浙江农业学报 ›› 2022, Vol. 34 ›› Issue (2): 329-336.DOI: 10.3969/j.issn.1004-1524.2022.02.14
杨卫军1,2(
), 董艳蕾1, 吴秋芳1,2, 张美玲1,2, 韩丽滨1,2, 张元臣1,2,*(
)
收稿日期:2021-08-03
出版日期:2022-02-25
发布日期:2022-03-02
作者简介:张元臣,E-mail: zhangyc2011@163.com通讯作者:
张元臣
基金资助:
YANG Weijun1,2(
), DONG Yanlei1, WU Qiufang1,2, ZHANG Meiling1,2, HAN Libin1,2, ZHANG Yuanchen1,2,*(
)
Received:2021-08-03
Online:2022-02-25
Published:2022-03-02
Contact:
ZHANG Yuanchen
摘要:
为确定棉蚜(Aphis gossypii)ATP合成酶B亚基基因在棉蚜不同组织和日龄,以及取食不同植物的表达情况,以棉蚜为研究对象,采用RT-PCR和RACE技术获得AgoATPb的全长cDNA序列,通过Expasy、SignalP-4.0 Server等在线工具对其进行了生物信息学分析,同时利用实时荧光定量PCR技术研究了该基因在棉蚜不同组织和不同日龄,以及在不同植物上取食的表达水平。结果表明,棉蚜AgoATPb基因全长cDNA序列为1 247 bp,开放阅读框(ORF)长度为822 bp,编码274个氨基酸,5'端非编码区长128 bp,3'端非编码区长297 bp,理论分子量为31.40 ku,等电点为8.95,无信号肽和跨膜区域。氨基酸序列比对结果表明,棉蚜AgoATPb与其他昆虫同源基因编码蛋白的氨基酸序列一致性为47%~99%。除了不在胚胎表达外,AgoATPb基因在棉蚜其他日龄和不同组织均有表达,且在不同日龄间与不同组织表达水平存在显著差异。取食不同植物后棉蚜AgoATPb基因表达水平存在显著差异,取食棉花表达水平最高,其次是黄瓜和西葫芦,取食甜瓜表达水平最低,推测该基因可能与棉蚜适应寄主植物有关。
中图分类号:
杨卫军, 董艳蕾, 吴秋芳, 张美玲, 韩丽滨, 张元臣. 棉蚜ATP合成酶基因AgoATPb的克隆与表达[J]. 浙江农业学报, 2022, 34(2): 329-336.
YANG Weijun, DONG Yanlei, WU Qiufang, ZHANG Meiling, HAN Libin, ZHANG Yuanchen. Cloning and expression analysis of AgoATPb gene in cotton-melon aphid, Aphis gossypi[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 329-336.
| 用途Purpose | 引物 Primers | 引物序列Primer sequences(5'-3') |
|---|---|---|
| 部分AgoATPb序列的克隆 | ATPb-1F | ATGTTATCCAGATTGGCTC |
| Cloning of partial AgoATPb gene | ATPb-1R | CAGTACGTGTCAAGTTAGCC |
| AgoATPb基因5'扩增 | ATPb-5'GST | CAAGATCACGTTCGGGTCCGTCATAAG |
| 5' RACE of AgoATPb gene | ATPb-5'NGST | CAGTGGTGCTACTCTGAACAGTTCTG |
| AgoATPb基因3'扩增 | ATPb-3'GST | CATGAGTTCCCTTATGTGTTGGCTAC |
| 3' RACE of AgoATPb gene | ATPb-3'NGST | CGCGAACGTGCTCTTCAAGCCTACAAC |
| AgoATPb基因的qRT-PCR | ATPb-2F | TGACTTGACCGACTACTTGATG |
| qRT-PCR for AgoATPb | ATPb-2R | TCCAAAGCGACATAGCACAA |
| 内参基因 | β-actin-F | TGACTTGACCGACTACTTGATG |
| Reference gene(β-actin) | β-actin-R | TCCAAAGCGACATAGCACAA |
表1 棉蚜AgoATPb基因克隆与qRT-PCR引物
Table 1 Primers used in cloning and qRT-PCR of AgoATPb gene
| 用途Purpose | 引物 Primers | 引物序列Primer sequences(5'-3') |
|---|---|---|
| 部分AgoATPb序列的克隆 | ATPb-1F | ATGTTATCCAGATTGGCTC |
| Cloning of partial AgoATPb gene | ATPb-1R | CAGTACGTGTCAAGTTAGCC |
