浙江农业学报 ›› 2022, Vol. 34 ›› Issue (5): 984-994.DOI: 10.3969/j.issn.1004-1524.2022.05.13
夏煜琪1,2(), 孙宇1,2, 刘志鑫2, 孙瑞青1,2, 杨楠1,2, 蒲金基2,3, 张贺1,2,3,*(
)
收稿日期:
2021-03-15
出版日期:
2022-05-25
发布日期:
2022-06-06
通讯作者:
张贺
作者简介:
* 张贺, E-mail: atzzhef@163.com基金资助:
XIA Yuqi1,2(), SUN Yu1,2, LIU Zhixin2, SUN Ruiqing1,2, YANG Nan1,2, PU Jinji2,3, ZHANG He1,2,3,*(
)
Received:
2021-03-15
Online:
2022-05-25
Published:
2022-06-06
Contact:
ZHANG He
摘要:
BES1/BZR1是植物中特有的一类转录因子且是油菜素内酯(BR)信号转导途径的唯一转录因子,为探讨其在植物抗病抗逆反应中的作用,本研究通过运用生物信息学研究方法分析了杧果BES1s家族成员的理化性质、结构域、蛋白质结构和在不同胁迫条件下的基因表达。研究表明,杧果BES1s家族理化性质预测结果显示,成员外显子个数相差较大;结构域预测结果显示,杧果BES1s成员均具有BES1_N结构域;系统进化分析和二级结构表明,成员可分成3组,不同组之间成员存在较大差异、蛋白质三级结构预测结果显示,存在3种结构。在qRT-PCR法测定基因表达量中发现,在胶孢炭疽菌(Cg)侵染过程中MiBES1.1和MiBES1.5持续上调表达;MiBES1.12和MiBES1.13持续下调表达。在细菌性黑斑病菌(Xcm)侵染过程中,在12 h时除MiBES1.7和MiBES1.9,其他成员上调表达;在3 h时MiBES1.1~MiBES1.5和MiBES1.11下调表达。在茉莉酸甲酯(MeJA)处理过程中,MiBES1.7、MiBES1.9和MiBES1.2持续下调表达;在48 h时,除MiBES1.5和MiBES1.11~MiBES1.13其他成员下调表达。本研究结果可为杧果BES1s家族成员基因的功能研究提供依据。
中图分类号:
夏煜琪, 孙宇, 刘志鑫, 孙瑞青, 杨楠, 蒲金基, 张贺. 杧果转录因子BES1s家族全基因组鉴定及生物信息学分析[J]. 浙江农业学报, 2022, 34(5): 984-994.
XIA Yuqi, SUN Yu, LIU Zhixin, SUN Ruiqing, YANG Nan, PU Jinji, ZHANG He. Genome-wide identification and bioinformatics analysis of BES1 transcription factor family in mango[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 984-994.
基因 Gene | 氨基酸数 Number of amino acids/aa | 蛋白质分子量 MW/ku | 蛋白等电点 pI | 亲水性平均系数 GRAVY | 脂溶指数 Aliphatic index | 不稳定指数 Instability index | 外显子 Exon |
---|---|---|---|---|---|---|---|
MiBES1.1 | 629 | 71.63 | 5.98 | -0.400 | 72.23 | 38.79 | 2 |
MiBES1.2 | 722 | 81.87 | 6.12 | -0.502 | 70.11 | 44.91 | 11 |
MiBES1.3 | 697 | 77.81 | 5.60 | -0.411 | 74.40 | 46.53 | 11 |
MiBES1.4 | 697 | 77.94 | 5.66 | -0.414 | 74.68 | 46.41 | 10 |
MiBES1.5 | 303 | 33.38 | 9.06 | -0.624 | 62.18 | 65.57 | 10 |
MiBES1.6 | 303 | 33.42 | 9.20 | -0.669 | 62.18 | 66.06 | 2 |
MiBES1.7 | 326 | 35.26 | 8.38 | -0.588 | 57.24 | 62.79 | 2 |
MiBES1.8 | 1 278 | 142.67 | 7.57 | -0.434 | 78.42 | 47.88 | 21 |
