Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2895-2908.DOI: 10.3969/j.issn.1004-1524.20231370
• Review • Previous Articles
SUN Jiuming1,2(), ZHANG Dale2, SONG Jibin1, ZHAO Shouqiang1, LI Xiaotong1, LI Zhongyang1, SONG Weiping3, LIU Yuan1,*(
)
Received:
2023-12-05
Online:
2024-12-25
Published:
2024-12-27
CLC Number:
SUN Jiuming, ZHANG Dale, SONG Jibin, ZHAO Shouqiang, LI Xiaotong, LI Zhongyang, SONG Weiping, LIU Yuan. Research progress and application of low accumulation crop variety screening technology in ensuring safe production on heavy metal contaminated farmland[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2895-2908.
作物 Species | 筛选方法 Screening methods | 品种数量 Varieties count | 重金属及其浓度 Heavy metals and concentrations | 污染类型 Pollution type | 低积累品种 Low accumulating varieties | 参考文献 References | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
玉米 Maize (Zea mays) | 田间试验 Field experiment | 5 | Hg(0.061~0.250 mg·kg-1)、As(7.341~ 11.59 mg·kg-1)、Pb(18.71~26.90 mg· kg-1)、Cu(17.63~35.10 mg·kg-1) | 自然污染 Natural pollution | 川单418 Chuandan418 | [ | ||||||||||
盆栽试验 Pot experiment | 20 | Pb(200 mg·L-1)、Zn(300 mg·L-1)、 Cd(15 mg·L-1) | 人为添加 Artificial addition | 西单7号、新石玉8号 Xidan No. 7,Xinshiyu No. 8 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd[(4.57±0.65)mg·kg-1]、As[(31.53± 1.15)mg·kg-1]、Pb[(41.91±1.15)mg· kg-1]、Cr[(135.93±9.87)mg·kg-1] | 自然污染 Natural pollution | QJN1、HNY21 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd[(1.85±0.05)mg·kg-1]、 As[(118.71±1.68)mg·kg-1]、 Pb[(12.88±1.40)mg·kg-1] | 自然污染 Natural pollution | Yayu69(Cd、Pb)、Jinyi418(As、Cd)、 Shengnongyu10(Pb) | [ | |||||||||||
田间试验 Field experiment | 19 | Cd(1.64 mg·kg-1) | 自然污染 Natural pollution | Yudan19、Zhengda999、Xianyu508 | [ | |||||||||||
田间试验 Field experiment | 20 | Cd(1.3 mg·kg-1) | 自然污染 Natural pollution | 五谷3861、会玉336、诚信5号 Wugu3861, Huiyu336, Chengxin No. 5 | [ | |||||||||||
田间试验 Field experiment | 22 | Cd(0.96 mg·kg-1)、 Pb(600.05 mg·kg-1) | 自然污染 Natural pollution | 先玉335、大丰30 Xianyu335, Dafeng30 | [ | |||||||||||
田间试验 Field experiment | 14 | As(25 mg·kg-1)、Cr(250 mg·kg-1)、 Cu(100 mg·kg-1)、Zn(300 mg·kg-1) | 自然污染 Natural pollution | 彩甜糯3号 Caitiannuo No. 3 | [ | |||||||||||
田间试验 Field experiment | 9 | Cd(0.36 mg·kg-1)、Pb(0.36 mg·kg-1) | 自然污染 Natural pollution | 秀青74-9、冀农1号、先玉335、肃玉1号、 伟科702 Xiuqing74-9, Jinong No. 1, Xianyu335, Suyu No. 1, Weike702 | [ | |||||||||||
田间试验 Field experiment | 16 | Cd(0.48 mg·kg-1)、 Cr(54.99 mg·kg-1)、 Pb(90.70 mg·kg-1) | 自然污染 Natural pollution | 金甜顺666 Jintianshun666 | [ | |||||||||||
小麦Wheat (Triticum aestivum) | 水培试验 Hydroponic experiment | 13 | Cd(100 μmol·L-1) | 人为添加 Artificial addition | 中麦629、92R137 Zhongmai629, 92R137 | [ | ||||||||||
水培试验 Hydroponic experiment | 8 | Cd(0、30、60、90 μmol·L-1) | 人为添加 Artificial addition | 豫农25、豫麦25 Yunong25, Yumai25 | [ | |||||||||||
田间试验 Field experiment | 20 | Pb(173 mg·kg-1) | 自然污染 Natural pollution | 花培8号、周麦20 Huapei No. 8, Zhoumai20 | [ | |||||||||||
田间试验 Field experiment | 150 | Cr(26 mg·kg-1) | 人为添加 Artificial addition | Kohsar-95、Meiraj-08、Millet-011、 C-217、NARC-011 | [ | |||||||||||
水培试验 Hydroponic experiment | 30 | Cd(1 mg·L-1)、Pb(15 mg·L-1) | 人为添加 Artificial addition | LF-13、LF-16、LF-21、LF-13、LF-23、 LF-26、LF-27 | [ | |||||||||||
田间试验 Field experiment | 72 | Cd[(0.322±0.020)mg·kg-1、 (0.421±0.026)mg·kg-1、 (0.215±0.058)mg·kg-1] | 自然污染 Natural pollution | Taishan-24、Tanmai-98、Jimai-22 | [ | |||||||||||
田间试验 Field experiment | 8 | Cd[(1.12±0.24)mg·kg-1] | 自然污染 Natural pollution | Puxing5 | [ | |||||||||||
田间试验 Field experiment | 16 | Cd(1.69~2.35 mg·kg-1)、 Pb(142.63~210.23 mg·kg-1) | 自然污染 Natural pollution | AY 58 | [ | |||||||||||
田间试验 Field experiment | 18 | Cd(19.57 mg·kg-1) | 自然污染 Natural pollution | 西农979、郑麦129 Xinong979, Zhengmai129 | [ | |||||||||||
水稻Rice (Oryza sativa) | 盆栽试验 Pot experiment | 20 | Pb(25.5 mg·kg-1)、Cd(3.8 mg·kg-1) | 人为添加 Artificial addition | Y11(Pb)、Y16(Cd) | [ | ||||||||||
盆栽试验 Pot experiment | 20 | Pb、Cd | 自然污染 Natural pollution | 沈稻529号 Shendao No. 529 | [ | |||||||||||
盆栽试验 Pot experiment | 49 | Cd(1.64 mg·kg-1) | 自然污染 Natural pollution | Milyang 23 | [ | |||||||||||
田间试验 Field experiment | 138 | Cr(4.61~6.45 mg·kg-1) Pb(28.28~48.84 mg·kg-1) Cd(1.09~5.21 mg·kg-1) | 自然污染 Natural pollution | Xiushui 113(Cr)、Xiushui 09(Cr)、 Mingzhu 1(Cr)、Jia 02-5(Pb)、Jia C1(Pb)、 Dan K15(Pb)、Chunjiang 026(Cd)、 Chunjiang 11(Cd)、Hu 97-98(Cd) | [ | |||||||||||
田间试验 Field experiment | 26 | Cd(1.55 mg·kg-1) | 自然污染 Natural pollution | Huajingxian 74 | [ | |||||||||||