| AgoATPb基因5'扩增 | ATPb-5'GST | CAAGATCACGTTCGGGTCCGTCATAAG |
| 5' RACE of AgoATPb gene | ATPb-5'NGST | CAGTGGTGCTACTCTGAACAGTTCTG |
| AgoATPb基因3'扩增 | ATPb-3'GST | CATGAGTTCCCTTATGTGTTGGCTAC |
| 3' RACE of AgoATPb gene | ATPb-3'NGST | CGCGAACGTGCTCTTCAAGCCTACAAC |
| AgoATPb基因的qRT-PCR | ATPb-2F | TGACTTGACCGACTACTTGATG |
| qRT-PCR for AgoATPb | ATPb-2R | TCCAAAGCGACATAGCACAA |
| 内参基因 | β-actin-F | TGACTTGACCGACTACTTGATG |
| Reference gene(β-actin) | β-actin-R | TCCAAAGCGACATAGCACAA |
图1 AgoATPb基因全长cDNA序列与氨基酸序列 红色代表为起始密码子;*代表终止密码子;黑色横线部分为加尾信号(AATAAA)。
Fig.1 Nucleotide and deduced amino acid sequences of AgoATPb from Aphis gossypii Red letter, * and the horizontal line were start codon, stop codon and tail signal (AATAAA), respectively.
图2 棉蚜AgoATPb和其他物种ATP合成酶B亚基氨基酸序列的系统发育树 采用邻接法,自举检验1 000次;图中标尺为遗传距离。
Fig.2 Phylogenetic tree based on amino acid of ATP synthase subunit B from A. gossypii and other insects Neighbor Joining method with 1 000 bootstrap replicates. The scale bar represented the genetic distance.
图3 AgoATPb与其他昆虫ATP合成酶B亚基氨基酸序列的多重联配图 黑色横线部分代表ATP合成酶B亚基的典型结构域。黑色阴影为氨基酸具有100%一致性,灰色表示一致性在50%以上,白色表示一致性在50%以下。AaeATPb,埃及伊蚊;CquATPb,致倦库蚊;GmeATPb,大蜡螟;SfrATPb,草地贪夜蛾;AgoATPb,棉蚜;MpeATPb,桃蚜;ApiATPb,豌豆蚜。
Fig.3 Amino acid sequence alignment of AgoATPb with ATP synthase subunit B from other insects The black lines represented typical domain of ATP synthase. Amino acids with 100% identity were in black box, those with over 50% identity in grey box and with below 50% identity in white box. AaeATPb, Aedes aegypti; CquATPb, Culex quinquefasciatus; GmeATPb, Galleria mellonella; SfrATPb, Spodoptera frugiperda; AgoATPb, Aphis gossypii; MpeATPb, Myzus persicae; ApiATPb, Acyrthosiphon pisum.
图4 AgoATPb基因在4日龄棉蚜不同部位的表达 图中的数值用平均值±标准误表示,柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.4 AgoATPb expression patterns in different parts of 4th day-old A. gossypii Values in the figure were represented by x -±s. Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
| [1] |
ZHANG Y C, LEI H X, MIAO N H, et al. Comparative transcriptional analysis of the host-specialized aphids Aphis gossypii(Hemiptera: Aphididae)[J]. Journal of Economic Entomology, 2017, 110(2):702-710.
