浙江农业学报 ›› 2022, Vol. 34 ›› Issue (2): 221-231.DOI: 10.3969/j.issn.1004-1524.2022.02.02
收稿日期:2021-05-19
出版日期:2022-02-25
发布日期:2022-03-02
作者简介:丁波,E-mail: lifescience2021@163.com通讯作者:
丁波
基金资助:
JIA Liqiang1(
), ZHAO Qiufang2, CHEN Shu2, DING Bo1,*(
)
Received:2021-05-19
Online:2022-02-25
Published:2022-03-02
Contact:
DING Bo
摘要:
为探究不同逆境胁迫(盐、干旱、温度和硝态氮/铵态氮缺乏胁迫)对玉米ZmbZIP基因表达模式的影响,以玉米骨干自交系郑58为实验材料,设置200 mmol·L-1 NaCl、20% PEG6000、4 ℃低温、硝态氮或铵态氮缺乏胁迫试验,探测其对bZIP家族基因G亚家族成员表达模式的影响。进化树分析结果显示,G亚家族成员进一步细分为3个亚组。qRT-PCR分析结果表明,15个ZmbZIPs基因具有不同的组织表达模式,表明这些基因在玉米生长发育中发挥不同的作用。人为模拟盐、干旱、低温和氮缺乏胁迫实验中,20个ZmbZIPs基因受不同逆境因子的广泛调控,预示ZmbZIP广泛参与调控玉米应答逆境胁迫响应途径。
中图分类号:
贾利强, 赵秋芳, 陈曙, 丁波. 玉米转录因子bZIP G亚家族基因的表达模式[J]. 浙江农业学报, 2022, 34(2): 221-231.
JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231.
| 基因名称 Gene name | 基因号 Gene locus | 上游引物 Forward primers (5'→3') | 下游引物 Reverse primers (5'→3') |
|---|---|---|---|
| ZmbZIP2 | Zm00001d028372 | CATCCATCTGTAGCTCCAAGCCATC | CTGTCCCGTTTGGTAACTGCATAGG |
| ZmbZIP20 | Zm00001d034571 | GGCACGCTCAGATCAGAACTCGAC | ATGCTCAGAGTCGTCACAACGCTAG |
| ZmbZIP26 | Zm00001d004897 | CAGCAACGGGAAAGGAAGCCAC | GGCTGTGAAAACGCACTGGTTG |
| ZmbZIP39 | Zm00001d005244 | GGGAATGCTACCATTTTGCCACAAC | TTTCGCGCTTCAATTCCCTCTCATC |
| ZmbZIP40 | Zm00001d040500 | GCCAACACAGCAAGCTCTGCTC | CACGTTCATCCTGTATCCATTGCTC |
| ZmbZIP50 | Zm00001d041142 | CCCAGTGCTACAAATGTCGCGAAC | ACGAGCAGGCAGGAACAGCAAC |
| ZmbZIP51 | Zm00001d043908 | CCCTGGAATAGCGCCTGGTCATG | CTCCGCACTCAATGGGTTTACCAC |
| ZmbZIP67 | Zm00001d043992 | TCATCACGACCAGAGCCAAATCCA | ACCGCAATTGTTCCCGTGACGTTG |
| ZmbZIP73 | Zm00001d052562 | CCTATGCCAACAAATGGACATGCTG | CACTCTCACTCTCACTTCCACTCTC |
| ZmbZIP96 | Zm00001d053967 | CAATGAGCGTGGAGCCAGCCAA | TACATCGCTTGAGCCTTCTGCAC |
| ZmbZIP97 | Zm00001d015118 | CGTCTGCTCCATCCGCCAAC | AGAATCGCCATCTTCCTTCCCATC |
| ZmbZIP100 | Zm00001d039065 | GCATCGAGCCGCCGAAGTTG | TGCCTCCAGCACAGTTCCCATTG |
| ZmbZIP123 | Zm00001d039206 | CTCGTCCTGTCCGAGCACCTC | GTGAGTCCAACTACTGGCGGCTTAC |
| ZmbZIP133 | Zm00001d019166 | GGAAAGGAAGAAGGCGTACCTGAG | GCCTCTTCTGTTGTTGACAGTGGTG |
