Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (9): 2003-2011.DOI: 10.3969/j.issn.1004-1524.20240893
• Review • Previous Articles Next Articles
HU Yingjie(
), DU Chenqi, WANG Liufan, SHOU Jianxin, WANG Chao, XU Mei, YAN Xu(
)
Received:2024-10-24
Online:2025-09-25
Published:2025-10-15
Contact:
YAN Xu
CLC Number:
HU Yingjie, DU Chenqi, WANG Liufan, SHOU Jianxin, WANG Chao, XU Mei, YAN Xu. Research progress of vesicle trafficking in plant response to salt stress[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2003-2011.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240893
| 蛋白种类 Protein type | 囊泡运输中的作用 The role in vesicle trafficking | 蛋白名称 Protein name | 盐胁迫下的功能 Function under salt stress | 物种 Species | 参考文献 References |
|---|---|---|---|---|---|
| 网格蛋白 Clathrin | 组成囊泡框架 Form the vesicle framework | CHC、CLC | 调节PIN2质膜丰度,产生避盐性 Regulate the abundance of PIN2 plasma membrane to generate salt repellency | 拟南芥 Arabidopsis thaliana | [ |
| 降低PIP2;1质膜丰度,减少水分流失 Reduce PIP2; 1 plasma film abundance, reducing water loss | 拟南芥 Arabidopsis thaliana | [ | |||
| 增加PIP2;1质膜丰度,维持细胞水态 Increase PIP2; 1 plasma membrane abundance, maintaining the aqueous state of cells | 冰叶日中花 Mesembryanthemum crystallinum | [ | |||
| SNARE蛋白 SNARE protein | 促进囊泡与靶膜融合,根据 结构域中间的谷氨酰胺(Q) 或精氨酸(R)残基,可分为 | SYP121 | 与KC1结合,促进K+吸收通道活性 It binds to KC1 and promotes the activity of K+ absorption channels | 拟南芥 Arabidopsis thaliana | [ |
| Q-SNARE和R-SNARE To promote the fusion of vesicles | VAM3/ SYP22 | 参与植物组织间Na+的转运 Participate in the transport of Na+ between plant tissues | 拟南芥 Arabidopsis thaliana | [ | |
| with the target membrane, they can be classified into Q-SNARE and R-SNARE based on the glutamine (Q) or arginine (R) residues in the | SYP132 | 与AHA1结合减弱,与PIP2;1/PIP2;2结合增强, 促进气孔关闭,防止脱水 Reduces binding to AHA1 while enhancing binding to PIP2;1/PIP2;2, promotes stomatal closure and prevents dehydration | 拟南芥 Arabidopsis thaliana | [ | |
| domain | VAMP7C | 调节含有H2O2的囊泡与液泡融合 Regulate the fusion of vesicles containing H2O2 with vacuoles | 拟南芥 Arabidopsis thaliana | [ | |
| 小G蛋白 Small GTPase | 分子开关,参与囊泡形成、 运输以及融合 Molecular switches, which are involved in vesicle formation, transport and fusion | RABA2a | 调节SNARE三元复合物组装,维持细胞钾稳态 Regulate the assembly of the SNARE ternary complex and maintain cellular potassium homeostasis | 拟南芥 Arabidopsis thaliana | [ |
| ARA6 | 调节VAMP727、SYP121膜融合过程,参与 Na+的区隔化 Regulate the membrane fusion process of VAMP727 and SYP121, and participate in the segmentation of Na+ | 拟南芥 Arabidopsis thaliana | [ | ||
| Rab7 | 加快内吞,区隔Na+ Accelerate endocytosis to compartmentalize Na+ | 拟南芥、水稻 Arabidopsis thaliana, Oryza sativa | [ | ||
| Rabs | 参与细胞自噬过程,提供营养 Participate in the autophagy process of cells and provide nutrients | 拟南芥 Arabidopsis thaliana | [ | ||
| 鸟苷酸交换 因子 Guanylate exchange factor | 激活Rab家族中的特定成员 Activate specific members of the Rab family | VPS9a | 调节ARA6、ARA7、RHA1活性,重塑内膜系统, 形成大液泡 Regulate the activities of ARA6, ARA7 and RHA1, reshape the intimal system and form large vacuoles | 拟南芥 Arabidopsis thaliana | [ |
