Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (5): 1159-1171.DOI: 10.3969/j.issn.1004-1524.20240379
• Biosystems Engineering • Previous Articles Next Articles
WU Haolin1, WANG Shuzhen1, ZHU Zhujun1,2, HE Yong1,2,*()
Received:
2024-04-26
Online:
2025-05-25
Published:
2025-06-11
CLC Number:
WU Haolin, WANG Shuzhen, ZHU Zhujun, HE Yong. Rapid detection of contents of different types of nitrogen in substrates using near-infrared spectrum and machine learning[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1159-1171.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240379
基质类型 Substrate type | 容重 Bulk density/ (g·cm-3) | pH值 pH value | 电导率 Electric conductivity/ (ms·cm-1) | 总孔隙度 Total porosity/% | 持水孔隙度 Water-holding porosity/% |
---|---|---|---|---|---|
泥炭Peat | 0.22 | 6.09 | 1.92 | 78.5 | 73.5 |
蛭石Vermiculite | 0.25 | 5.05 | 0.13 | 67.5 | 63.4 |
珍珠岩Perlite | 0.07 | 5.16 | 0.12 | 63.1 | 34.1 |
Table 1 Physical and chemical properties of different substrates
基质类型 Substrate type | 容重 Bulk density/ (g·cm-3) | pH值 pH value | 电导率 Electric conductivity/ (ms·cm-1) | 总孔隙度 Total porosity/% | 持水孔隙度 Water-holding porosity/% |
---|---|---|---|---|---|
泥炭Peat | 0.22 | 6.09 | 1.92 | 78.5 | 73.5 |
蛭石Vermiculite | 0.25 | 5.05 | 0.13 | 67.5 | 63.4 |
珍珠岩Perlite | 0.07 | 5.16 | 0.12 | 63.1 | 34.1 |
Fig.1 The frequency distribution of nitrogen content in substrate samples A, Ammonium nitrogen in peat; B, Ammonium nitrogen in vermiculite; C, Ammonium nitrogen in perlite; D, Nitrate nitrogen in peat; E, Nitrate nitrogen in vermiculite; F, Nitrate nitrogen in perlite.
基质类型 Substrate type | 氮类型 Nitrogen type | 样本集 Sample set | 样本量 Sample size | 氮含量最大值 Maximum nitrogen content/ (mg·kg-1) | 氮含量最小值 Minimum nitrogen content/ (mg·kg-1) | 氮含量平均值 Average nitrogen content/ (mg·kg-1) | 标准差 Standard error/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
泥炭Peat | 铵态氮Ammonium nitrogen | 建模集Modeling set | 60 | 1 889 | 31 | 429 | 575 |
预测集Prediction set | 18 | 1 738 | 18 | 374 | 545 | ||
硝态氮Nitrate nitrogen | 建模集Modeling set | 71 | 7 891 | 954 | 4 532 | 2 328 | |
预测集Prediction set | 23 | 8 134 | 1 073 | 4 569 | 2 289 | ||
蛭石Vermiculite | 铵态氮Ammonium nitrogen | 建模集Modeling set | 96 | 11 017 | 14 | 3 064 | 2 426 |
预测集Prediction set | 30 | 9 005 | 23 | 3 159 | 2 208 | ||
硝态氮Nitrate nitrogen | 建模集Modeling set | 90 | 12 897 | 288 | 5 142 | 3 493 | |
预测集Prediction set | 29 | 12 797 | 322 | 5 285 | 3 595 | ||
珍珠岩Vermiculite | 铵态氮Ammonium nitrogen | 建模集Modeling set | 89 | 14 138 | 23 | 3 249 | 2 632 |