MiBES1.9 | 321 | 34.63 | 8.62 | -0.551 | 62.02 | 67.39 | 2 |
MiBES1.10 | 441 | 47.89 | 8.70 | -0.375 | 64.85 | 55.19 | 6 |
MiBES1.11 | 322 | 34.83 | 8.86 | -0.570 | 63.70 | 66.21 | 2 |
MiBES1.12 | 345 | 36.84 | 7.98 | -0.482 | 59.19 | 66.70 | 4 |
MiBES1.13 | 652 | 73.06 | 6.59 | -0.337 | 76.41 | 41.30 | 9 |
表1 杧果BES1s家族成员理化性质预测
Table 1 Identification of BES1s gene family in mango
基因 Gene | 氨基酸数 Number of amino acids/aa | 蛋白质分子量 MW/ku | 蛋白等电点 pI | 亲水性平均系数 GRAVY | 脂溶指数 Aliphatic index | 不稳定指数 Instability index | 外显子 Exon |
---|---|---|---|---|---|---|---|
MiBES1.1 | 629 | 71.63 | 5.98 | -0.400 | 72.23 | 38.79 | 2 |
MiBES1.2 | 722 | 81.87 | 6.12 | -0.502 | 70.11 | 44.91 | 11 |
MiBES1.3 | 697 | 77.81 | 5.60 | -0.411 | 74.40 | 46.53 | 11 |
MiBES1.4 | 697 | 77.94 | 5.66 | -0.414 | 74.68 | 46.41 | 10 |
MiBES1.5 | 303 | 33.38 | 9.06 | -0.624 | 62.18 | 65.57 | 10 |
MiBES1.6 | 303 | 33.42 | 9.20 | -0.669 | 62.18 | 66.06 | 2 |
MiBES1.7 | 326 | 35.26 | 8.38 | -0.588 | 57.24 | 62.79 | 2 |
MiBES1.8 | 1 278 | 142.67 | 7.57 | -0.434 | 78.42 | 47.88 | 21 |
MiBES1.9 | 321 | 34.63 | 8.62 | -0.551 | 62.02 | 67.39 | 2 |
MiBES1.10 | 441 | 47.89 | 8.70 | -0.375 | 64.85 | 55.19 | 6 |
MiBES1.11 | 322 | 34.83 | 8.86 | -0.570 | 63.70 | 66.21 | 2 |
MiBES1.12 | 345 | 36.84 | 7.98 | -0.482 | 59.19 | 66.70 | 4 |
MiBES1.13 | 652 | 73.06 | 6.59 | -0.337 | 76.41 | 41.30 | 9 |
图1 杧果与番茄、辣椒、甘蓝、拟南芥、黄瓜、水稻BES1s家族成员的系统进化分析 BES1,杧果;Solyc,番茄;CA,辣椒;XP,甘蓝;AT,拟南芥;Cucsa,黄瓜;LOC,水稻 。
Fig.1 Phylogenetic analysis of BES1s family members among mango and tomato, pepper, cabbage, Arabidopsis, cucumber, and rice BES1, mango;Solyc,tomato;CA, chili; XP, cabbage; AT, Arabidopsis; Cucsa, cucumber; LOC, rice.
图3 杧果BES1s基因家族系统进化分析和基因结构分析 A,杧果BES1s家族成员系统发育树;B,保守基序预测;C,二级结构预测。
Fig.3 phylogenetic and gene structure analysis of BES1s gene family in mango A, A phylogenetic tree of BES1s family members; B, Conservative motif prediction; C, Secondary structure prediction.