DOI URL |
| [2] | 雒珺瑜, 张帅, 任相亮, 等. 近十年我国棉花虫害研究进展[J]. 棉花学报, 2017, 29(S1):100-112. |
| LUO J Y, ZHANG S, REN X L, et al. Research progress of cotton insect pests in China in recent ten years[J]. Cotton Science, 2017, 29(S1):100-112.(in Chinese with English abstract) | |
| [3] |
PRICE T, VALVERDE R, SINGH R, et al. First report of cotton leafroll dwarf virus in Louisiana[J]. Plant Health Progress, 2020, 21(2):142-143.
DOI URL |
| [4] |
WANG Z J, LIANG C R, SHANG Z Y, et al. Insecticide resistance and resistance mechanisms in the melon aphid, Aphis gossypii, in Shandong, China[J]. Pesticide Biochemistry and Physiology, 2021, 172:104768.
DOI URL |
| [5] | 芦屹, 王佩玲, 刘冰, 等. 新疆棉花主栽品种的抗蚜性及其机制研究[J]. 棉花学报, 2009, 21(1):57-63. |
| LU Y, WANG P L, LIU B, et al. Resistance and relevant mechanism to Aphis gossypii glover of main cotton varieties in Xinjiang[J]. Cotton Science, 2009, 21(1):57-63.(in Chinese with English abstract) | |
| [6] | 杨田甜, 杜海荣, 陈刚, 等. 植物化感作用的研究现状及其在农业生产中的应用[J]. 浙江农业学报, 2012, 24(2):343-348. |
| YANG T T, DU H R, CHEN G, et al. Current research on plant allelopathy and its application in agricultural production[J]. Acta Agriculturae Zhejiangensis, 2012, 24(2):343-348.(in Chinese with English abstract) | |
| [7] |
JUNGE W, NELSON N. ATP synthase[J]. Annual Review of Biochemistry, 2015, 84(1):631-657.
DOI URL |
| [8] | HE J Y, FORD H C, CARROLL J, et al. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13):3409-3414. |
| [9] |
KAWASAKI I, HANAZAWA M, GENGYO-ANDO K, et al. ASB-1, a germline-specific isoform of mitochondrial ATP synthase b subunit, is required to maintain the rate of germline development in Caenorhabditis elegans[J]. Mechanisms of Development, 2007, 124(3):237-251.
DOI URL |
| [10] |
SAWYER E M, BRUNNER E C, HWANG Y, et al. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila[J]. BMC Cell Biology, 2017, 18(1):16.
DOI URL |
| [11] | HAHN A, VONCK J, MILLS D J, et al. Structure, mechanism, and regulation of the chloroplast ATP synthase[J]. Science, 2018, 360(6389):1-10. |
| [12] |
PARIS M, MELODELIMA C, COISSAC E, et al. Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing[J]. Journal of Invertebrate Pathology, 2012, 109(2):201-208.
DOI URL |
| [13] | 王卫杰, 刘新颖, 方福瑾, 等. 淡色库蚊ATP合酶B亚基基因克隆和序列分析及其与溴氰菊酯抗性的关系[J]. 昆虫学报, 2017, 60(8):900-905. |
| WANG W J, LIU X Y, FANG F J, et al. Cloning and sequence analysis of ATP synthase B subunit gene and its association with deltamethrin resistance in Culex pipiens Pallens (DIPTERA: CULICIDAE)[J]. Acta Entomologica Sinica, 2017, 60(8):900-905.(in Chinese with English abstract) | |
| [14] |
CHEN Y N, WU C H, ZHENG Y, et al. Knockdown of ATPsyn-b caused larval growth defect and male infertility in Drosophila[J]. Archives of Insect Biochemistry and Physiology, 2015, 88(2):144-154.
DOI URL |
| [15] | 冯娅琳, 郝培应, 俞飞飞, 等. 褐飞虱ATP合酶b亚基基因ATPSb的克隆与功能分析[J]. 昆虫学报, 2018, 61(5):519-526. |
| FENG Y L, HAO P Y, YU F F, et al. Molecular cloning and function analysis of ATP synthase b subunit gene ATPSb in the brown planthopper, Nilaparvata lugens(Hemiptera: Delphacidae)[J]. Acta Entomologica Sinica, 2018, 61(5):519-526.(in Chinese with English abstract) | |
| [16] |
MUMMERY-WIDMER J L, YAMAZAKI M, STOEGER T, et al. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi[J]. Nature, 2009, 458(7241):987-992.