预测集Prediction set | 28 | 11 351 | 15 | 3 356 | 2 837 | ||
硝态氮Nitrate nitrogen | 建模集Modeling set | 94 | 11 404 | 13 | 4 559 | 3 193 | |
预测集Prediction set | 31 | 10 508 | 15 | 4 706 | 3 133 |
Table 2 Statistical parameters of the sample set after division
基质类型 Substrate type | 氮类型 Nitrogen type | 样本集 Sample set | 样本量 Sample size | 氮含量最大值 Maximum nitrogen content/ (mg·kg-1) | 氮含量最小值 Minimum nitrogen content/ (mg·kg-1) | 氮含量平均值 Average nitrogen content/ (mg·kg-1) | 标准差 Standard error/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
泥炭Peat | 铵态氮Ammonium nitrogen | 建模集Modeling set | 60 | 1 889 | 31 | 429 | 575 |
预测集Prediction set | 18 | 1 738 | 18 | 374 | 545 | ||
硝态氮Nitrate nitrogen | 建模集Modeling set | 71 | 7 891 | 954 | 4 532 | 2 328 | |
预测集Prediction set | 23 | 8 134 | 1 073 | 4 569 | 2 289 | ||
蛭石Vermiculite | 铵态氮Ammonium nitrogen | 建模集Modeling set | 96 | 11 017 | 14 | 3 064 | 2 426 |
预测集Prediction set | 30 | 9 005 | 23 | 3 159 | 2 208 | ||
硝态氮Nitrate nitrogen | 建模集Modeling set | 90 | 12 897 | 288 | 5 142 | 3 493 | |
预测集Prediction set | 29 | 12 797 | 322 | 5 285 | 3 595 | ||
珍珠岩Vermiculite | 铵态氮Ammonium nitrogen | 建模集Modeling set | 89 | 14 138 | 23 | 3 249 | 2 632 |
预测集Prediction set | 28 | 11 351 | 15 | 3 356 | 2 837 | ||
硝态氮Nitrate nitrogen | 建模集Modeling set | 94 | 11 404 | 13 | 4 559 | 3 193 | |
预测集Prediction set | 31 | 10 508 | 15 | 4 706 | 3 133 |
预处理方法 Pretreatment method | 泥炭Peat | 蛭石Vermiculite | 珍珠岩Perlite | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | |||||||
RMSEP | RMSEP | RMSEP | RMSEP | RMSEP | RMSEP | |||||||
原始光谱Raw spectrum | 0.928 | 0.149 | 0.770 | 1.117 | 0.912 | 0.678 | 0.790 | 1.650 | 0.883 | 0.907 | 0.868 | 1.140 |
多元散射校正MSC | 0.914 | 0.171 | 0.888 | 0.798 | 0.921 | 0.633 | 0.680 | 2.060 | 0.832 | 1.030 | 0.939 | 0.786 |
标准正态变量变换SNV | 0.914 | 0.171 | 0.871 | 0.864 | 0.924 | 0.625 | 0.682 | 2.050 | 0.853 | 0.952 | 0.943 | 0.756 |
平滑SG | 0.927 | 0.149 | 0.795 | 1.100 | 0.912 | 0.675 | 0.786 | 1.670 | 0.883 | 0.905 | 0.868 | 1.140 |
一阶导数FD | 0.932 | 0.142 | 0.686 | 1.300 | 0.923 | 0.652 | 0.946 | 0.938 | 0.893 | 0.917 | 0.929 | 0.845 |
一阶导数+平滑FD+SG | 0.961 | 0.110 | 0.797 | 1.060 | 0.926 | 0.635 | 0.943 | 0.949 | 0.890 | 0.923 | 0.927 | 0.854 |
多元散射校正+平滑MSC+SG | 0.916 | 0.166 | 0.899 | 0.752 | 0.921 | 0.631 | 0.679 | 2.060 | 0.832 | 1.040 | 0.938 | 0.791 |
SNV+平滑SNV+SG | 0.917 | 0.166 | 0.867 | 0.870 | 0.923 | 0.630 | 0.680 | 2.050 | 0.853 | 0.952 | 0.940 | 0.776 |
多元散射校正+一阶导数MSC+FD | 0.934 | 0.142 | 0.737 | 1.200 | 0.922 | 0.646 | 0.919 | 1.120 | 0.706 | 1.670 | 0.957 | 0.666 |