田间试验 Field experiment | 51 | As(12~154 mg·kg-1) Cd(2.09~12.38 mg·kg-1) | 自然污染 Natural pollution | HY638、HY86、TY816(As), DL203、GNZ(Cd) | [ | |||||||||||
田间试验 Field experiment | 12 | Cd(8.90 μmol·L-1) | 自然污染 Natural pollution | ZD14 | [ | |||||||||||
田间试验 Field experiment | 32 | Cd(1.0 mg·kg-1)、Pb(500 mg·kg-1) | 自然污染 Natural pollution | Wufengyou 2168、Tianyou 196、 Guinongzhan | [ | |||||||||||
田间试验 Field experiment | 17 | Cd(0.54~0.36 mg·kg-1) | 自然污染 Natural pollution | Gangyou 22、Jinyou 527、Fuyou 838 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd(0.63 mg·kg-1)、 As(11.1 mg·kg-1) | 自然污染 Natural pollution | 广泰优粤禾丝苗 Guangtaiyouyuehesimiao | [ | |||||||||||
油菜 Oilseed rape (Brassica | 田间试验 Field experiment | 28 | Cd[(0.78±0.15)mg·kg-1]、 Pb[(330±5)mg·kg-1] | 自然污染 Natural pollution | Zheyou51(Cd),Zhongshuang11、 Zheyou51(Pb) | [ | ||||||||||
campestris) | 水培试验 Hydroponic experiment | 2 | Cd(100 μmol·L-1) | 人为添加 Artificial addition | ZD622 | [ | ||||||||||
水培试验 Hydroponic experiment | 4 | Cr(400μmol·L-1) | 人为添加 Artificial addition | ZS758 | [ | |||||||||||
番茄 Tomato (Solanum lycopersicum) | 盆栽试验 Pot experiment | 29 | Cd(2.28 mg·kg-1) | 人为添加 Artificial addition | 台湾黄圣女、黄金一点红、台湾珍珠、 新402、元明黄娇子、台湾红圣女 Taiwanhuangshengnyu, Huangjinyidianhong, Taiwanzhenzhu, Xin402, Yuanminghuang- jiaozi, Taiwanhongshengnyu | [ | ||||||||||
马铃薯Potato (Solanum tuberosum) | 盆栽试验 Pot experiment | 6 | Cd(1.246 mg·kg-1) | 人为添加 Artificial addition | 威芋7号(WY 7) Weiyu No. 7 (WY7) | [ | ||||||||||
花生Peanut (Arachis hypogaea) | 盆栽试验 Pot experiment | 9 | Cd(1、5、10 mg·L-1) | 人为添加 Artificial addition | 潍花八号 Weihua No. 8 | [ |
Table 1 Summary of low accumulation crop varieties acquired by traditional screening methods
作物 Species | 筛选方法 Screening methods | 品种数量 Varieties count | 重金属及其浓度 Heavy metals and concentrations | 污染类型 Pollution type | 低积累品种 Low accumulating varieties | 参考文献 References | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
玉米 Maize (Zea mays) | 田间试验 Field experiment | 5 | Hg(0.061~0.250 mg·kg-1)、As(7.341~ 11.59 mg·kg-1)、Pb(18.71~26.90 mg· kg-1)、Cu(17.63~35.10 mg·kg-1) | 自然污染 Natural pollution | 川单418 Chuandan418 | [ | ||||||||||
盆栽试验 Pot experiment | 20 | Pb(200 mg·L-1)、Zn(300 mg·L-1)、 Cd(15 mg·L-1) | 人为添加 Artificial addition | 西单7号、新石玉8号 Xidan No. 7,Xinshiyu No. 8 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd[(4.57±0.65)mg·kg-1]、As[(31.53± 1.15)mg·kg-1]、Pb[(41.91±1.15)mg· kg-1]、Cr[(135.93±9.87)mg·kg-1] | 自然污染 Natural pollution | QJN1、HNY21 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd[(1.85±0.05)mg·kg-1]、 As[(118.71±1.68)mg·kg-1]、 Pb[(12.88±1.40)mg·kg-1] | 自然污染 Natural pollution | Yayu69(Cd、Pb)、Jinyi418(As、Cd)、 Shengnongyu10(Pb) | [ | |||||||||||
田间试验 Field experiment | 19 | Cd(1.64 mg·kg-1) | 自然污染 Natural pollution | Yudan19、Zhengda999、Xianyu508 | [ | |||||||||||
田间试验 Field experiment | 20 | Cd(1.3 mg·kg-1) | 自然污染 Natural pollution | 五谷3861、会玉336、诚信5号 Wugu3861, Huiyu336, Chengxin No. 5 | [ | |||||||||||
田间试验 Field experiment | 22 | Cd(0.96 mg·kg-1)、 Pb(600.05 mg·kg-1) | 自然污染 Natural pollution | 先玉335、大丰30 Xianyu335, Dafeng30 | [ | |||||||||||
田间试验 Field experiment | 14 | As(25 mg·kg-1)、Cr(250 mg·kg-1)、 Cu(100 mg·kg-1)、Zn(300 mg·kg-1) | 自然污染 Natural pollution | 彩甜糯3号 Caitiannuo No. 3 | [ | |||||||||||
田间试验 Field experiment | 9 | Cd(0.36 mg·kg-1)、Pb(0.36 mg·kg-1) | 自然污染 Natural pollution | 秀青74-9、冀农1号、先玉335、肃玉1号、 伟科702 Xiuqing74-9, Jinong No. 1, Xianyu335, Suyu No. 1, Weike702 | [ | |||||||||||
田间试验 Field experiment | 16 | Cd(0.48 mg·kg-1)、 Cr(54.99 mg·kg-1)、 Pb(90.70 mg·kg-1) | 自然污染 Natural pollution | 金甜顺666 Jintianshun666 | [ | |||||||||||
小麦Wheat (Triticum aestivum) | 水培试验 Hydroponic experiment | 13 | Cd(100 μmol·L-1) | 人为添加 Artificial addition | 中麦629、92R137 Zhongmai629, 92R137 | [ | ||||||||||
水培试验 Hydroponic experiment | 8 | Cd(0、30、60、90 μmol·L-1) | 人为添加 Artificial addition | 豫农25、豫麦25 Yunong25, Yumai25 | [ | |||||||||||
田间试验 Field experiment | 20 | Pb(173 mg·kg-1) | 自然污染 Natural pollution | 花培8号、周麦20 Huapei No. 8, Zhoumai20 | [ | |||||||||||
田间试验 Field experiment | 150 | Cr(26 mg·kg-1) | 人为添加 Artificial addition | Kohsar-95、Meiraj-08、Millet-011、 C-217、NARC-011 | [ | |||||||||||
水培试验 Hydroponic experiment | 30 | Cd(1 mg·L-1)、Pb(15 mg·L-1) | 人为添加 Artificial addition | LF-13、LF-16、LF-21、LF-13、LF-23、 LF-26、LF-27 | [ | |||||||||||
田间试验 Field experiment | 72 | Cd[(0.322±0.020)mg·kg-1、 (0.421±0.026)mg·kg-1、 (0.215±0.058)mg·kg-1] | 自然污染 Natural pollution | Taishan-24、Tanmai-98、Jimai-22 | [ | |||||||||||