| A/ENTH蛋白 A/ENTH protein | CCV接头蛋白 CCV adaptor protein | ECA4 | 促进ROS信号传导 Promote ROS signal transduction | 拟南芥 Arabidopsis thaliana | [ |
| Rab GDP解离 抑制因子 Rab GDP dissociation inhibitor | 调节Rab蛋白的细胞定位 Regulate the cellular localization of Rab protein | RabGDI1 | 促进内吞,区隔Na+ Accelerate endocytosis to compartmentalize Na+ | 智利茄 Solanum chilense | [ |
| sirtuin样蛋白 sirtuin-like protein | 调控VAMP714转录 Regulate VAMP714 transcription | SRT2 | 降低活性氧含量,减少DNA损伤 Reduce the content of reactive oxygen species and minimize DNA damage | 拟南芥 Arabidopsis thaliana | [ |
| 自噬蛋白 Autophagy protein | 介导自噬 Mediate autophagy | NBR1 | 运输蛋白到液泡分解,提供营养 Transport protein to the vacuole for decomposition and provide nutrients | 水稻、胡杨 Oryza sativa, Populus euphratica | [ |
Table 1 The function of vesicle trafficking related proteins in salt stress response
| 蛋白种类 Protein type | 囊泡运输中的作用 The role in vesicle trafficking | 蛋白名称 Protein name | 盐胁迫下的功能 Function under salt stress | 物种 Species | 参考文献 References |
|---|---|---|---|---|---|
| 网格蛋白 Clathrin | 组成囊泡框架 Form the vesicle framework | CHC、CLC | 调节PIN2质膜丰度,产生避盐性 Regulate the abundance of PIN2 plasma membrane to generate salt repellency | 拟南芥 Arabidopsis thaliana | [ |
| 降低PIP2;1质膜丰度,减少水分流失 Reduce PIP2; 1 plasma film abundance, reducing water loss | 拟南芥 Arabidopsis thaliana | [ | |||
| 增加PIP2;1质膜丰度,维持细胞水态 Increase PIP2; 1 plasma membrane abundance, maintaining the aqueous state of cells | 冰叶日中花 Mesembryanthemum crystallinum | [ | |||
| SNARE蛋白 SNARE protein | 促进囊泡与靶膜融合,根据 结构域中间的谷氨酰胺(Q) 或精氨酸(R)残基,可分为 | SYP121 | 与KC1结合,促进K+吸收通道活性 It binds to KC1 and promotes the activity of K+ absorption channels | 拟南芥 Arabidopsis thaliana | [ |
| Q-SNARE和R-SNARE To promote the fusion of vesicles | VAM3/ SYP22 | 参与植物组织间Na+的转运 Participate in the transport of Na+ between plant tissues | 拟南芥 Arabidopsis thaliana | [ | |
| with the target membrane, they can be classified into Q-SNARE and R-SNARE based on the glutamine (Q) or arginine (R) residues in the | SYP132 | 与AHA1结合减弱,与PIP2;1/PIP2;2结合增强, 促进气孔关闭,防止脱水 Reduces binding to AHA1 while enhancing binding to PIP2;1/PIP2;2, promotes stomatal closure and prevents dehydration | 拟南芥 Arabidopsis thaliana | [ | |
| domain | VAMP7C | 调节含有H2O2的囊泡与液泡融合 Regulate the fusion of vesicles containing H2O2 with vacuoles | 拟南芥 Arabidopsis thaliana | [ | |
| 小G蛋白 Small GTPase | 分子开关,参与囊泡形成、 运输以及融合 Molecular switches, which are involved in vesicle formation, transport and fusion | RABA2a | 调节SNARE三元复合物组装,维持细胞钾稳态 Regulate the assembly of the SNARE ternary complex and maintain cellular potassium homeostasis | 拟南芥 Arabidopsis thaliana | [ |
| ARA6 | 调节VAMP727、SYP121膜融合过程,参与 Na+的区隔化 Regulate the membrane fusion process of VAMP727 and SYP121, and participate in the segmentation of Na+ | 拟南芥 Arabidopsis thaliana | [ | ||
| Rab7 | 加快内吞,区隔Na+ Accelerate endocytosis to compartmentalize Na+ | 拟南芥、水稻 Arabidopsis thaliana, Oryza sativa | [ | ||
| Rabs | 参与细胞自噬过程,提供营养 Participate in the autophagy process of cells and provide nutrients | 拟南芥 Arabidopsis thaliana | [ | ||