标准正态变量变换+一阶导数SNV+FD | 0.934 | 0.142 | 0.741 | 1.119 | 0.923 | 0.645 | 0.922 | 1.110 | 0.841 | 1.060 | 0.956 | 0.684 |
多元散射校正+标准正态变量变换+ 平滑MSC+FD+SG | 0.952 | 0.127 | 0.826 | 0.995 | 0.923 | 0.640 | 0.912 | 1.160 | 0.734 | 1.540 | 0.960 | 0.651 |
标准正态变量变换+一阶导数+平滑 SNV+FD+SG | 0.952 | 0.127 | 0.830 | 0.986 | 0.924 | 0.639 | 0.915 | 1.150 | 0.867 | 0.964 | 0.956 | 0.683 |
Table 3 The modeling results of different pretreatment combinations
预处理方法 Pretreatment method | 泥炭Peat | 蛭石Vermiculite | 珍珠岩Perlite | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | |||||||
RMSEP | RMSEP | RMSEP | RMSEP | RMSEP | RMSEP | |||||||
原始光谱Raw spectrum | 0.928 | 0.149 | 0.770 | 1.117 | 0.912 | 0.678 | 0.790 | 1.650 | 0.883 | 0.907 | 0.868 | 1.140 |
多元散射校正MSC | 0.914 | 0.171 | 0.888 | 0.798 | 0.921 | 0.633 | 0.680 | 2.060 | 0.832 | 1.030 | 0.939 | 0.786 |
标准正态变量变换SNV | 0.914 | 0.171 | 0.871 | 0.864 | 0.924 | 0.625 | 0.682 | 2.050 | 0.853 | 0.952 | 0.943 | 0.756 |
平滑SG | 0.927 | 0.149 | 0.795 | 1.100 | 0.912 | 0.675 | 0.786 | 1.670 | 0.883 | 0.905 | 0.868 | 1.140 |
一阶导数FD | 0.932 | 0.142 | 0.686 | 1.300 | 0.923 | 0.652 | 0.946 | 0.938 | 0.893 | 0.917 | 0.929 | 0.845 |
一阶导数+平滑FD+SG | 0.961 | 0.110 | 0.797 | 1.060 | 0.926 | 0.635 | 0.943 | 0.949 | 0.890 | 0.923 | 0.927 | 0.854 |
多元散射校正+平滑MSC+SG | 0.916 | 0.166 | 0.899 | 0.752 | 0.921 | 0.631 | 0.679 | 2.060 | 0.832 | 1.040 | 0.938 | 0.791 |
SNV+平滑SNV+SG | 0.917 | 0.166 | 0.867 | 0.870 | 0.923 | 0.630 | 0.680 | 2.050 | 0.853 | 0.952 | 0.940 | 0.776 |
多元散射校正+一阶导数MSC+FD | 0.934 | 0.142 | 0.737 | 1.200 | 0.922 | 0.646 | 0.919 | 1.120 | 0.706 | 1.670 | 0.957 | 0.666 |
标准正态变量变换+一阶导数SNV+FD | 0.934 | 0.142 | 0.741 | 1.119 | 0.923 | 0.645 | 0.922 | 1.110 | 0.841 | 1.060 | 0.956 | 0.684 |
多元散射校正+标准正态变量变换+ 平滑MSC+FD+SG | 0.952 | 0.127 | 0.826 | 0.995 | 0.923 | 0.640 | 0.912 | 1.160 | 0.734 | 1.540 | 0.960 | 0.651 |
标准正态变量变换+一阶导数+平滑 SNV+FD+SG | 0.952 | 0.127 | 0.830 | 0.986 | 0.924 | 0.639 | 0.915 | 1.150 | 0.867 | 0.964 | 0.956 | 0.683 |
Fig.3 Scatter plot of predicted values and observed values of substrate ammonium nitrogen content based on PLSR and SVM models A, PLSR model for peat; B, PLSR model for vermiculite; C, PLSR model for perlite; D, SVM model for peat; E, SVM model for vermiculite; F, SVM model for perlite.
Fig.4 Scatter plot of predicted values and observed values of substrate nitrate nitrogen content based on PLSR and SVM models A, PLSR model for peat; B, PLSR model for vermiculite; C, PLSR model for perlite; D, SVM model for peat; E, SVM model for vermiculite; F, SVM model for perlite.