田间试验 Field experiment | 8 | Cd[(1.12±0.24)mg·kg-1] | 自然污染 Natural pollution | Puxing5 | [ | |||||||||||
田间试验 Field experiment | 16 | Cd(1.69~2.35 mg·kg-1)、 Pb(142.63~210.23 mg·kg-1) | 自然污染 Natural pollution | AY 58 | [ | |||||||||||
田间试验 Field experiment | 18 | Cd(19.57 mg·kg-1) | 自然污染 Natural pollution | 西农979、郑麦129 Xinong979, Zhengmai129 | [ | |||||||||||
水稻Rice (Oryza sativa) | 盆栽试验 Pot experiment | 20 | Pb(25.5 mg·kg-1)、Cd(3.8 mg·kg-1) | 人为添加 Artificial addition | Y11(Pb)、Y16(Cd) | [ | ||||||||||
盆栽试验 Pot experiment | 20 | Pb、Cd | 自然污染 Natural pollution | 沈稻529号 Shendao No. 529 | [ | |||||||||||
盆栽试验 Pot experiment | 49 | Cd(1.64 mg·kg-1) | 自然污染 Natural pollution | Milyang 23 | [ | |||||||||||
田间试验 Field experiment | 138 | Cr(4.61~6.45 mg·kg-1) Pb(28.28~48.84 mg·kg-1) Cd(1.09~5.21 mg·kg-1) | 自然污染 Natural pollution | Xiushui 113(Cr)、Xiushui 09(Cr)、 Mingzhu 1(Cr)、Jia 02-5(Pb)、Jia C1(Pb)、 Dan K15(Pb)、Chunjiang 026(Cd)、 Chunjiang 11(Cd)、Hu 97-98(Cd) | [ | |||||||||||
田间试验 Field experiment | 26 | Cd(1.55 mg·kg-1) | 自然污染 Natural pollution | Huajingxian 74 | [ | |||||||||||
田间试验 Field experiment | 51 | As(12~154 mg·kg-1) Cd(2.09~12.38 mg·kg-1) | 自然污染 Natural pollution | HY638、HY86、TY816(As), DL203、GNZ(Cd) | [ | |||||||||||
田间试验 Field experiment | 12 | Cd(8.90 μmol·L-1) | 自然污染 Natural pollution | ZD14 | [ | |||||||||||
田间试验 Field experiment | 32 | Cd(1.0 mg·kg-1)、Pb(500 mg·kg-1) | 自然污染 Natural pollution | Wufengyou 2168、Tianyou 196、 Guinongzhan | [ | |||||||||||
田间试验 Field experiment | 17 | Cd(0.54~0.36 mg·kg-1) | 自然污染 Natural pollution | Gangyou 22、Jinyou 527、Fuyou 838 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd(0.63 mg·kg-1)、 As(11.1 mg·kg-1) | 自然污染 Natural pollution | 广泰优粤禾丝苗 Guangtaiyouyuehesimiao | [ | |||||||||||
油菜 Oilseed rape (Brassica | 田间试验 Field experiment | 28 | Cd[(0.78±0.15)mg·kg-1]、 Pb[(330±5)mg·kg-1] | 自然污染 Natural pollution | Zheyou51(Cd),Zhongshuang11、 Zheyou51(Pb) | [ | ||||||||||
campestris) | 水培试验 Hydroponic experiment | 2 | Cd(100 μmol·L-1) | 人为添加 Artificial addition | ZD622 | [ | ||||||||||
水培试验 Hydroponic experiment | 4 | Cr(400μmol·L-1) | 人为添加 Artificial addition | ZS758 | [ | |||||||||||
番茄 Tomato (Solanum lycopersicum) | 盆栽试验 Pot experiment | 29 | Cd(2.28 mg·kg-1) | 人为添加 Artificial addition | 台湾黄圣女、黄金一点红、台湾珍珠、 新402、元明黄娇子、台湾红圣女 Taiwanhuangshengnyu, Huangjinyidianhong, Taiwanzhenzhu, Xin402, Yuanminghuang- jiaozi, Taiwanhongshengnyu | [ | ||||||||||
马铃薯Potato (Solanum tuberosum) | 盆栽试验 Pot experiment | 6 | Cd(1.246 mg·kg-1) | 人为添加 Artificial addition | 威芋7号(WY 7) Weiyu No. 7 (WY7) | [ | ||||||||||
花生Peanut (Arachis hypogaea) | 盆栽试验 Pot experiment | 9 | Cd(1、5、10 mg·L-1) | 人为添加 Artificial addition | 潍花八号 Weihua No. 8 | [ |
作物 Species | 筛选方法 Screening methods | 重金属及其浓度 Heavy metals and concentration | 低积累品种 Low metal accumulating varieties | 参考文献 References |
---|---|---|---|---|
水稻 Oryza sativa L. | 转基因育种 Transgenic breeding | Cd:2.01 mg·kg-1 | Xidao1(nramp5 × 7) | [ |
转基因育种 Transgenic breeding | Cd:0.39、0.5、1.40 mg·kg-1 | HZ-6-4-6 | [ | |
突变育种 Mutation breeding | Cd:0.35、1.5、2.6、4.5 mg·kg-1 | Lcd1 | [ | |
突变育种 Mutation breeding | Cd:0.36 mg·L-1 | Lcd-kmt1、Lcd-kmt2 | [ | |
转基因育种 Transgenic breeding | As:30、60.5 mg·kg-1 | PvACR3(转基因品系Transgenic line) | [ | |
转基因育种 Transgenic breeding | As:10.43 mg·kg-1 | CdPCS(转基因品系Transgenic line) | [ | |
转基因育种 Transgenic breeding | As:(2.8±0.5) mg·kg-1 | ScYCF1、OsABCC1 (转基因品系Transgenic lines) | [ |
Table 2 Summary of low accumulation crop varieties acquired by molecular genetics technology
作物 Species | 筛选方法 Screening methods | 重金属及其浓度 Heavy metals and concentration | 低积累品种 Low metal accumulating varieties | 参考文献 References |
---|---|---|---|---|
水稻 Oryza sativa L. | 转基因育种 Transgenic breeding | Cd:2.01 mg·kg-1 | Xidao1(nramp5 × 7) | [ |
转基因育种 Transgenic breeding | Cd:0.39、0.5、1.40 mg·kg-1 | HZ-6-4-6 | [ | |
突变育种 Mutation breeding | Cd:0.35、1.5、2.6、4.5 mg·kg-1 | Lcd1 | [ | |
突变育种 Mutation breeding | Cd:0.36 mg·L-1 | Lcd-kmt1、Lcd-kmt2 | [ | |
转基因育种 Transgenic breeding | As:30、60.5 mg·kg-1 | PvACR3(转基因品系Transgenic line) | [ | |
转基因育种 Transgenic breeding | As:10.43 mg·kg-1 | CdPCS(转基因品系Transgenic line) | [ | |
转基因育种 Transgenic breeding | As:(2.8±0.5) mg·kg-1 | ScYCF1、OsABCC1 (转基因品系Transgenic lines) | [ |
[1] | MOHAMMAD ALI M, HOSSAIN D, AL-IMRAN, et al. Environmental pollution with heavy metals:a public health concern[M]// Heavy metals: their environmental impacts and mitigationv, 2021. |
