074003. |
[2] | YU Z P, CHEN H Y H, SEARLE E B, et al. Whole soil acidification and base cation reduction across subtropical China[J]. Geoderma, 2020, 361: 114107. |
[3] | BINKLEY D, DRISCOLL C T, ALLEN H L, et al. Acidic deposition and forest soils[M]. New York: Springer-Verlag, 1989. |
[4] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. |
[5] | 王文娟, 杨知建, 徐华勤. 我国土壤酸化研究概述[J]. 安徽农业科学, 2015, 43(8): 54-56. |
WANG W J, YANG Z J, XU H Q. Overview of soil acidification research in China[J]. Journal of Anhui Agricultural Sciences, 2015, 43(8): 54-56. (in Chinese with English abstract) | |
[6] | 吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤, 2013, 45(4): 577-584. |
WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south China and prevention[J]. Soils, 2013, 45(4): 577-584. (in Chinese with English abstract) | |
[7] | 何园球. 红壤质量演变与调控[M]. 北京: 科学出版社, 2008: 132-140. |
[8] | TIAN D S, NIU S L. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10(2): 024019. |
[9] | ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759. |
[10] | PUISSANT J, JONES B, GOODALL T, et al. The pH optimum of soil exoenzymes adapt to long term changes in soil pH[J]. Soil Biology and Biochemistry, 2019, 138: 107601. |
[11] | BRENNAN R F, BOLLAND M D A, BELL R W. Increased risk of zinc deficiency in wheat on soils limed to correct soil acidity[J]. Soil Research, 2005, 43(5): 647. |
[12] | 朱经伟, 张云贵, 刘青丽, 等. 石灰与腐植酸钾配施对新平整土地烤烟产量和品质的影响[J]. 腐植酸, 2017(1): 54. |
ZHU J W, ZHANG Y G, LIU Q L, et al. Effect of combined application of lime and potassium humate on yield and quality of flue-cured tobacco in newly leveled land[J]. Humic Acid, 2017(1): 54. (in Chinese) | |
[13] | 杜玉凤, 吕乐福, 何振全, 等. 矿物土壤改良剂对酸性红壤改良的影响[J]. 水土保持学报, 2016, 30(3): 351-354. |
DU Y F, LV L F, HE Z Q, et al. Effect of mineral conditioners on improvement of acid red soil[J]. Journal of Soil and Water Conservation, 2016, 30(3): 351-354. (in Chinese with English abstract) | |
[14] | 冀建华, 李絮花, 刘秀梅, 等. 硅钙钾镁肥对南方稻田土壤酸度的改良作用[J]. 土壤学报, 2019, 56(4): 895-906. |
JI J H, LI X H, LIU X M, et al. Effect of Si-Ca-K-Mg fertilizer remedying acid paddy soil in south China[J]. Acta Pedologica Sinica, 2019, 56(4): 895-906. (in Chinese with English abstract) | |
[15] | SHI R Y, LIU Z D, LI Y, et al. Mechanisms for increasing soil resistance to acidification by long-term manure application[J]. Soil and Tillage Research, 2019, 185: 77-84. |
[16] | 孟红旗, 吕家珑, 徐明岗, 等. 有机肥的碱度及其减缓土壤酸化的机制[J]. 植物营养与肥料学报, 2012, 18(5): 1153-1160. |
MENG H Q, LÜ J L, XU M G, et al. Alkalinity of organic manure and its mechanism for mitigating soil acidification[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1153-1160. (in Chinese with English abstract) | |
[17] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000: 12-204. |
[18] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 56-271. |
[19] | 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000: 304-311. |