| 鸟苷酸交换 因子 Guanylate exchange factor | 激活Rab家族中的特定成员 Activate specific members of the Rab family | VPS9a | 调节ARA6、ARA7、RHA1活性,重塑内膜系统, 形成大液泡 Regulate the activities of ARA6, ARA7 and RHA1, reshape the intimal system and form large vacuoles | 拟南芥 Arabidopsis thaliana | [ |
| A/ENTH蛋白 A/ENTH protein | CCV接头蛋白 CCV adaptor protein | ECA4 | 促进ROS信号传导 Promote ROS signal transduction | 拟南芥 Arabidopsis thaliana | [ |
| Rab GDP解离 抑制因子 Rab GDP dissociation inhibitor | 调节Rab蛋白的细胞定位 Regulate the cellular localization of Rab protein | RabGDI1 | 促进内吞,区隔Na+ Accelerate endocytosis to compartmentalize Na+ | 智利茄 Solanum chilense | [ |
| sirtuin样蛋白 sirtuin-like protein | 调控VAMP714转录 Regulate VAMP714 transcription | SRT2 | 降低活性氧含量,减少DNA损伤 Reduce the content of reactive oxygen species and minimize DNA damage | 拟南芥 Arabidopsis thaliana | [ |
| 自噬蛋白 Autophagy protein | 介导自噬 Mediate autophagy | NBR1 | 运输蛋白到液泡分解,提供营养 Transport protein to the vacuole for decomposition and provide nutrients | 水稻、胡杨 Oryza sativa, Populus euphratica | [ |
Fig.1 Various pathways of vesicle trafficking involved in plant salt stress response A, Regulate the ROS signaling pathway; B, Promote autophagy; C, Promote the absorption of K+; D, Isolate excess Na+ into the vacuole; E, Slow down intracellular water loss; F, Transports Na+ to insensitive tissues; G, Promote root halotropism.
| [1] | ISAYENKOV S V, MAATHUIS F J M. Plant salinity stress: many unanswered questions remain[J]. Frontiers in Plant Science, 2019, 10: 80. |
| [2] | ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. |
| [3] | GALVAN-AMPUDIA C S, JULKOWSKA M M, DARWISH E, et al. Halotropism is a response of plant roots to avoid a saline environment[J]. Current Biology, 2013, 23(20): 2044-2050. |
| [4] | UEDA M, TSUTSUMI N, FUJIMOTO M. Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2016, 474(4): 742-746. |
| [5] | GÓMEZ-MÉNDEZ M F, AMEZCUA-ROMERO J C, ROSAS-SANTIAGO P, et al. Ice plant root plasma membrane aquaporins are regulated by clathrin-coated vesicles in response to salt stress[J]. Plant Physiology, 2023, 191(1): 199-218. |
| [6] | LEFOULON C, WAGHMARE S, KARNIK R, et al. Gating control and K+ uptake by the KAT1 K+ channel leaveraged through membrane anchoring of the trafficking protein SYP121[J]. Plant, Cell & Environment, 2018, 41(11): 2668-2677. |
| [7] | HAMAJI K, NAGIRA M, YOSHIDA K, et al. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis[J]. Plant & Cell Physiology, 2009, 50(12): 2023-2033. |
| [8] | BAENA G, XIA L F, WAGHMARE S, et al. Arabidopsis SNARE SYP132 impacts on PIP2;1 trafficking and function in salinity stress[J]. The Plant Journal, 2024, 118(4): 1036-1053. |
| [9] | LESHEM Y, MELAMED-BOOK N, CAGNAC O, et al. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47): 18008-18013. |
| [10] | PANG L, MA Z M, ZHANG X, et al. The small GTPase RABA2a recruits SNARE proteins to regulate the secretory pathway in parallel with the exocyst complex in Arabidopsis[J]. Molecular Plant, 2022, 15(3): 398-418. |
| [11] | EBINE K, FUJIMOTO M, OKATANI Y, et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6[J]. Nature Cell Biology, 2011, 13(7): 853-859. |
| [12] | MAZEL A, LESHEM Y, TIWARI B S, et al. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e)[J]. Plant Physiology, 2004, 134(1): 118-128. |