[2] | WANG H, ZHANG H, XU R K. Heavy metal pollution characteristics and health evaluation of farmland soil in a gold mine slag area of Luoyang in China[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(5):213-221. |
[3] | ZHANG G X, SHAO L Z, LI F L, et al. Bioaccessibility and health risk assessment of Pb and Cd in urban dust in Hangzhou, China[J]. Environmental Science and Pollution Research International, 2020, 27(11):11760-11771. |
[4] | JIANG R, WANG M E, CHEN W P, et al. Ecological risk of combined pollution on soil ecosystem functions: insight from the functional sensitivity and stability[J]. Environmental Pollution, 2019, 255:113184. |
[5] | ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China:current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2):750-759. |
[6] | ULLAH S, LIU Q L, WANG S Y, et al. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils[J]. Science of the Total Environment, 2023, 899:165726. |
[7] | AHMAD Z, KHAN S M, PAGE S E, et al. Environmental sustainability and resilience in a polluted ecosystem via phytoremediation of heavy metals and plant physiological adaptations[J]. Journal of Cleaner Production, 2023, 385:135733. |
[8] | LIU Z, LI Z, CHEN S G, et al. Enhanced phytoremediation of petroleum-contaminated soil by biochar and urea[J]. Journal of Hazardous Materials, 2023, 453:131404. |
[9] | 龚雪刚, 张云芝, 孙伟, 等. 北京地区农用地土壤重金属污染与健康风险评价[J]. 有色金属(冶炼部分), 2023(8):112-119. |
GONG X G, ZHANG Y Z, SUN W, et al. Heavy metal pollution and health risk assessment of agricultural land soil in Beijing Area[J]. Nonferrous Metals(Extractive Metallurgy), 2023(8):112-119. (in Chinese with English abstract) | |
[10] | XU J, LI Y Y, WANG S L, et al. Sources, transfers and the fate of heavy metals in soil-wheat systems: the case of lead (Pb)/zinc (Zn) smelting region[J]. Journal of Hazardous Materials, 2023, 441:129863. |
[11] | 米雅竹, 梁家妮, 周俊, 等. 典型冶炼厂大气沉降区农田耕层土壤重金属(Cd、Cu、Pb)输入输出平衡研究[J]. 土壤学报, 2024, 61(5): 1339-1348. |
MI Y Z, LIANG J N, ZHOU J, et al. Input and output balance of heavy metals (Cd, Cu, Pb) in arable soils in atmospheric deposition area of typical smelter[J]. Acta Pedologica Sinica, 2024, 61(5): 1339-1348. (in Chinese with English abstract) | |
[12] | ZHENG F, GUO X, TANG M Y, et al. Variation in pollution status, sources, and risks of soil heavy metals in regions with different levels of urbanization[J]. Science of the Total Environment, 2023, 866:161355. |
[13] | CHEN X H, LEI M, ZHANG S W, et al. Apportionment and spatial pattern analysis of soil heavy metal pollution sources related to industries of concern in a county in southwestern China[J]. International Journal of Environmental Research and Public Health, 2022, 19(12):7421. |
[14] | ACHKIR A, AOURAGH A, EL MAHI M, et al. Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk[J]. Emerging Contaminants, 2023, 9(1):100200. |
[15] | NACCARATO A, VOMMARO M L, AMICO D, et al. Triazine herbicide and NPK fertilizer exposure:accumulation of heavy metals and rare earth elements, effects on cuticle melanization, and immunocompetence in the model species Tenebrio molitor[J]. Toxics, 2023, 11(6):499. |
[16] | SUN S X, SIDHU V, RONG Y H, et al. Pesticide pollution in agricultural soils and sustainable remediation methods:a review[J]. Current Pollution Reports, 2018, 4(3):240-250. |
[17] | LU D T, ZHANG C L, ZHOU Z R, et al. Pollution characteristics and source identification of farmland soils in Pb-Zn mining areas through an integrated approach[J]. Environmental Geochemistry and Health, 2023, 45(5):2533-2547. |
[18] | LUX A, MARTINKA M, VACULÍK M, et al. Root responses to cadmium in the rhizosphere:a review[J]. Journal of Experimental Botany, 2011, 62(1):21-37. |
[19] | QIAO D M, LU H F, ZHANG X X. Change in phytoextraction of Cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere[J]. Environmental Pollution, 2020, 267:115452. |
[20] | ZHANG D Z, LIU J J, ZHANG Y B, et al. Morphophysiological, proteomic and metabolomic analyses reveal cadmium tolerance mechanism in common wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2023, 445:130499. |
[21] | SHEORAN V, SHEORAN A S, POONIA P. Factors affecting phytoextraction:a review[J]. Pedosphere, 2016, 26(2):148-166. |
[22] | ARJUN J, HARIKRISHNAN K. Metagenomic analysis of bacterial diversity in the rice rhizosphere soil microbiome[J]. Biotechnology Bioinformatics Bioengineering, 2011, 1(3):361-367. |
[23] | SONG W Y, PARK J, MENDOZA-CÓZATL D G, et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2010, 107(49):21187-21192. |