| ZmbZIP125 | Zm00001d045288 | GAACGGCCACACTTACCAGG | GATACGATCACGACGGCTCTAAACC |
| ZmbZIP136 | Zm00001d047967 | ATGGCGACGTTGGTGTGCCAC | GAGCGAGCCGTGATGGTGGTG |
| ZmbZIP138 | Zm00001d046664 | CAGCGTGGACCAGTTCTTCGAC | CATCGCCATCCACCTCCACCG |
| ZmbZIP140 | Zm00001d024041 | AGAACAACAACCGCAGACTCTCAAC | CCGCCTCCCACCTTCAACGAC |
| ZmbZIP142 | Zm00001d024285 | GCAACGCCTATACCGTTCTACCAG | CGGTGGATAATGGCAGGTCTGAG |
表1 ZmbZIP基因的实时荧光定量引物
Table 1 qRT-PCR primers of ZmbZIP gene
| 基因名称 Gene name | 基因号 Gene locus | 上游引物 Forward primers (5'→3') | 下游引物 Reverse primers (5'→3') |
|---|---|---|---|
| ZmbZIP2 | Zm00001d028372 | CATCCATCTGTAGCTCCAAGCCATC | CTGTCCCGTTTGGTAACTGCATAGG |
| ZmbZIP20 | Zm00001d034571 | GGCACGCTCAGATCAGAACTCGAC | ATGCTCAGAGTCGTCACAACGCTAG |
| ZmbZIP26 | Zm00001d004897 | CAGCAACGGGAAAGGAAGCCAC | GGCTGTGAAAACGCACTGGTTG |
| ZmbZIP39 | Zm00001d005244 | GGGAATGCTACCATTTTGCCACAAC | TTTCGCGCTTCAATTCCCTCTCATC |
| ZmbZIP40 | Zm00001d040500 | GCCAACACAGCAAGCTCTGCTC | CACGTTCATCCTGTATCCATTGCTC |
| ZmbZIP50 | Zm00001d041142 | CCCAGTGCTACAAATGTCGCGAAC | ACGAGCAGGCAGGAACAGCAAC |
| ZmbZIP51 | Zm00001d043908 | CCCTGGAATAGCGCCTGGTCATG | CTCCGCACTCAATGGGTTTACCAC |
| ZmbZIP67 | Zm00001d043992 | TCATCACGACCAGAGCCAAATCCA | ACCGCAATTGTTCCCGTGACGTTG |
| ZmbZIP73 | Zm00001d052562 | CCTATGCCAACAAATGGACATGCTG | CACTCTCACTCTCACTTCCACTCTC |
| ZmbZIP96 | Zm00001d053967 | CAATGAGCGTGGAGCCAGCCAA | TACATCGCTTGAGCCTTCTGCAC |
| ZmbZIP97 | Zm00001d015118 | CGTCTGCTCCATCCGCCAAC | AGAATCGCCATCTTCCTTCCCATC |
| ZmbZIP100 | Zm00001d039065 | GCATCGAGCCGCCGAAGTTG | TGCCTCCAGCACAGTTCCCATTG |
| ZmbZIP123 | Zm00001d039206 | CTCGTCCTGTCCGAGCACCTC | GTGAGTCCAACTACTGGCGGCTTAC |
| ZmbZIP133 | Zm00001d019166 | GGAAAGGAAGAAGGCGTACCTGAG | GCCTCTTCTGTTGTTGACAGTGGTG |
| ZmbZIP125 | Zm00001d045288 | GAACGGCCACACTTACCAGG | GATACGATCACGACGGCTCTAAACC |
| ZmbZIP136 | Zm00001d047967 | ATGGCGACGTTGGTGTGCCAC | GAGCGAGCCGTGATGGTGGTG |
| ZmbZIP138 | Zm00001d046664 | CAGCGTGGACCAGTTCTTCGAC | CATCGCCATCCACCTCCACCG |
| ZmbZIP140 | Zm00001d024041 | AGAACAACAACCGCAGACTCTCAAC | CCGCCTCCCACCTTCAACGAC |
| ZmbZIP142 | Zm00001d024285 | GCAACGCCTATACCGTTCTACCAG | CGGTGGATAATGGCAGGTCTGAG |