基因 Gene | 正向引物 Forward primer(5'→3') | 反向引物 Reverse primer (5' →3') |
---|---|---|
MiBES1.1 | GATGACTTGTTTGTGGCGGG | ATGTCCCCGCAATCTAGCAG |
MiBES1.2 | AGGATGGGATGGAGGTATCC | CCCTCGTTCACAGAAGAAGC |
MiBES1.3 | GCTGAATGCTGCATGGGATG | CAACAACTGCTTCCCCATGC |
MiBES1.4 | TCCTGATGGAACCACCTTTC | GCTGAAGATTGGGACTGAGC |
MiBES1.5 | AGCACCTCAACCAGGATCAC | ATCCGGAGAGGAGGAAGAGA |
MiBES1.6 | TTTTCCACTCCTCCGAAATG | CAACTGACGATGCATTGGAC |
MiBES1.7 | AAGAGACGAGAGCGCAGAAG | TAGCTGATGCAGACCCTCCT |
MiBES1.8 | CTACACAACGATGGGCAATG | TAGCTGACTGAGGCCTGGTT |
MiBES1.9 | TCTTCATTTCCAAGCCCAAC | TTACCCAACGACCAGAGTCC |
MiBES1.10 | AGGAAGAAGTTATAGCTGGTGGTG | ACATTCTTCATGAATCCTCTCTCC |
MiBES1.11 | CCACCTCTATCATCTCCAACTTCT | ATCACATTCTGGTATTGTGACAGG |
MiBES1.12 | TTAGAGATGAGGTTCTGTCAGGTG | AACTGGTTCTAGAGTTTCCCAGTG |
MiBES1.13 | TGTAGACCTTTGGAAGAGAAGGAG | CAGGAGAGATTCCTCTTTGAGAAG |
Miactin | GGCAAGTCTGGTGCCAG | ACGGTATCTATCTCTTCG |
表2 qRT-PCR引物序列
Table 2 qRT-PCR primer sequences
基因 Gene | 正向引物 Forward primer(5'→3') | 反向引物 Reverse primer (5' →3') |
---|---|---|
MiBES1.1 | GATGACTTGTTTGTGGCGGG | ATGTCCCCGCAATCTAGCAG |
MiBES1.2 | AGGATGGGATGGAGGTATCC | CCCTCGTTCACAGAAGAAGC |
MiBES1.3 | GCTGAATGCTGCATGGGATG | CAACAACTGCTTCCCCATGC |
MiBES1.4 | TCCTGATGGAACCACCTTTC | GCTGAAGATTGGGACTGAGC |
MiBES1.5 | AGCACCTCAACCAGGATCAC | ATCCGGAGAGGAGGAAGAGA |
MiBES1.6 | TTTTCCACTCCTCCGAAATG | CAACTGACGATGCATTGGAC |
MiBES1.7 | AAGAGACGAGAGCGCAGAAG | TAGCTGATGCAGACCCTCCT |
MiBES1.8 | CTACACAACGATGGGCAATG | TAGCTGACTGAGGCCTGGTT |
MiBES1.9 | TCTTCATTTCCAAGCCCAAC | TTACCCAACGACCAGAGTCC |
MiBES1.10 | AGGAAGAAGTTATAGCTGGTGGTG | ACATTCTTCATGAATCCTCTCTCC |
MiBES1.11 | CCACCTCTATCATCTCCAACTTCT | ATCACATTCTGGTATTGTGACAGG |
MiBES1.12 | TTAGAGATGAGGTTCTGTCAGGTG | AACTGGTTCTAGAGTTTCCCAGTG |
MiBES1.13 | TGTAGACCTTTGGAAGAGAAGGAG | CAGGAGAGATTCCTCTTTGAGAAG |
Miactin | GGCAAGTCTGGTGCCAG | ACGGTATCTATCTCTTCG |
图7 qRT-PCR中杧果BES1s基因家族成员相对表达分析 “*”表示显著上调,“#”表示显著下调。A,胶孢炭疽菌侵染下杧果BES1s基因 家族成员相对表达分析; B,细菌性黑斑病菌侵染下杧果BES1s家族成员相对表达分析; C,施用茉莉酸甲酯条件下杧果BES1s家族成员相对表达分析。
Fig.7 Relative expression analysis of BES1s gene family members of mango with qRT-PCR ‘*’ the relative expression level of table was significant up-regulated,“#” the relative expression level of table was significant down-regulated. A, relative expression analysis of BES1 gene family members under the infection of Cg in mango, B, relative expression analysis of BES1s family members under the infection of Xcm in mango; C, relative expression analysis of BES1s gene family members under the infection of MeJA in mango.