[24] | YANG G Z, FU S, HUANG J J, et al. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice[J]. Plant Science, 2021, 307:110894. |
[25] | WOLFE N, HOEHAMER C. Enzymes used by plants and microorganisms to detoxify organic compounds[M]// MCCUTCHEON S C, SCHNOOR J L. Phytoremediation:transformation and control of contaminants, Hoboken, New Jersey: John Wiley & Sons, Inc, 2004. |
[26] | LI R, WU H, DING J, et al. Transgenic merA and merB expression reduces mercury contamination in vegetables and grains grown in mercury-contaminated soil[J]. Plant Cell Reports, 2020, 39(10):1369-1380. |
[27] | LANDE R, THOMPSON R. Efficiency of marker-assisted selection in the improvement of quantitative traits[J]. Genetics, 1990, 124(3):743-756. |
[28] | MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4):1819-1829. |
[29] | WANG W Y S, BARRATT B J, CLAYTON D G, et al. Genome-wide association studies:theoretical and practical concerns[J]. Nature Reviews Genetics, 2005, 6(2):109-118. |
[30] | RISCH N, MERIKANGAS K. The future of genetic studies of complex human diseases[J]. Science, 1996, 273(5281):1516-1517. |
[31] | FAN B, DU Z Q, GORBACH D M, et al. Development and application of high-density SNP arrays in genomic studies of domestic animals[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(7):833-847. |
[32] | 蒋蓓蓓. 玉米和水稻产量及品质性状的关联分析研究[D]. 杭州: 浙江大学, 2015. |
JIANG B B. Association studies on yield and quality traits of maize and rice[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract) | |
[33] | PAN X W, LI Y C, LIU W Q, et al. QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study[J]. Scientific Reports, 2020, 10(1):11791. |
[34] | ZHAO J L, YANG W, ZHANG S H, et al. Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection[J]. Rice, 2018, 11(1):61. |
[35] | ERDOČAN İ, CEVHER-KESKIN B, BILIR Ö, et al. Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance[J]. Biology, 2023, 12(7):1037. |
[36] | BHATIA S, POOJA, YADAV S K. CRISPR-Cas for genome editing: classification, mechanism, designing and applications[J]. International Journal of Biological Macromolecules, 2023, 238:124054. |
[37] | SHAN Q W, BALTES N J, ATKINS P, et al. ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis:a disconnect between somatic and germinal cells[J]. Journal of Genetics and Genomics, 2018, 45(12):681-684. |
[38] | BECKER S, BOCH J. TALE and TALEN genome editing technologies[J]. Gene and Genome Editing, 2021, 2:100007. |
[39] | TANG L, MAO B G, LI Y K, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1):14438. |
[40] | 郭文雅, 王海, 王亚杰, 等. 木薯MeWRKY12基因的CRISPR/Cas9基因编辑载体的构建及验证[J]. 分子植物育种, 2022, 20(5):1554-1559. |
GUO W Y, WANG H, WANG Y J, et al. Construction and verification of CRISPR/Cas9 gene editing vector for cassava MeWRKY12 gene[J]. Molecular Plant Breeding, 2022, 20(5):1554-1559. (in Chinese with English abstract) | |
[41] | MOCHIDA K, SHINOZAKI K. Advances in omics and bioinformatics tools for systems analyses of plant functions[J]. Plant & Cell Physiology, 2011, 52(12):2017-2038. |
[42] | GEHLENBORG N, O’DONOGHUE S I, BALIGA N S, et al. Visualization of omics data for systems biology[J]. Nature Methods, 2010, 7(3 Suppl):S56-S68. |
[43] | ZHOU X, SUN J, TIAN Y, et al. A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 200:103996. |
[44] | 卢增祥, 李衍达. 交互支持向量机学习算法及其应用[J]. 清华大学学报(自然科学版), 1999, 39(7):93-97. |
LU Z X, LI Y D. Interactive support vector machine learning algorithm and its application[J]. Journal of Tsinghua University(Science and Technology), 1999, 39(7):93-97. (in Chinese with English abstract) | |
[45] | RAY S, LAMA A, MISHRA P, et al. An ARIMA-LSTM model for predicting volatile agricultural price series with random forest technique Image 1[J]. Applied Soft Computing, 2023, 149:110939. |
[46] | WILBERFORCE T, ALASWAD A, GARCIA - PEREZ A, et al. Remaining useful life prediction for proton exchange membrane fuel cells using combined convolutional neural network and recurrent neural network[J]. International Journal of Hydrogen Energy, 2023, 48(1):291-303. |
[47] | NAGARAJU M, CHAWLA P. Systematic review of deep learning techniques in plant disease detection[J]. International Journal of System Assurance Engineering and Management, 2020, 11(3):547-560. |
[48] | MIRANI A A, MEMON M S, CHOHAN R, et al. Machine learning in agriculture:a review[J]. International Journal of Scientific & Technology Research, 2021, 10(5):229-234. |
[49] | YANG G J, LIU J G, ZHAO C J, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping:current status and perspectives[J]. Frontiers in Plant Science, 2017, 8:1111. |