基质类型 Substrate type | 氮处理 Nitrogen type | 建模方式 Model | 建模集Modeling set | 预测集Prediction set | |||
---|---|---|---|---|---|---|---|
RMSEC | RMSEP | RPD | |||||
泥炭 Peat | 铵态氮Ammonium nitrogen | PLSR | 0.988 | 0.064 | 0.961 | 0.110 | 5.15 |
SVM | 0.990 | 0.058 | 0.983 | 0.073 | 7.74 | ||
硝态氮Nitrate nitrogen | PLSR | 0.985 | 0.286 | 0.797 | 1.060 | 2.19 | |
SVM | 0.999 | 0.036 | 0.912 | 0.716 | 3.23 | ||
蛭石Vermiculite | 铵态氮Ammonium nitrogen | PLSR | 0.973 | 0.399 | 0.926 | 0.635 | 3.74 |
SVM | 0.997 | 0.115 | 0.936 | 0.528 | 4.50 | ||
硝态氮Nitrate nitrogen | PLSR | 0.973 | 0.572 | 0.943 | 0.949 | 3.69 | |
SVM | 0.986 | 0.362 | 0.956 | 0.933 | 3.75 | ||
珍珠岩 Vermiculite | 铵态氮Ammonium nitrogen | PLSR | 0.959 | 0.531 | 0.890 | 0.923 | 2.81 |
SVM | 0.973 | 0.477 | 0.925 | 0.540 | 4.80 | ||
硝态氮Nitrate nitrogen | PLSR | 0.989 | 0.333 | 0.927 | 0.834 | 3.77 | |
SVM | 0.993 | 0.143 | 0.921 | 0.976 | 3.30 |
Table 4 Accuracy of prediction model of ammonium nitrogen content and nitrate nitrogen content in different substrates
基质类型 Substrate type | 氮处理 Nitrogen type | 建模方式 Model | 建模集Modeling set | 预测集Prediction set | |||
---|---|---|---|---|---|---|---|
RMSEC | RMSEP | RPD | |||||
泥炭 Peat | 铵态氮Ammonium nitrogen | PLSR | 0.988 | 0.064 | 0.961 | 0.110 | 5.15 |
SVM | 0.990 | 0.058 | 0.983 | 0.073 | 7.74 | ||
硝态氮Nitrate nitrogen | PLSR | 0.985 | 0.286 | 0.797 | 1.060 | 2.19 | |
SVM | 0.999 | 0.036 | 0.912 | 0.716 | 3.23 | ||
蛭石Vermiculite | 铵态氮Ammonium nitrogen | PLSR | 0.973 | 0.399 | 0.926 | 0.635 | 3.74 |
SVM | 0.997 | 0.115 | 0.936 | 0.528 | 4.50 | ||
硝态氮Nitrate nitrogen | PLSR | 0.973 | 0.572 | 0.943 | 0.949 | 3.69 | |
SVM | 0.986 | 0.362 | 0.956 | 0.933 | 3.75 | ||
珍珠岩 Vermiculite | 铵态氮Ammonium nitrogen | PLSR | 0.959 | 0.531 | 0.890 | 0.923 | 2.81 |
SVM | 0.973 | 0.477 | 0.925 | 0.540 | 4.80 | ||
硝态氮Nitrate nitrogen | PLSR | 0.989 | 0.333 | 0.927 | 0.834 | 3.77 | |
SVM | 0.993 | 0.143 | 0.921 | 0.976 | 3.30 |
[1] | 李海平, 郭荣, 李灵芝, 等. 氮素对温室番茄果实发育及其氮吸收量的影响[J]. 核农学报, 2010, 24(2):365-369 |
LI H P, GUO R, LI L Z, et al. Development of tomato fruit and nitrogen uptake amount with different nitrogen concentration in greenhouse[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(2):365-369 (in Chinese with English abstract) | |
[2] | 李飞, 董静, 赵志伟, 等. 基质栽培中营养液浓度及硝铵比对番茄生长的影响[J]. 北方园艺, 2010,(24):39-45. |
LI F, DONG J, ZHAO Z W, et al. Effects of nutrient solution concentration and ratio of NO3--N to NH4+-N on tomato growth in soilless culture[J]. Northern Horticulture, 2010, 2010,(24):39-45. (in Chinese with English abstract) | |
[3] | YANG J, ZHU B, NI X L, et al. Ammonium/nitrate ratio affects the growth and glucosinolates content of pakchoi[J]. Horticultura Brasileira, 2020, 38(3): 246-253. |
[4] | 崔英静, 孙莉琼, 师建玲, 等. 菘蓝碳氮代谢与基质C/N对氮处理的动态响应[J]. 核农学报, 2023, 37(11): 2278-2287. |
CUI Y J, SUN L Q, SHI J L, et al. Carbon and nitrogen metabolism of Isatis indigotica and dynamic response of matrix C/N to nitrogen treatment[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(11): 2278-2287. (in Chinese with English abstract) | |
[5] | 申艳, 张晓平, 梁爱珍, 等. 近红外光谱法在土壤有机质研究中的应用[J]. 核农学报, 2010, 24(1): 199-207. |
SHEN Y, ZHANG X P, LIANG A Z, et al. Application of near infrared spectroscopy in soil organic matter research[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(1): 199-207. (in Chinese with English abstract) | |
[6] | 刘慧春, 周江华, 张加强, 等. 油用牡丹单粒种子含油量NIRS模型的建立[J]. 核农学报, 2022, 36(6): 1137-1144. |