| 基因ID Gene ID | 基因名称 Gene name | 长度 Length/bp | 分子量 Molecular mass/ku | 等电点 Isoelectric point | 染色体 Chromosome | 可变剪切 Splice variants |
|---|---|---|---|---|---|---|
| Zm00001d028372 | ZmbZIP2 | 583 | 62.46 | 9.55 | Chr1:32433751-32442505 | 17 |
| Zm00001d034571 | ZmbZIP20 | 356 | 37.47 | 7.59 | Chr1:296596877-296600683 | 3 |
| Zm00001d004897 | ZmbZIP24 | 347 | 36.48 | 8.35 | Chr2:147657998-147659916 | 1 |
| Zm00001d005244 | ZmbZIP26 | 371 | 38.75 | 7.16 | Chr2:165521128-165527158 | 9 |
| Zm00001d040500 | ZmbZIP39 | 194 | 21.09 | 10.13 | Chr3:47004098-47005326 | 1 |
| Zm00001d041142 | ZmbZIP40 | 382 | 40.63 | 8.41 | Chr3:100232730-100240533 | 24 |
| Zm00001d043908 | ZmbZIP50 | 191 | 20.72 | 9.34 | Chr3:213533138-213534279 | 1 |
| Zm00001d043992 | ZmbZIP51 | 340 | 37.03 | 8.8 | Chr3:215850507-215866477 | 3 |
| Zm00001d052562 | ZmbZIP60 | 417 | 43.86 | 7.31 | Chr4:193207888-193210831 | 1 |
| Zm00001d053967 | ZmbZIP67 | 314 | 33.62 | 6.17 | Chr4:244414417-244418397 | 1 |
| Zm00001d015118 | ZmbZIP73 | 290 | 31.01 | 5.22 | Chr5:76331375-76334353 | 1 |
| Zm00001d039065 | ZmbZIP96 | 377 | 40.12 | 7.51 | Chr6:169491185-169496107 | 10 |
| Zm00001d039206 | ZmbZIP97 | 208 | 22.36 | 6.84 | Chr6:172509105-172510659 | 1 |
| Zm00001d019166 | ZmbZIP100 | 379 | 39.68 | 6.88 | Chr7:19967615-19972466 | 8 |
| Zm00001d045288 | ZmbZIP123 | 547 | 60.82 | 7.95 | Chr9:18011858-18027409 | 1 |
| Zm00001d047967 | ZmbZIP133 | 423 | 45.11 | 9.94 | Chr9:146611340-146618721 | 4 |
| Zm00001d046664 | ZmbZIP136 | 187 | 20.02 | 8.56 | Chr10:5649486-5650525 | 1 |
| Zm00001d024041 | ZmbZIP138 | 282 | 29.93 | 7.12 | Chr10:39073197-39078744 | 11 |
| Zm00001d024285 | ZmbZIP140 | 213 | 23.6 | 6.03 | Chr10:61712124-61716615 | 1 |
| Zm00001d025638 | ZmbZIP142 | 273 | 30.15 | 8.45 | Chr10:124742514-124747717 | 1 |
表2 玉米bZIP家族基因基本信息
Table 2 Basic information of bZIPfamily gene in maize
| 基因ID Gene ID | 基因名称 Gene name | 长度 Length/bp | 分子量 Molecular mass/ku | 等电点 Isoelectric point | 染色体 Chromosome | 可变剪切 Splice variants |
|---|---|---|---|---|---|---|