[50] | RASKIN I, ENSLEY B D. Phytoremediation of toxic metals:using plants to clean up the environment[M]. [S.l.]:Wiley-Interscience, 1999. |
[51] | 段德超, 于明革, 施积炎. 植物对铅的吸收、转运、累积和解毒机制研究进展[J]. 应用生态学报, 2014, 25(1):287-296. |
DUAN D C, YU M G, SHI J Y. Research advances in uptake, translocation, accumulation and detoxification of Pb in plants[J]. Chinese Journal of Applied Ecology, 2014, 25(1):287-296. (in Chinese with English abstract) | |
[52] | 伍钧, 吴传星, 孟晓霞, 等. 重金属低积累玉米品种的稳定性和环境适应性分析[J]. 农业环境科学学报, 2011, 30(11):2160-2167. |
WU J, WU C X, MENG X X, et al. The analysis of stability and adaptability on low accumulation of heavy metals in various cultivars of Zea mays[J]. Journal of Agro-Environment Science, 2011, 30(11):2160-2167. (in Chinese with English abstract) | |
[53] | 邓洪, 刘惠见, 牛婧, 等. 玉米重金属低累积品种的筛选与研究[C]// 中国土壤学会土壤环境专业委员会第二十次会议暨农田土壤污染与修复研讨会摘要集. 合肥: 中国土壤学会, 2018:34. |
[54] | ZHA Y, ZHAO L, NIU T X, et al. Multi-target element-based screening of maize varieties with low accumulation of heavy metals (HMs) and metalloids:uptake, transport, and health risks[J]. Agriculture, 2023, 13(6):1123. |
[55] | YANG N K, WANG H B, WANG H J, et al. Screening maize (Zea mays L.) varieties with low accumulation of cadmium, arsenic, and lead in edible parts but high accumulation in other parts:a field plot experiment[J]. Environmental Science and Pollution Research, 2021, 28(25):33583-33598. |
[56] | WANG A Y, WANG M Y, LIAO Q, et al. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil:implication of maize cultivar selection for minimal risk to human health and for phytoremediation[J]. Environmental Science and Pollution Research, 2016, 23(6):5410-5419. |
[57] | 杨牧青, 和丽萍, 魏恒, 等. 云南某矿区周边重金属镉低积累、高产玉米品种筛选研究[J]. 农业灾害研究, 2023, 13(2):7-9. |
YANG M Q, HE L P, WEI H, et al. Screening of maize varieties with low cadmium accumulation and high yield around a mining area in Yunnan Province[J]. Journal of Agricultural Catastrophology, 2023, 13(2):7-9. (in Chinese with English abstract) | |
[58] | 任彧仲, 任超, 肖建辉, 等. 不同玉米品种Cd、Pb积累特性及先玉335与大丰30对比研究[J]. 江苏农业科学, 2022, 50(24):179-188. |
REN Y Z, REN C, XIAO J H, et al. Accumulation characteristics of Cd and Pb in different maize cultivars and comparison between Xianyu 335 and Dafeng 30[J]. Jiangsu Agricultural Sciences, 2022, 50(24):179-188. (in Chinese with English abstract) | |
[59] | 李贵杰, 田美玲, 阮建文, 等. 粤北矿业活动影响区重金属低积累玉米品种筛选研究[C]// 《环境工程》2019年全国学术年会论文集. 北京: 《环境工程》编辑部, 2019:318-324. |
[60] | 孙洪欣, 赵全利, 薛培英, 等. 不同夏玉米品种对镉、铅积累与转运的差异性田间研究[J]. 生态环境学报, 2015, 24(12):2068-2074. |
SUN H X, ZHAO Q L, XUE P Y, et al. Variety difference of cadmium and lead accumulation and translocation in summer maize[J]. Ecology and Environmental Sciences, 2015, 24(12):2068-2074. (in Chinese with English abstract) | |
[61] | 李智鸣, 李艳, 曹巧莹, 等. 电子废弃物拆解区重金属低积累玉米品种筛选[J]. 成都大学学报(自然科学版), 2022, 41(1):11-18. |
LI Z M, LI Y, CAO Q Y, et al. Selection for low heavy metals accumulation cultivars of Zea mays in E-waste disassembling contaminated areas[J]. Journal of Chengdu University(Natural Science Edition), 2022, 41(1):11-18. (in Chinese with English abstract) | |
[62] | 张欣, 王华忠, 王利, 等. 不同品种小麦幼苗耐镉差异[J]. 江苏农业科学, 2018, 46(7):61-65. |
ZHANG X, WANG H Z, WANG L, et al. Differences of cadmium tolerance of different wheat cultivars during seedling stage[J]. Jiangsu Agricultural Sciences, 2018, 46(7):61-65. (in Chinese with English abstract) | |
[63] | 李友军, 朱志勇. 不同小麦基因型耐镉性差异研究[C]// 2011年生物医学与工程国际学术会议论文集. 香港: 国际工业电子中心, 2011:7. |
[64] | 杨素勤, 程海宽, 张彪, 等. 不同品种小麦Pb积累差异性研究[J]. 生态与农村环境学报, 2014, 30(5):646-651. |
YANG S Q, CHENG H K, ZHANG B, et al. Differences in Pb accumulation between wheat varieties[J]. Journal of Ecology and Rural Environment, 2014, 30(5):646-651. (in Chinese with English abstract) | |
[65] | ALMAS F, HASSAN A, BIBI A, et al. Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.)[J]. Plant and Soil, 2018, 422(1):371-384. |
[66] | LIU W T, LIANG L C, ZHANG X, et al. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars[J]. Environmental Science and Pollution Research International, 2015, 22(11):8432-8441. |
[67] | LIU N, HUANG X M, SUN L M, et al. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China[J]. Chemosphere, 2020, 241:125065. |
[68] | ZHANG L G, ZHANG C, DU B Y, et al. Effects of node restriction on cadmium accumulation in eight Chinese wheat (Triticum turgidum) cultivars[J]. Science of the Total Environment, 2020, 725:138358. |