[1] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
LI J, LI C Y. Seventy-year major research progress in plant hormones[J]. Scientia Sinica Vitae, 2019, 49(10):1227-1281. (in Chinese with English abstract) | |
[2] | 赵毓橘, 王玉琴. 新植物激素:油菜素内酯的发现历程、生理作用及其在农业上的应用[J]. 大自然探索, 1986(3): 133-136. |
ZHAO Y J, WANG Y Q. New plant hormone: the discovery, physiological function and application of brassinosteroid in agriculture[J]. Exploration of Nature, 1986(3): 133-136. (in Chinese) | |
[3] | MITCHELL J W, MANDAVA N, WORLEY J F, et al. Brassins-a new family of plant hormones from rape pollen[J]. Nature, 1970, 225(5237). |
[4] | 李程, 梁宝魁, 王晓峰. 油菜素内酯提高蔬菜作物抗逆性的研究进展[J]. 中国蔬菜, 2015(11): 12-18. |
LI C, LIANG B K, WANG X F. Research progress on brassinosteroids for improving stress resistance vegetable crops[J]. China Vegetables, 2015(11): 12-18. (in Chinese with English abstract) | |
[5] |
NAKASHITA H, YASUDA M, NITTA T, et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice[J]. The Plant Journal, 2003, 33(5): 887-898.
DOI URL |
[6] | XIA X, DONG H, YIN Y, et al. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e2004384118. |
[7] | 孙超, 黎家. 油菜素甾醇类激素的生物合成、代谢及信号转导[J]. 植物生理学报, 2017, 53(3): 291-307. |
SUN C, LI J. Biosynthesis, catabolism, and signal transduction of brassinosteroids[J]. Plant Physiology Journal, 2017, 53(3): 291-307. (in Chinese with English abstract)
DOI URL |
|
[8] | 王梦姣, 邓百万, 杨国鹏. 拟南芥油菜素内酯的合成、修饰、信号转导及其在农作物育种中的应用研究进展[J]. 河南农业科学, 2015, 44(2): 1-6. |
WANG M J, DENG B W, YANG G P. Research progress of brassinosteroid in Arabidopsis thaliana and its application in crop breeding[J]. Journal of Henan Agricultural Sciences, 2015, 44(2): 1-6. (in Chinese with English abstract) | |
[9] | CHEN J N, Nolan T M, YE H X, et al. Arabidopsis WRKY46, WRKY54, and WRKY 70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses[J]. The Plant Cell, 2017, 29(6): 1425-1439. |
[10] | 陈雪津, 王鹏杰, 郑玉成, 等. 茶树BES1转录因子全基因组鉴定与分析[J]. 西北植物学报, 2019, 39(5): 876-885. |
CHEN X J, WANG P J, ZHENG Y C, et al. Genome-wide identification and analysis of BES1 transcription factor family in Camellia sinensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(5), 876-885. (in Chinese with English abstract) | |
[11] | 于好强, 孙福艾, 冯文奇, 等. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
YU H Q, Sun F A, FENG W Q, et al. The BES1/BZR1 transcription factors regulate growth, development and stress resistance in plants[J]. Hereditas(Beijing), 2019, 41(3), 206-214. (in Chinese with English abstract) | |
[12] | 周晔, 赵璇, 王璐, 等. 植物BZR家族基因调控非生物胁迫应答和生长发育的研究进展[J]. 中国油料作物学报, 2020, 42(4): 499-511. |
ZHOU Y, ZHAO X, WANG l, et al. Research advances on plant BZR family genes in regulating abiotic stress response and development[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(4): 499-511. (in Chinese with English abstract) | |
[13] |
WANG Z Y, TAKESHI N, GENDRON J, et al. Nuclear-localized Bzr1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Developmental Cell, 2002, 2(4): 505-513.
DOI URL |
[14] |
YIN Y H, VAFEADOS D, TAO Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2): 249-259.
DOI URL |
[15] |
ZHAO L, GHULAM Q, LI L, et al. Genome-wide analysis of Bes1 genes in gossypium revealed their evolutionary conserved roles in brassinosteroid signaling[J]. Science China Life Sciences, 2018, 61(12): 1566-1582.
DOI URL |
[16] |
VRIET C, RUSSINOVA E, REUZEAU C. From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom[J]. Molecular Plant, 2013, 6(6): 1738-1757.