| Zm00001d028372 | ZmbZIP2 | 583 | 62.46 | 9.55 | Chr1:32433751-32442505 | 17 |
| Zm00001d034571 | ZmbZIP20 | 356 | 37.47 | 7.59 | Chr1:296596877-296600683 | 3 |
| Zm00001d004897 | ZmbZIP24 | 347 | 36.48 | 8.35 | Chr2:147657998-147659916 | 1 |
| Zm00001d005244 | ZmbZIP26 | 371 | 38.75 | 7.16 | Chr2:165521128-165527158 | 9 |
| Zm00001d040500 | ZmbZIP39 | 194 | 21.09 | 10.13 | Chr3:47004098-47005326 | 1 |
| Zm00001d041142 | ZmbZIP40 | 382 | 40.63 | 8.41 | Chr3:100232730-100240533 | 24 |
| Zm00001d043908 | ZmbZIP50 | 191 | 20.72 | 9.34 | Chr3:213533138-213534279 | 1 |
| Zm00001d043992 | ZmbZIP51 | 340 | 37.03 | 8.8 | Chr3:215850507-215866477 | 3 |
| Zm00001d052562 | ZmbZIP60 | 417 | 43.86 | 7.31 | Chr4:193207888-193210831 | 1 |
| Zm00001d053967 | ZmbZIP67 | 314 | 33.62 | 6.17 | Chr4:244414417-244418397 | 1 |
| Zm00001d015118 | ZmbZIP73 | 290 | 31.01 | 5.22 | Chr5:76331375-76334353 | 1 |
| Zm00001d039065 | ZmbZIP96 | 377 | 40.12 | 7.51 | Chr6:169491185-169496107 | 10 |
| Zm00001d039206 | ZmbZIP97 | 208 | 22.36 | 6.84 | Chr6:172509105-172510659 | 1 |
| Zm00001d019166 | ZmbZIP100 | 379 | 39.68 | 6.88 | Chr7:19967615-19972466 | 8 |
| Zm00001d045288 | ZmbZIP123 | 547 | 60.82 | 7.95 | Chr9:18011858-18027409 | 1 |
| Zm00001d047967 | ZmbZIP133 | 423 | 45.11 | 9.94 | Chr9:146611340-146618721 | 4 |
| Zm00001d046664 | ZmbZIP136 | 187 | 20.02 | 8.56 | Chr10:5649486-5650525 | 1 |
| Zm00001d024041 | ZmbZIP138 | 282 | 29.93 | 7.12 | Chr10:39073197-39078744 | 11 |
| Zm00001d024285 | ZmbZIP140 | 213 | 23.6 | 6.03 | Chr10:61712124-61716615 | 1 |
| Zm00001d025638 | ZmbZIP142 | 273 | 30.15 | 8.45 | Chr10:124742514-124747717 | 1 |
图1 ZmbZIP基因的染色体定位与基因结构 A,ZmbZIP基因的染色体定位;B,ZmbZIP的基因结构。
Fig.1 Chromosomal distribution and structure of ZmbZIP genes A, Chromosomal distribution of ZmbZIPs; B, Gene structure analysis of ZmbZIPs.
图2 ZmbZIP蛋白的保守结构域多重序列比对与进化树 A,ZmbZIP蛋白保守结构域多重序列比对;B,ZmbZIP蛋白的进化树。
Fig.2 Multiple sequence alignment of conserved domain of ZmbZIP proteins and their phylogenetic tree A, Multiple sequence alignment of conserved domain of ZmbZIP; B, Phylogenetic tree of ZmbZIPs.