LIU H C, ZHOU J H, ZHANG J Q, et al. Establishment of NIRS model for oil content in single seed of oil peony[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(6): 1137-1144. (in Chinese with English abstract) | |
[7] | COZZOLINO D. Advantages and limitations of using near infrared spectroscopy in plant phenomics applications[J]. Computers and Electronics in Agriculture, 2023, 212: 108078. |
[8] | DALAL R C, HENRY R J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J]. Soil Science Society of America Journal, 1986, 50(1): 120-123. |
[9] | 于飞健, 闵顺耕, 巨晓棠, 等. 近红外光谱法分析土壤中的有机质和氮素[J]. 分析试验室, 2002, 21(3): 49-51. |
YU F J, MIN S G, JU X T, et al. Determination the content of nitrogen and organic substance in dry soil by using near infrared diffusion reflectance spectroscopy[J]. Analytical Laboratory, 2002, 21(3): 49-51. (in Chinese with English abstract) | |
[10] | KODAIRA M, SHIBUSAWA S. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping[J]. Geoderma, 2013, 199: 64-79. |
[11] | 朱咏莉, 李萍萍, 孙德民, 等. 基于特征光谱提取的有机基质全氮含量快速检测方法[J]. 农业机械学报, 2011, 42(5): 175-177. |
ZHU Y L, LI P P, SUN D M, et al. Total nitrogen content detection in organic substrate using visible-near-infrared spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5): 175-177. (in Chinese with English abstract) | |
[12] | LU B, WANG X F, LIU N H, et al. Prediction performance optimization of different resolution and spectral band ranges for characterizing coco-peat substrate available nitrogen[J]. Journal of Soils and Sediments, 2021, 21(7): 2672-2685. |
[13] | LU B, LIU N H, WANG X F, et al. A feasibility quantitative analysis of NIR spectroscopy coupled Si-PLS to predict coco-peat available nitrogen from rapid measurements[J]. Computers and Electronics in Agriculture, 2020, 173: 105410. |
[14] | PULLANAGARI R R, DEHGHAN-SHOAR M, YULE I J, et al. Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network[J]. Remote Sensing of Environment, 2021, 257: 112353. |
[15] | NAWAR S, MOUAZEN A M. Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line vis-NIR spectroscopy measurements of soil total nitrogen and total carbon[J]. Sensors, 2017, 17(10): 2428. |
[16] | GRELL M, BARANDUN G, ASFOUR T, et al. Point-of-use sensors and machine learning enable low-cost determination of soil nitrogen[J]. Nature Food, 2021, 2(12): 981-989. |
[17] | COUTINHO M A N, DE O ALARI F, FERREIRA M M C, et al. Influence of soil sample preparation on the quantification of NPK content via spectroscopy[J]. Geoderma, 2019, 338: 401-409. |
[18] | 史舟, 王乾龙, 彭杰, 等. 中国主要土壤高光谱反射特性分类与有机质光谱预测模型[J]. 中国科学(地球科学), 2014, 44(5):978-988. |
SHI Z, WANG Q L, PENG J, et al. Classification of hyperspectral reflectance characteristics of main soils in China and spectral prediction model of organic matter[J]. Scientia Sinica(Terrae), 2014, 44(5):978-988. (in Chinese with English abstract) | |
[19] | MATLAB.Version 7.8.0[CP]. Massachusetts: The MathWorks Inc., 2009. |
[20] | OriginPro. Version 7.5[CP]. Massachusetts: OriginLab Corporation, 2004. |
[21] | 第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析, 2019, 39(9): 2800. |
DIWU P Y, BIAN X H, WANG Z F, et al. Study on the selection of spectral preprocessing methods[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2800. (in Chinese with English abstract) | |
[22] | 方向, 金秀, 朱娟娟, 等. 基于可见-近红外光谱预处理建模的土壤速效氮含量预测[J]. 浙江农业学报, 2019, 31(9): 1523-1530. |