[69] | GUO G H, LEI M, WANG Y W, et al. Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment[J]. International Journal of Environmental Research and Public Health, 2018, 15(11):2601. |
[70] | 艾金华, 廖晓勇, 王凌青, 等. 镉胁迫下小麦镉低累积品种筛选[J]. 南昌大学学报(理科版), 2019, 43(2):175-181. |
AI J H, LIAO X Y, WANG L Q, et al. The selection of low cadmium accumulation wheat varieties under cadmium stress[J]. Journal of Nanchang University(Natural Science), 2019, 43(2):175-181. (in Chinese with English abstract) | |
[71] | 冯文强, 涂仕华, 秦鱼生, 等. 水稻不同基因型对铅镉吸收能力差异的研究[J]. 农业环境科学学报, 2008, 27(2):447-451. |
FENG W Q, TU S H, QIN Y S, et al. Uptake capacity of different rice genotypes for lead and cadmium from soil[J]. Journal of Agro-Environment Science, 2008, 27(2):447-451. (in Chinese with English abstract) | |
[72] | 何玉龙, 李军. 不同水稻品种在镉铅胁迫下的吸收积累特性[J]. 资源节约与环保, 2016(7):178. |
HE Y L, LI J. Absorption and accumulation characteristics of different rice varieties under cadmium and lead stress[J]. Resources Economization & Environmental Protection, 2016(7):178. (in Chinese) | |
[73] | RAO T, AE N. Genotypic variations in cadmium levels of rice grain[J]. Soil Science and Plant Nutrition, 2003, 49(4):473-479. |
[74] | ZENG F R, MAO Y, CHENG W D, et al. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice[J]. Environmental Pollution, 2008, 153(2):309-314. |
[75] | SUI F Q, ZHAO D K, ZHU H T, et al. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain[J]. Journal of Experimental Botany, 2019, 70(10):2857-2871. |
[76] | CHI Y H, LI F B, TAM N F Y, et al. Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials[J]. Science of the Total Environment, 2018, 643:1314-1324. |
[77] | QI X L, TAM N F Y, LI W C, et al. The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics[J]. Environmental Pollution, 2020, 264:114736. |
[78] | LI B, WANG X, QI L X, et al. Identification of rice cultivars with low brown rice mixed cadmium and lead contents and their interactions with the micronutrients iron,zinc,nickel and manganese[J]. Journal of Environmental Sciences, 2012, 24(10):1790-1798. |
[79] | LI B, HE W H, WANG C Q, et al. Selecting for cadmium exclusion or low accumulation rice cultivars in slight-moderate pollution area under field conditions[J]. Polish Journal of Environmental Studies, 2014, 23(4):1347-1353. |
[80] | 刘超超, 罗正良, 文军, 等. 镉、 砷低积累水稻品种筛选及其田间表现评价[J]. 湖南农业科学, 2022(10):8-11. |
LIU C C, LUO Z L, WEN J, et al. Screening of rice varieties with low bioaccumulation of Cd and As and evaluation of their field performance[J]. Hunan Agricultural Sciences, 2022(10):8-11. (in Chinese with English abstract) | |
[81] | CAO X R, WANG X Z, TONG W B, et al. Accumulation and distribution of cadmium and lead in 28 oilseed rape cultivars grown in a contaminated field[J]. Environmental Science and Pollution Research International, 2020, 27(2):2400-2411. |
[82] | MWAMBA T M, ISLAM F, ALI B, et al. Comparative metabolomic responses of low-and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus[J]. Chemosphere, 2020, 250:126308. |
[83] | GILL R A, ZANG L L, ALI B, et al. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L[J]. Chemosphere, 2015, 120:154-164. |
[84] | 谭小琪, 李取生, 何宝燕, 等. 番茄对镉吸收累积的品种差异[J]. 暨南大学学报(自然科学与医学版), 2014, 35(3):215-220. |
TAN X Q, LI Q S, HE B Y, et al. Differences in cadmium absorption and accumulation of tomato (Lycopersicon esculentum) varieties on Cd-polluted soil[J]. Journal of Jinan University(Natural Science & Medicine Edition), 2014, 35(3):215-220. (in Chinese with English abstract) | |
[85] | 夏蔓蔓, 何冠谛, 符东顺, 等. 镉胁迫对不同马铃薯品种形态和生理特性的影响及评价[J]. 种子, 2020, 39(9):41-46. |
XIA M M, HE G D, FU D S, et al. Effects of cadmium stress on morphology and physiology of different potato cultivars and cadmium-tolerant evaluation[J]. Seed, 2020, 39(9):41-46. (in Chinese with English abstract) | |
[86] | 李蕾, 张小乐, 孙世中, 等. 不同花生品种对土壤铅、镉污染的抗性研究[J]. 云南大学学报(自然科学版), 2022, 44(1):179-187. |
LI L, ZHANG X L, SUN S Z, et al. Study on resistance of different peanut varieties to soil lead and cadmium pollution[J]. Journal of Yunnan University(Natural Sciences Edition), 2022, 44(1):179-187. (in Chinese with English abstract) | |
[87] | LIU S M, JIANG J, LIU Y, et al. Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice[J]. Rice Science, 2019, 26(2):88-97. |
[88] | CAO Z Z, LIN X Y, YANG Y J, et al. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq[J]. BMC Plant Biology, 2019, 19(1):250. |
[89] | ISHIKAWA S, ISHIMARU Y, IGURA M, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47):19166-19171. |