图3 ZmbZIPs基因在玉米不同器官的表达模式 R、S、L、T、E分别代表根、茎、叶、雄花和幼穗。柱上无相同小写字母代表差异显著(P<0.05)。下同。
Fig.3 Expression pattern of ZmbZIPs in different organs of maize R, S, L, CB, T, E represent root, stem, leaf, corn brack and tassel, respectively. Bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
| [1] | NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2):323-324. |
| [2] | HURST H C. Transcription factors.1: bZIP proteins[J]. Protein Profile, 1995, 2(2):101-68. |
| [3] |
WANG J Z, ZHOU J X, ZHANG B L, et al. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on Sorghum[J]. Journal of Integrative Plant Biology, 2011, 53(3):212-231.
DOI URL |
| [4] |
WEI K F, CHEN J, WANG Y M, et al. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Research, 2012, 19(6):463-476.
DOI URL |
| [5] |
JIN Z W, XU W, LIU A Z. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.)[J]. Planta, 2014, 239(2):299-312.
DOI URL |
| [6] |
BALOGLU M C, ELDEM V, HAJYZADEH M, et al. Genome-wide analysis of the bZIP transcription factors in cucumber[J]. PLoS One, 2014, 9(4):e96014.
DOI URL |
| [7] |
GAO M, ZHANG H J, GUO C L, et al. Evolutionary and expression analyses of basic zipper transcription factors in the highly homozygous model grape PN40024 (Vitis vinifera L.)[J]. Plant Molecular Biology Reporter, 2014, 32(5):1085-1102.
DOI URL |
| [8] |
LIU J Y, CHEN N N, CHEN F, et al. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)[J]. BMC Genomics, 2014, 15:281.
DOI URL |
| [9] | ZHAO J, GUO R R, GUO C L, et al. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family[J]. Frontiers in Plant Science, 2016, 7:376. |
| [10] |
LI D Y, FU F Y, ZHANG H J, et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.)[J]. BMC Genomics, 2015, 16(1):1-18.
DOI URL |
| [11] |
LIU M Y, WEN Y D, SUN W J, et al. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat[J]. BMC Genomics, 2019, 20(1):483.
DOI URL |
| [12] |
YANG Z M, SUN J, CHEN Y, et al. Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida[J]. BMC Genetics, 2019, 20(1):1-18.
DOI URL |
| [13] |
JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3):106-111.
DOI URL |
| [14] |
YIN Y, ZHU Q, DAI S, et al. RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development[J]. The EMBO Journal, 1997, 16(17):5247-5259.
DOI URL |
| [15] |
SILVEIRA A B, GAUER L, TOMAZ J P, et al. The ArabidopsisAtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development[J]. Plant Science, 2007, 172(6):1148-1156.
DOI URL |
| [16] |
ZOU M J, GUAN Y C, REN H B, et al. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Molecular Biology, 2008, 66(6):675-683.
DOI URL |
| [17] |
GUAN Y C, REN H B, XIE H, et al. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis[J]. The Plant Journal, 2009, 60(2):207-217.
DOI URL |
| [18] |
YANG S Q, XU K, CHEN S J, et al. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice[J]. BMC Plant Biology, 2019, 19(1):1-15.
DOI URL |
| [19] |
GAI W X, MA X, QIAO Y M, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance[J]. Frontiers in Plant Science, 2020, 11:139.
DOI URL |
| [20] |
YANG Y, YU T F, MA J, et al. The soybean bZIP transcription factor gene GmbZIP2confers drought and salt resistances in transgenic plants[J]. International Journal of Molecular Sciences, 2020, 21(2):670.
DOI URL |
| [21] |
WELTMEIER F, EHLERT A, MAYER C S, et al. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors[J]. The EMBO Journal, 2006, 25(13):3133-3143.
DOI URL |
| [22] |
SHIMIZU H, SATO K, BERBERICH T, et al. LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants[J]. Plant and Cell Physiology, 2005, 46(10):1623-1634.