FANG X, JIN X, ZHU J J, et al. Prediction of soil available nitrogen content based on visible and near infrared spectroscopy preprocess and modeling[J]. Acta Agriculturae Zhejiangensis, 2019, 31(9): 1523-1530. (in Chinese with English abstract) | |
[23] | 吴茜, 杨宇虹, 徐照丽, 等. 应用局部神经网络和可见/近红外光谱法估测土壤有效氮磷钾[J]. 光谱学与光谱分析, 2014, 34(8): 2102-2105. |
WU Q, YANG Y H, XU Z L, et al. Applying local neural network and visible/near-infrared spectroscopy to estimating available nitrogen, phosphorus and potassium in soil[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2102-2105. (in Chinese with English abstract) | |
[24] | 吴金卓, 孔琳琳, 李颖, 等. 近红外光谱法测定土壤全氮和碱解氮含量[J]. 湖南农业大学学报(自然科学版), 2016, 42(1): 91-96. |
WU J Z, KONG L L, LI Y, et al. Prediction models of total and available soil nitrogen based on near-infrared spectroscopy[J]. Journal of Hunan Agricultural University(Natural Sciences), 2016, 42(1): 91-96. (in Chinese with English abstract) | |
[25] | 梁嘉如, 陈华舟, 秦强. FT-NIR光谱法与Whittaker平滑应用于土壤有机质和总氮的定量检测[J]. 分析试验室, 2013, 32(9): 11-15. |
LIANG J R, CHEN H Z, QIN Q. FT-NIR spectroscopy and Whittaker smoother applied to the quantitative determination of organic matter and total nitrogen in soil[J]. Chinese Journal of Analysis Laboratory, 2013, 32(9): 11-15. (in Chinese with English abstract) | |
[26] | 刘雪梅, 柳建设. 基于LS-SVM建模方法近红外光谱检测土壤速效N和速效K的研究[J]. 光谱学与光谱分析, 2012, 32(11): 3019. |
LIU X M, LIU J S. Based on the LS-SVM modeling method determination of soil available N and available K by using near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 3019. (in Chinese with English abstract) | |
[27] | 鲁兵, 王旭峰, 何珂, 等. 椰糠基质有效氮近红外检测仪设计与试验[J]. 农业机械学报, 2022, 53(5): 316-324. |
LU B, WANG X F, HE K, et al. Design and test of near infrared detecting instrument for available nitrogen in coco-peat substrate[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 316-324. (in Chinese with English abstract) | |
[28] | 陈鹏飞, 刘良云, 王纪华, 等. 近红外光谱技术实时测定土壤中总氮及磷含量的初步研究[J]. 光谱学与光谱分析, 2008, 28(2): 295-298. |
CHEN P F, LIU L Y, WANG J H, et al. Real-time analysis of soil N and P with near infrared diffuse reflectance spectroscopy[J]. Spectroscopy and Spectral Analysis, 2008, 28(2): 295-298. (in Chinese with English abstract) | |
[29] | KAVDIR Y, ILAY R, CETIN S C, et al. Monitoring composting process of olive oil solid waste using FT-NIR spectroscopy[J]. Communications in Soil Science and Plant Analysis, 2020, 51(6): 816-828. |
[30] | CHEN Z Y, REN S J, QIN R M, et al. Rapid detection of different types of soil nitrogen using near-infrared hyperspectral imaging[J]. Molecules, 2022, 27(6): 2017. |
[31] | AWAIS M, NAQVI S M Z A, ZHANG H, et al. AI and machine learning for soil analysis: an assessment of sustainable agricultural practices[J]. Bioresources and Bioprocessing, 2023, 10(1): 90. |
[32] | 贾生尧. 基于光谱分析技术的土壤养分检测方法与仪器研究[D]. 杭州: 浙江大学, 2015: 49-50. |
JIA S Y. Research on the detection methods and instrumentation of soil properties using spectral analysis technology[D]. Hangzhou: Zhejiang University, 2015: 49-50. (in Chinese with English abstract) | |
[33] | LIU Y, LU Y Y, CHEN D Y, et al. Simultaneous estimation of multiple soil properties under moist conditions using fractional-order derivative of vis-NIR spectra and deep learning[J]. Geoderma, 2023, 438: 116653. |
[1] | SHAO Yaxu, LIU Tao, WANG Shicheng, YAN Lei. Screening of proportions and molding conditions of seeding substrate with straw and organic fertilizer [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1856-1866. |