| [13] | PENG X J, DING X, CHANG T F, et al. Overexpression of a vesicle trafficking gene, OsRab7, enhances salt tolerance in rice[J]. The Scientific World Journal, 2014, 2014(1): 483526. |
| [14] | LUO L M, ZHANG P P, ZHU R H, et al. Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 1459. |
| [15] | BARAL A, IRANI N G, FUJIMOTO M, et al. Salt-induced remodeling of spatially restricted clathrin-independent endocytic pathways in Arabidopsis root[J]. The Plant Cell, 2015, 27(4): 1297-1315. |
| [16] | NGUYEN H H, LEE M H, SONG K, et al. The A/ENTH domain-containing protein AtECA4 is an adaptor protein involved in cargo recycling from the trans-Golgi network/early endosome to the plasma membrane[J]. Molecular Plant, 2018, 11(4): 568-583. |
| [17] | MARTÍN-DAVISON A S, PÉREZ-DÍAZ R, SOTO F, et al. Involvement of SchRabGDI1 from Solanum chilense in endocytic trafficking and tolerance to salt stress[J]. Plant Science, 2017, 263: 1-11. |
| [18] | LEE J, HANH NGUYEN H, PARK Y, et al. Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response[J]. Plant Journal, 2022, 109(4): 816-830. |
| [19] | MA A, NAN N, SHI Y J, et al. Autophagy receptor OsNBR1 modulates salt stress tolerance in rice[J]. Plant Cell Reports, 2023, 43(1): 17. |
| [20] | SU W L, BAO Y, LU Y Y, et al. Poplar autophagy receptor NBR1 enhances salt stress tolerance by regulating selective autophagy and antioxidant system[J]. Frontiers in Plant Science, 2021, 11: 568411. |
| [21] | 冯瑶洁, 蒋苏, 刘振东, 等. 植物R-SNARE蛋白研究进展[J]. 中国细胞生物学学报, 2023, 45(5): 786-794. |
| FENG Y J, JIANG S, LIU Z D, et al. Advances in the research of R-SNARE in plants[J]. Chinese Journal of Cell Biology, 2023, 45(5): 786-794. (in Chinese with English abstract) | |
| [22] | 徐昌文, 钱虹萍, 罗鹏云, 等. 植物膜蛋白的囊泡转运及调控机制的研究进展[J]. 科学通报, 2023, 68(7): 762-778. |
| XU C W, QIAN H P, LUO P Y, et al. Advances in vesicle trafficking of membrane proteins and their regulatory mechanisms[J]. Chinese Science Bulletin, 2023, 68(7): 762-778. (in Chinese with English abstract) | |
| [23] | DRAGWIDGE J M, VAN DAMME D. Visualising endocytosis in plants: past, present, and future[J]. Journal of Microscopy, 2020, 280(2): 104-110. |
| [24] | MCMAHON H T, MILLS I G. COP and clathrin-coated vesicle budding: different pathways, common approaches[J]. Current Opinion in Cell Biology, 2004, 16(4): 379-391. |
| [25] | VALE R D. The molecular motor toolbox for intracellular transport[J]. Cell, 2003, 112(4): 467-480. |
| [26] | UEMURA T, UEDA T. Plant vacuolar trafficking driven by RAB and SNARE proteins[J]. Current Opinion in Plant Biology, 2014, 22: 116-121. |
| [27] | 严旭, 徐梅, 王玉同, 等. 植物胞吞和胞吐的耦合调控[J]. 植物学报, 2022, 57(3): 375-387. |
| YAN X, XU M, WANG Y T, et al. Coupling regulation of endocytosis and exocytosis in plants[J]. Chinese Bulletin of Botany, 2022, 57(3): 375-387. (in Chinese with English abstract) | |
| [28] | BROWN F C, PFEFFER S R. An update on transport vesicle tethering[J]. Molecular Membrane Biology, 2010, 27(8): 457-461. |
| [29] | 高坤, 常金科, 黎家. 植物根向水性反应研究进展[J]. 植物学报, 2018, 53(2): 154-163. |