[20] | 王伯仁, 蔡泽江, 李冬初. 长期不同施肥对红壤旱地肥力的影响[J]. 水土保持学报, 2010, 24(3): 85-88. |
WANG B R, CAI Z J, LI D C. Effect of different long-term fertilization on the fertility of red upland soil[J]. Journal of Soil and Water Conservation, 2010, 24(3): 85-88. (in Chinese with English abstract) | |
[21] | CAI Z J, WANG B R, XU M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J]. Journal of Soils and Sediments, 2015, 15(2): 260-270. |
[22] | 张永春, 汪吉东, 沈明星, 等. 长期不同施肥对太湖地区典型土壤酸化的影响[J]. 土壤学报, 2010, 47(3): 465-472. |
ZHANG Y C, WANG J D, SHEN M X, et al. Effects of long-term fertilization on soil acidification in Taihu Lake region, China[J]. Acta Pedologica Sinica, 2010, 47(3): 465-472. (in Chinese with English abstract) | |
[23] | 冀建华, 吕真真, 刘淑珍, 等. 长期施用化肥对南方稻田土壤酸化和盐基离子损失的影响[J]. 中国农业科学, 2024, 57(13): 2599-2611. |
JI J H, LÜ Z Z, LIU S Z, et al. Long-term application of chemical fertilizers induces soil acidification and soil exchangeable base cation loss on paddy in southern China[J]. Scientia Agricultura Sinica, 2024, 57(13): 2599-2611. (in Chinese with English abstract) | |
[24] | 明润廷, 万方, 那立苹, 等. 改良剂施用下的土壤降酸培肥效果: 基于中国酸性土壤改良研究的Meta分析[J]. 土壤学报, 2025, 62(2): 400-410. |
MING R T, WAN F, NA L P, et al. Effect of soil acid reduction and fertilizer cultivation under conditioner application: meta-analysis based on acid soil improvement studies in China[J]. Acta Pedologica Sinica, 2025, 62(2): 400-410. (in Chinese with English abstract) | |
[25] | WONG M T F, GIBBS P, NORTCLIFF S, et al. Measurement of the acid neutralizing capacity of agroforestry tree prunings added to tropical soils[J]. The Journal of Agricultural Science, 2000, 134(3): 269-276. |
[26] | TANG C, YU Q. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation[J]. Plant and Soil, 1999, 215(1): 29-38. |
[27] | 林志灵, 王静, 张杨珠. 不同施肥结构对稻田土壤CEC和土壤酸性的影响[J]. 土壤通报, 2011, 42(1): 42-45. |
LIN Z L, WANG J, ZHANG Y Z. Effects of different fertilization systems on soil CEC and soil acidity in paddy field[J]. Chinese Journal of Soil Science, 2011, 42(1): 42-45. (in Chinese with English abstract) | |
[28] | 鲁艳红, 廖育林, 聂军, 等. 长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响[J]. 土壤学报, 2016, 53(1): 202-212. |
LU Y H, LIAO Y L, NIE J, et al. Effect of long-term fertilization and lime application on soil acidity of reddish paddy soil[J]. Acta Pedologica Sinica, 2016, 53(1): 202-212. (in Chinese with English abstract) | |
[29] | BARAK P, JOBE B O, KRUEGER A R, et al. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin[J]. Plant and Soil, 1997, 197(1): 61-69. |
[30] | VIEIRA F C B, BAYER C, MIELNICZUK J, et al. Long-term acidification of a Brazilian Acrisol as affected by no till cropping systems and nitrogen fertiliser[J]. Soil Research, 2008, 46(1): 17. |
[31] | BÄCKMAN J S K, HERMANSSON A, TEBBE C C, et al. Liming induces growth of a diverse flora of ammonia-oxidising bacteria in acid spruce forest soil as determined by SSCP and DGGE[J]. Soil Biology and Biochemistry, 2003, 35(10): 1337-1347. |