[2] | ZHANG Yongbin, LI Xiang, MAN Weidong, LIU Mingyue, FAN Jihao, HU Haoran, SONG Lijie, LIU Weijia. Research on yield estimation method of winter wheat based on Sentinel-1/2 data and machine learning algorithms [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2812-2822. |
[3] | YUE Liran, NI Xingyu, LIU Mingyu, ZHOU Yunwei. Effects of different culture substrates on the growth of potted chrysanthemum [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2521-2534. |
[4] | ZHOU Lili, FENG Haikuan, NIE Chenwei, XU Xiaobin, LIU Yuan, MENG Lin, XUE Beibei, MING Bo, LIANG Qiyun, SU Tao, JIN Xiuliang. Influence of unmanned aerial vehicle observation time on estimation of canopy chlorophyll density of maize [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 18-31. |
[5] | WANG Fei, HAN Yujie, FANG Yi, XIANG Hai, CHANG Xiao, ZHONG Rongzhen. Evaluation on nutritional value of Flammulina filiformis cultivation substrate with different cultivation time [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 75-83. |
[6] | FU Hongfei, GUO Saisai, ZHENG Jirong. Effects of compound substrate with residues of Solanaceous vegetables on cucumber seedling [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1805-1813. |
[7] | ZHANG Meng, SHE Bao, YANG Yuying, HUANG Linsheng, ZHU Mengqi. Study on extraction method of soybean planting areas based on unmanned aerial vehicle RGB image [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 952-961. |
[8] | CHEN Dagang, XU Kaiwei, PENG Dandan, YOU Haoyu, YANG Ran, LIAO Huiping, CHEN Yuanxue. Effects of different water treatments on growth and nutrient uptake of Actinidia valvata Dunn seedlings under substrate culture [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2854-2864. |
[9] | CUI Lingyu, YU Man, QIAO Yuying, SU Yao, WANG Yunlong, SHEN Alin. Research trend of soil quality assessment and microbiological indicators based on Web of Science database [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2688-2697. |
[10] | PENG Dandan, CHEN Dagang, XU Kaiwei, YOU Haoyu, YANG Ran, LIAO Huiping, CHEN Yuanxue. Effects of coconut-bran compound substrate on the growth and root characteristics of kiwifruit rootstock seedlings [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2364-2377. |
[11] | GUO Han, LU Zhou, XU Feifei, LUO Ming, ZHANG Xu. Leaf area index estimation of winter wheat based on global sensitivity analysis and machine learning [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2020-2031. |
[12] | LI Wangxiong, ZHANG Yang, TANG Zhongqi, YU Jihua. Effects of balanced fertilization on growth, quality, mineral elements contents and yield of tomato cultivated in substrate in greenhouse [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1648-1660. |
[13] | YANG Xiaofang, LI Yunduan, SUN Yunfan, LI Shaojia, MIAO Lixiang, ZHANG Yuchao, JIANG Guihua. Influence of substrate cultivation and soil cultivation on sucrose and citric acid accumulation of Yuexin strawberry [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1423-1430. |
[14] | WU Yifan, XIA Jie, CHEN Sheng, ZHANG Wei, XIE Jinzhong. Study on suitable ratio for bamboo sawdust and wheat bran composting as substrate of Stropharia rugosoannulata [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1024-1031. |
[15] | LEI Yumeng, YAN Guochao, YANG Jing, ZHU Zhujun. Rapid determination of mineral elements in broccoli by near-infrared spectroscopy [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 548-556. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||