| GAO K, CHANG J K, LI J. Current understanding of plant root hydrotropic response[J]. Chinese Bulletin of Botany, 2018, 53(2): 154-163. (in Chinese with English abstract) | |
| [30] | VAN DEN BERG T, KORVER R A, TESTERINK C, et al. Modeling halotropism: a key role for root tip architecture and reflux loop remodeling in redistributing auxin[J]. Development, 2016, 143(18): 3350-3362. |
| [31] | ZHENG L L, HU Y F, YANG T Z, et al. A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis[J]. Nature Communications, 2024, 15: 2061. |
| [32] | SARDANS J, PEÑUELAS J. Potassium control of plant functions: ecological and agricultural implications[J]. Plants, 2021, 10(2): 419. |
| [33] | HOEPFLINGER M C, GERETSCHLAEGER A, SOMMER A, et al. Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae[J]. Journal of Experimental Botany, 2013, 64(18): 5553-5568. |
| [34] | HONG Z P, LI Y, ZHAO Y, et al. Heterologous expression of Arabidopsis AtARA6 in soybean enhances salt tolerance[J]. Frontiers in Genetics, 2022, 13: 849357. |
| [35] | LU C X, YUAN F, GUO J R, et al. Current understanding of role of vesicular transport in salt secretion by salt glands in recretohalophytes[J]. International Journal of Molecular Sciences, 2021, 22(4): 2203. |
| [36] | BASSIL E, BLUMWALD E. The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters[J]. Current Opinion in Plant Biology, 2014, 22: 1-6. |
| [37] | FLOWERS T J, GLENN E P, VOLKOV V. Could vesicular transport of Na+ and Cl- be a feature of salt tolerance in halophytes[J]. Annals of Botany, 2019, 123(1): 1-18. |
| [38] | 李格, 孟小庆, 蔡敬, 等. 活性氧在植物非生物胁迫响应中功能的研究进展[J]. 植物生理学报, 2018, 54(6): 951-959. |
| LI G, MENG X Q, CAI J, et al. Advances in the function of reactive oxygen species in plant responses to abiotic stresses[J]. Plant Physiology Journal, 2018, 54(6): 951-959. (in Chinese with English abstract) | |
| [39] | GARCIA DE LA GARMA J, FERNANDEZ-GARCIA N, BARDISI E, et al. New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system[J]. New Phytologist, 2015, 205(1): 216-239. |
| [40] | TANG W S, ZHONG L, DING Q Q, et al. Histone deacetylase AtSRT2 regulates salt tolerance during seed germination via repression of vesicle-associated membrane protein 714 (VAMP714) in Arabidopsis[J]. New Phytologist, 2022, 234(4): 1278-1293. |
| [41] | 梁凯, 刘媛, 周策凡, 等. Rab蛋白在自噬中的作用[J]. 生物技术, 2023, 33(6): 785-790, 797. |
| LIANG K, LIU Y, ZHOU C F, et al. Role of rab protein in autophagy[J]. Biotechnology, 2023, 33(6): 785-790, 797. (in Chinese with English abstract) | |
| [42] | LIU Y M, XIONG Y, BASSHAM D C. Autophagy is required for tolerance of drought and salt stress in plants[J]. Autophagy, 2009, 5(7): 954-963. |
| [1] | YANG Chun, LIANG Sihui, WANG Anran, CHEN Juan, LI Yan, LIN Kaiqin, MI Xiaozeng, QIAO Dahe, CHEN Zhengwu, GUO Yan. Characteristic metabolite content and cold resistance of 54 tea germplasms [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1860-1871. |
| [2] | GUAN Xiusheng, LIU Tieshan, WANG Juan, ZHANG Maolin, LIU Chunxiao, DONG Rui, GUAN Haiying, LIU Qiang, XU Yang, HE Chunmei. Bioinformatics analysis and cloning of NF-YA family genes in maize(Zea mays) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1605-1614. |