[90] | CHEN L M, WU W G, HAN F X, et al. Agronomic management and rice varieties controlling Cd bioaccumulation in rice[J]. International Journal of Environmental Research and Public Health, 2019, 16(13):2376. |
[91] | SHRI M, DAVE R, DIWEDI S, et al. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain[J]. Scientific Reports, 2014, 4:5784. |
[92] | DENG F L, YAMAJI N, MA J F, et al. Engineering rice with lower grain arsenic[J]. Plant Biotechnology Journal, 2018, 16(10):1691-1699. |
[93] | 付忠军. 玉米砷、汞积累连锁定位与全基因组关联分析[D]. 郑州: 河南农业大学, 2015. |
FU Z J. Linkage analysis and genome wide association of arsenic and mercury accumulation in maize[D]. Zhengzhou: Henan Agricultural University, 2015. (in Chinese with English abstract) | |
[94] | 何振艳, 闫慧莉, 骆永明, 等. 基于全基因组选择研究的水稻籽粒镉积累性状预测装置和预警系统:CN202211132783.X[P]. 2023-09-15. |
[95] | 赵鹏飞, 赵国建, 金建猛, 等. 基于无人机影像的小麦早衰品种筛选研究[J]. 种业导刊, 2022(3):14-21. |
ZHAO P F, ZHAO G J, JIN J M, et al. Screening of early aging wheat variety based on unmanned aerial vehicle images[J]. Journal of Seed Industry Guide, 2022(3):14-21. (in Chinese with English abstract) |
[1] | ZHU Renchao, YUAN Yingqi, YANG Yu, YANG Qiyue, YU Aihua. Heavy metal pollution in farmland along highway [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1887-1897. |
[2] | WANG Jiansheng, SHEN Yusen, YU Huifang, SHENG Xiaoguang, SONG Mengfei, GU Honghui. Research progress of broccoli breeding in China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1934-1944. |
[3] | PAN Zhijun, WU Xiaowen, WU Chenyang, CHENG Yu, CHEN Long, ZHANG Xiaohong, ZHANG Jinshan, ZHOU Bing, JIANG Bo, ZHANG Wenjing, CHE Zhao, SONG He. Analysis of yield and utilization of temperature and light resources of different types of ratoon rice varieties in central Anhui, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1492-1501. |
[4] | ZHU Yanyu, YU Wentao, GAO Shuilian, LYU Shuiyuan, WANG Pan, JIN Wanmin, GUI Wenjing, LIN Yi, YE Naixing. The diversity of tea germplasm resources and genetic relationship of ‘Tieguanyin’-derived varieties in Anxi, Fujian, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1591-1601. |
[5] | XIAO Yinrun, MA Jiping, WANG Yunping, WANG Suzhen, ZHONG Guoxiang, XIONG Xiaowen, ZHANG Cheng. Effects of passivators on contents of heavy metals in soil and morel fruiting body [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1646-1656. |
[6] | LUZI Zhenggang, ZHU Lixin, JI Hongbing, WANG Kang. Research progress in remediation of soil heavy metal pollution by Sphingosinomonas [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1208-1216. |
[7] | YU Chao, WANG Yinyu, LIU Qizhen, WANG Yun, SHEN Hong, FENG Ying. Effects of application of biochar from different raw materials combined with inorganic amendments on cadmium accumulation in pakchoi shoots and soil cadmium inactivation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 613-621. |
[8] | TAN Yuhong, ZHOU Min, ZHANG Hua, ZHANG Heng, WANG Fulin, SONG Tao, ZHU Ying, XU Heng. Impact of high-temperature stress at grain filling stage on rice grain quality in different rice varieties [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2657-2665. |
[9] | WU Yuke, WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin. Parameters optimization for vermicomposting of cow dung and changes of properties of composting residues [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2308-2315. |
[10] | LIANG Xiumei, ZHANG Weiyi, CHEN Guanju, XIA Haitao, GUO Xiuzhu, HE Ruyi, JIANG Jiaming, LIN Dingpeng. Investigation of pesticide residues and heavy metal contamination characteristics and dietary risk assessment of Myrica rubra in Wenzhou, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2347-2357. |
[11] | YANG Xifan, GUO Bin, QIU Gaoyang, LIU Junli, TONG Wenbin, YANG Haijun, ZHU Weidong, MAO Congyan. Inhibiting effects of immobilization agents on cadmium, lead and arsenic in rice production [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 1-8. |
[12] | WANG Di, YANG Hanmei, LI Yangqian, JIA Mengting, ZOU Liang, YANG Fan. Multidimensional evaluation of “variety, quality, efficiency and application” of Tartary buckwheat and research progress of high-value utilization of active ingredients [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1960-1974. |
[13] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
[14] | MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498. |
[15] | WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 286
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||