[32] | 闫志浩, 胡志华, 王士超, 等. 石灰用量对水稻油菜轮作区土壤酸度、土壤养分及作物生长的影响[J]. 中国农业科学, 2019, 52(23): 4285-4295. |
YAN Z H, HU Z H, WANG S C, et al. Effects of lime content on soil acidity, soil nutrients and crop growth in rice-rape rotation system[J]. Scientia Agricultura Sinica, 2019, 52(23): 4285-4295. (in Chinese with English abstract) | |
[33] | JOHNSON J P Jr, CARVER B F, BALIGAR V C. Productivity in Great Plains acid soils of wheat genotypes selected for aluminium tolerance[J]. Plant and Soil, 1997, 188(1): 101-106. |
[34] | 吕焕哲, 王凯荣, 谢小立, 等. 施用水稻秸秆对酸性红壤铝形态的动态影响[J]. 水土保持学报, 2006, 20(4): 110-112. |
LÜ H Z, WANG K R, XIE X L, et al. Dynamic effects of varying amount of rice straw on different aluminum form[J]. Journal of Soil and Water Conservation, 2006, 20(4): 110-112. (in Chinese with English abstract) | |
[35] | WANG L, BUTTERLY C R, TIAN W, et al. Effects of fertilization practices on aluminum fractions and species in a wheat soil[J]. Journal of Soils and Sediments, 2016, 16(7): 1933-1943. |
[36] | UCHIMIYA M, WARTELLE L H, KLASSON K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2501-2510. |
[37] | CHEN D M, LAN Z C, BAI X, et al. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe[J]. Journal of Ecology, 2013, 101(5): 1322-1334. |
[38] | 易琼, 杨少海, 黄巧义, 等. 改良剂对反酸田土壤性质与水稻产量的影响[J]. 土壤学报, 2014, 51(1): 176-183. |
YI Q, YANG S H, HUANG Q Y, et al. Effect of soil ameliorants on soil properties and rice yield of acid sulfate paddy field[J]. Acta Pedologica Sinica, 2014, 51(1): 176-183. (in Chinese with English abstract) |
[1] | 黄鹏武, 吴倩倩, 赵丽芳, 邵德忠, 吴鲁洁, 赵觅漾, 田雨, 卢升高. 无机调理剂配施有机肥治理酸化土壤的长效性研究[J]. 浙江农业学报, 2025, 37(4): 858-868. |
[2] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. |
[3] | 胡铁军. 化肥减量配施微生物肥对西蓝花产量品质与土壤性质的影响[J]. 浙江农业学报, 2024, 36(7): 1657-1665. |
[4] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[5] | 吴传美, 何季, 吴文珊, 蔡俊, 向仰州. 间作对刺梨园土壤团聚体化学计量特征和养分贡献率的影响[J]. 浙江农业学报, 2023, 35(5): 1132-1143. |
[6] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[7] | 高风, 文仕知, 韦铄星, 欧汉彪, 王智慧. 桂西北石漠化区不同植被恢复类型对土壤理化性质、酶活与真菌群落多样性的影响[J]. 浙江农业学报, 2023, 35(10): 2425-2435. |
[8] | 朱雅婷, 倪远之, 张敏, 王振旗, 沈根祥, 黄娜. 不同秸秆还田量对上海地区稻田甲烷排放的影响[J]. 浙江农业学报, 2023, 35(10): 2436-2445. |
[9] | 杨胜竹, 李响, 李朝文, 陈海念, 刘丽, 陆引罡, 曹卓洋. 贵州省烟草青枯病害区根际土壤养分及酶活性特征分析[J]. 浙江农业学报, 2023, 35(1): 146-155. |
[10] | 茹朝, 郁继华, 武玥, 冯致, 缑兆辉, 金宁, 王舒亚, 刘泽慈, 吕剑. 化肥减量配施生物有机肥对露地大白菜产量及品质的影响[J]. 浙江农业学报, 2022, 34(8): 1626-1637. |
[11] | 姚燕来, 朱为静, 丁检, 洪磊东, 洪春来, 王卫平, 朱凤香, 何伟科, 洪海清. 浙江省规模化蔬菜基地连作障碍与土壤环境调查分析[J]. 浙江农业学报, 2022, 34(7): 1474-1484. |
[12] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[13] | 孙文艳, 刘小刚, 张文慧, 李慧永, 吴朗, 杨启良, 熊国美. 基于根区土壤质量指数优化小粒种咖啡滴灌施肥方案[J]. 浙江农业学报, 2022, 34(3): 566-573. |
[14] | 廖平强, 陈国奇, 刘光明, 蒋岩, 赵灿, 王维领, 霍中洋. 不同密度异型莎草和水苋菜对水稻产量及稻米加工、外观品质的影响[J]. 浙江农业学报, 2022, 34(11): 2348-2357. |
[15] | 张健利, 王振华, 陈睿, 王东旺, 梁永辉, 刘茹华. 水肥互作对滴灌红枣产量、品质与土壤养分的影响[J]. 浙江农业学报, 2022, 34(11): 2428-2437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||