| [3] | SHI Yangyang, LYU Lixia, TUO Dengfeng. Effects of AMF and PGPR on growth and nutrient absorption of Matthiola incana under low temperature and weak light stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1694-1705. |
| [4] | CHEN Min, ZHANG Qiaoyan, WANG Xiajun, WANG Shunli, ZHENG Weiran. Determination of arbutin in plant-derived products by solid phase extraction-high performance liquid chromatography [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1776-1784. |
| [5] | ZHAO Hongyu, ZHOU Yujie, LI Jianzhong, ZHENG Han, BI Ji’an, YU Chulang, ZHOU Yuhang, HOU Fan, DAI Binfeng, ZHONG Liequan, YAN Chengqi, ZHANG Haipeng, YANG Yong, CHEN Jianping, WANG Chengyu. Current research status and future perspectives on the effects of microplastics on plants and the molecular biological mechanisms of plant hormones in resistance to microplastics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1595-1604. |
| [6] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
| [7] | XIA Si, FANG Xiangjun, WU Weijie, LIU Ruiling, CHEN Huizhi, NIU Ben, GAO Haiyan. Preparation of fermented Chinese bayberry (Myrica rubra) pulp and its functional activity and flavor quality [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 667-678. |
| [8] | ZHENG Hang, FENG Haodong, XUE Xianglei, YE Yunxiang, YU Jianlin, YU Guohong. Study on navigation line extraction algorithm for leaf vegetable ridges based on instance segmentations [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 701-711. |
| [9] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
| [10] | TANG Aoran, JIN Xiu, WANG Tan, RAO Yuan, LI Jiajia, ZHANG Wu. Physiological plant height measurement method based on the reconstruction of the main stem skeleton for curved soybean plants [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 466-479. |
| [11] | LIU Yuexuan, CHEN Yanling, ZHANG Peiqiang, YAN Peng. Research progress on soil acidification and its regulation in tea plantations [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 245-254. |
| [12] | BAI Jian, LUO Laicong, LI Aixin, LAI Xiaoqin, SHEN Zhan, LIU Liangying, GUO Shengmao, ZHANG Ling. Response of carbon emissions from invasive plant alligator weed (Alternanthera philoxeroides) to nitrogen and phosphorus input in different habitats [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2070-2078. |
| [13] | ZHAN Mengqi, SU Aoxue, HOU Qian, ZHANG Haoyu, JIANG Xinrui, XU Yan. Uptake and accumulation of lindane in rice and its metabolomics [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2110-2121. |
| [14] | LI Hui, TAN Xiaoqin, TANG Qian, YANG Yang, CHEN Wei. Effects of flower thinning on yield and quality components of Zi Yan tea plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1602-1615. |
| [15] | FU Zhiqiang, LIU Zhen, MA Chunhua, WEN Mengling, XI Ruchun. Effects of biochar and biochar-based fertilizers on soil quality and plant growth [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1634-1645. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||