DOI URL |
[17] | SHE J, HAN Z F, ZHOU B, et al. Structural basis for differential recognition of brassinolide by its receptors[J]. Protein & Cell, 2013, 4(6): 475-482. |
[18] |
SHE J, HAN Z F, KIM T W, et al. Structural insight into brassinosteroid perception by bri1[J]. Nature: International Weekly Journal of Science, 2011, 474(7352): 472-476.
DOI URL |
[19] |
VAN N T, PARK C R, LEE K R, et al. Bes1/Bzr1 homolog 3 cooperates with E3 Ligase AtRZF1 to regulate osmotic stress and brassinosteroid responses in Arabidopsis[J]. Journal of Experimental Botany, 2021, 72(2): 636-653.
DOI URL |
[20] | BAI M Y, ZHANG L Y, GAMPALA S S, et al. Functions of Osbzr1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(34): 13839-13844. |
[21] |
WANG Z Y, BAI M Y, OH E, et al. Brassinosteroid signaling network and regulation of photomorphogenesis[J]. Annual Review of Genetics, 2012, 46: 701-724.
DOI URL |
[22] | 胡静静, 李春金, 杨启航, 等. 甘蓝型油菜BES1转录因子家族的鉴定及比较基因组学分析[J]. 分子植物育种, 2017, 15(6): 2058-2065. |
HU J J, LI C J, YANG Q H, et al. Identification and comparative genomic analysis of the BES1 transcription factor family in Brassica napus[J]. Molecular Plant Breeding, 2017, 15(6): 2058-2065. (in Chinese with English abstract) | |
[23] | 陈业渊, 党志国, 林电, 等. 中国杧果科学研究70年[J]. 热带作物学报, 2020, 41(10): 2034-2044. |
CHEN Y Y, DANG Z G, LIN D, et al. Mango scientific research in China in the past 70 Years[J]. Chinese Journal of Tropical Crops, 2020, 41(10): 2034-2044. (in Chinese with English abstract) | |
[24] |
WANG P, LUO Y F, HUANG J F, et al. The genome evolution and domestication of tropical fruit mango[J]. Genome Biology, 2020, 21(1): 60.
DOI URL |
[25] |
ZHU X G, ZHANG Q J, LI K, et al. SMRT sequencing generates the chromosome-scale reference enome of tropical fruit mango, Mangifera indica[J]. bioRxiv, 2020, Doi: https://doi.org/10.1101/2020.02.22.960880.
DOI |
[26] | FINN R D, COGGILL P, EBERHARDT R Y, et al. The pfam protein families database: towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(D1): D279-D285. |
[27] |
GASTEIGER E, GATTIKER A, HOOGLAND C, et al. Expasy: the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research, 2003, 31(13): 3784-3788.
DOI URL |
[28] | BAILEY T L, ELKAN C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers[J]. Proceeding of the 2nd International Conference Intelligent Systems for Molecular Biology.ISMB-94, 1994, 2: 28-36. |
[29] |
COMBET C, BLANCHET C, GEOURJON C, et al. Nps@: network protein sequence analysis[J]. Trends in Biochemical Sciences, 2000, 25(3): 147-150.
DOI URL |
[30] | SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425. |
[31] | 余舜武, 刘鸿艳, 罗利军. 利用不同实时定量PCR方法分析相对基因表达差异[J]. 作物学报, 2007(7): 1214-1218. |
YU S W, LIU H Y, LUO L J. Analysis of relative gene expression using different real-time quantitative PCR[J]. Acta Agronomica Sinica, 2007(7): 1214-1218. (in Chinese with English abstract) | |
[32] |
LU S, WANG J, CHITSAZ F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2020, 48(D1): D265-D268.
DOI URL |
[33] |
KANG Y N, TANABE A, ADACHI M, et al. Structural analysis of threonine 342 mutants of soybean beta-amylase: role of a conformational change of the inner loop in the catalytic mechanism[J]. Biochemistry, 2005, 44(13): 5106-5116.
DOI URL |
[34] |
NOSAKI S, MIYAKAWA T, XU Y, et al. Structural basis for brassinosteroid response by BIL1/BZR1[J]. Nature Plants, 2018, 4(10): 771-776.
DOI URL |
[35] |
WILLIAM R S, GILBERT W. The evolution of spliceosomal introns: patterns, puzzles and progress[J]. Nature Reviews Genetics, 2006, 7(3): 211-221.