DOI URL |
| [23] |
LIU C T, WU Y B, WANG X P. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice[J]. Planta, 2012, 235(6):1157-1169.
DOI URL |
| [24] |
NIEVA C, BUSK P K, DOMÍNGUEZ-PUIGJANER E, et al. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28[J]. Plant Molecular Biology, 2005, 58(6):899-914.
DOI URL |
| [25] |
YANG J B, WANG M Y, LI W J, et al. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat[J]. Plant Biotechnology Journal, 2019, 17(9):1823-1833.
DOI URL |
| [26] |
LUANG S, SORNARAJ P, BAZANOVA N, et al. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase[J]. Plant Molecular Biology, 2018, 96(6):543-561.
DOI URL |
| [27] |
THUROW C, SCHIERMEYER A, KRAWCZYK S, et al. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development[J]. The Plant Journal, 2005, 44(1):100-113.
DOI URL |
| [28] | ULM R, BAUMANN A, ORAVECZ A, et al. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(5):1397-1402. |
| [29] |
CAO L R, LU X M, ZHANG P Y, et al. Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2019, 20(17):4103.
DOI URL |
| [30] |
HERATH V, VERCHOT J. Insight into the bZIP gene family in Solanum tuberosum: genome and transcriptome analysis to understand the roles of gene diversification in spatiotemporal gene expression and function[J]. International Journal of Molecular Sciences, 2020, 22(1):253.
DOI URL |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 许卫猛, 徐妍, 陈国立. 基于多种分析方法的糯玉米品质综合评价[J]. 浙江农业学报, 2025, 37(9): 1840-1848. |
| [3] | 闫沛中, 陈亮, 张生银, 刘斌. 水肥耦合对景电灌区膜下滴灌玉米产量及水肥利用效率的影响[J]. 浙江农业学报, 2025, 37(9): 1849-1859. |
| [4] | 关秀生, 刘铁山, 王娟, 张茂林, 刘春晓, 董瑞, 关海英, 刘强, 徐扬, 何春梅. 玉米NF-YA家族基因的生物信息学分析与克隆[J]. 浙江农业学报, 2025, 37(8): 1605-1614. |
| [5] | 咸若彤, 缪青梅, 彭城, 陈笑芸, 杨蕾, 徐晓丽, 魏巍, 徐俊锋, 李玥莹, 汪小福. 转基因玉米WYN17132转化体特异性实时荧光PCR检测方法的建立与应用[J]. 浙江农业学报, 2025, 37(7): 1397-1406. |
| [6] | 王闻琦, 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲. 玉米生物钟基因ZmPRR1-2互作蛋白质的筛选[J]. 浙江农业学报, 2025, 37(5): 977-986. |
| [7] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [8] | 王晓阳, 李强, 赵武云, 戴飞, 严兆荣, 王久鑫. 铲式青贮玉米起茬及残膜回收联合作业机设计与试验[J]. 浙江农业学报, 2024, 36(9): 2132-2145. |
| [9] | 李清超, 杨珊, 张登峰, 刘建新, 孙开利, 吴迅. 四百八十七份玉米地方种质资源穗部性状的表型多样性[J]. 浙江农业学报, 2024, 36(7): 1481-1491. |
| [10] | 何昌熙, 郑建波, 马建波, 贾永义, 刘士力, 蒋文枰, 迟美丽, 程顺, 李飞. 翘嘴鲌Runx2b基因的克隆与表达特征分析[J]. 浙江农业学报, 2024, 36(5): 1024-1031. |
| [11] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
| [12] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
| [13] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. |
| [14] | 赵凌吉, 廖香娇, 刘德春, 胡威, 匡柳青, 宋杰, 易明亮, 刘勇, 杨莉. 桃溪蜜柚果实贮藏期有机酸含量变化及相关基因表达分析[J]. 浙江农业学报, 2024, 36(11): 2510-2520. |
| [15] | 周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||