DOI URL |
[36] |
LIAO K, PENG Y J, YUAN L B, et al. Brassinosteroids antagonize jasmonate-activated plant defense responses through BRI1-EMS-SUPPRESSOR1(BES1)[J]. Plant Physiology, 2020, 182(2): 1066-1082.
DOI URL |
[37] |
薛正刚, 王树杰, 冯辉, 等. 大麦BZR基因家族的全基因组鉴定及生物信息学分析[J]. 分子植物育种, 2021, 19(12): Doi: 10.13271/j.mpb.019.003849.
DOI |
XUE Z G, WANG S J, FENG H, et al. Genome-wide identification and bioinformatics analysis of HvBZR gene family in Barley[J]. Molecular Plant Breeding, 2021, 19(12): Doi: 10.13271/j.mpb.019.003849. (in Chinese with English abstract)
DOI |
|
[38] |
KONO A, YIN Y H. Updates on Bes1/bzr1 regulatory networks coordinating plant growth and stress responses[J]. Frontiers in Plant Science, 2020, 11: 617162.
DOI URL |
[1] | 邓哲宇, 王乙婷, 王颖洁, 胡菜, 吴宇慧, 赵宗仪, 左其生, 张亚妮. 鸡gga-miR-31-5p 启动子真核表达载体的构建及其转录因子结合位点预测[J]. 浙江农业学报, 2022, 34(4): 713-719. |
[2] | 樊有存, 张红岩, 杨旭升, 韩芊, 刘玉皎, 武学霞. 蚕豆耐盐相关基因VfHKT1;1的克隆、生物信息学分析及表达特性[J]. 浙江农业学报, 2022, 34(4): 756-765. |
[3] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[4] | 贾利强, 赵秋芳, 陈曙, 丁波. 玉米转录因子bZIP G亚家族基因的表达模式[J]. 浙江农业学报, 2022, 34(2): 221-231. |
[5] | 杨卫军, 董艳蕾, 吴秋芳, 张美玲, 韩丽滨, 张元臣. 棉蚜ATP合成酶基因AgoATPb的克隆与表达[J]. 浙江农业学报, 2022, 34(2): 329-336. |
[6] | 许金根, 靳二辉, 王重龙, 顾有方, 李庆岗. 猪CAST基因多态性与生物信息学分析[J]. 浙江农业学报, 2022, 34(1): 17-23. |
[7] | 赵秀平, 王双, 闫星伊, 段强, 张帅, 陈永胜, 李国瑞. 稻瘟病菌MGG-01005的表达纯化与生物信息学分析[J]. 浙江农业学报, 2021, 33(3): 470-478. |
[8] | 欧阳霞辉, 郑天宇, 徐文凯, 郑相相. 意大利蜜蜂amLDH基因的克隆与表达分析[J]. 浙江农业学报, 2021, 33(11): 2051-2058. |
[9] | 孟亚轩, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 谷子GH5基因家族全基因组鉴定和表达分析[J]. 浙江农业学报, 2021, 33(10): 1797-1807. |
[10] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
[11] | 梁丽琴, 杨瑞, 郜刚. 马铃薯StUOXs基因家族的生物信息学分析[J]. 浙江农业学报, 2020, 32(9): 1523-1532. |
[12] | 杜炎斌, 张港琛, 王瑜欣, 刘宝宝, 宫胜龙, 东笑, 汪洋. 猪链球菌rpoE基因克隆及生物信息学分析[J]. 浙江农业学报, 2020, 32(7): 1149-1154. |
[13] | 邱文怡, 王诗雨, 李晓芳, 徐恒, 张华, 朱英, 王良超. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
[14] | 吴佳, 陈朗, 姜涛, 黄国明, 李倬, 李耀东, 张丽, 刘丽霞. 奶牛CSF3基因遗传多态性筛查及其生物信息学分析[J]. 浙江农业学报, 2020, 32(6): 986-993. |
[15] | 张宇, 张继, 荣涛, 欧克纬, 黄国弟, 宋红霞. 杧果品种亲缘关系的CDDP分析[J]. 浙江农业学报, 2020, 32(5): 824-830. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||