DOI URL |
| [17] |
CAROLAN J C, CARAGEA D, REARDON K T, et al. Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach[J]. Journal of Proteome Research, 2011, 10(4):1505-1518.
DOI URL |
| [18] |
BOULAIN H, LEGEAI F, GUY E, et al. Fast evolution and lineage-specific gene family expansions of aphid salivary effectors driven by interactions with host-plants[J]. Genome Biology and Evolution, 2018, 10(6):1554-1572.
DOI URL |
| [19] |
WU Z Z, QU M Q, CHEN M S, et al. Proteomic and transcriptomic analyses of saliva and salivary glands from the Asian Citrus psyllid, Diaphorina citri[J]. Journal of Proteomics, 2021, 238:104136.
DOI URL |
| [20] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.
DOI URL |
| [21] |
YANAI I, KORBEL J O, BOUE S, et al. Similar gene expression profiles do not imply similar tissue functions[J]. Trends in Genetics, 2006, 22(3):132-138.
DOI URL |
| [22] |
ARRESE E L, SOULAGES J L. Insect fat body: energy, metabolism, and regulation[J]. Annual Review of Entomology, 2010, 55:207-225.
DOI URL |
| [23] |
LI S, YU X Q, FENG Q L. Fat body biology in the last decade[J]. Annual Review of Entomology, 2019, 64(1):315-333.
DOI URL |
| [24] | 严盈, 刘万学, 万方浩. 唾液成分在刺吸式昆虫与植物关系中的作用[J]. 昆虫学报, 2008, 51(5):537-544. |
| YAN Y, LIU W X, WAN F H. Roles of salivary components in piercing-sucking insect-plant interactions[J]. Acta Entomologica Sinica, 2008, 51(5):537-544.(in Chinese with English abstract) | |
| [25] |
LIN P A, CHEN Y T, CHAVERRA-RODRIGUEZ D, et al. Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release[J]. The New Phytologist, 2021, 230(2):793-803.
DOI URL |
| [26] |
HEIDEL-FISCHER H M, FREITAK D, JANZ N, et al. Phylogenetic relatedness and host plant growth form influence gene expression of the polyphagous comma butterfly (Polygonia calbum)[J]. BMC Genomics, 2009, 10:506.
DOI URL |
| [27] |
MACK K L, NACHMAN M W. Gene regulation and speciation[J]. Trends in Genetics, 2017, 33(1):68-80.
DOI URL |
| [28] |
ROMERO I G, RUVINSKY I, GILAD Y. Comparative studies of gene expression and the evolution of gene regulation[J]. Nature Reviews Genetics, 2012, 13(7):505-516.
DOI URL |
| [1] | 陈亚飞, 史肖肖, 余水生, 叶碧欢, 宋其岩, 沈建军, 陈友吾. 浙江省遂昌九龙山国家级自然保护区虫生真菌资源调查[J]. 浙江农业学报, 2025, 37(9): 1891-1904. |
| [2] | 缪百灵, 陈娟娟, 李亮杰, 楚宗丽, 董向向. 浙江红花油茶CchABCG5基因的功能[J]. 浙江农业学报, 2025, 37(7): 1407-1416. |
| [3] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [4] | 张美莹, 莫倩, 齐秀双, 佟宁宁, 孔凡, 刘政安, 吕长平, 彭丽平. 牡丹PoLPAT2基因的克隆及表达分析[J]. 浙江农业学报, 2025, 37(2): 321-328. |
| [5] | 崔博文, 张思懿, 王佳玲, 王竞红, 蔺吉祥, 杨青杰. 宽叶苔草WRKY家族成员生物信息学分析与耐旱基因挖掘[J]. 浙江农业学报, 2025, 37(10): 2087-2103. |
| [6] | 何晓婵, 周小军, 朱浩, 龚婉, 张敬泽, 朱丽燕. 莴苣盘梗霉菌自然寄主专化性的分化及其对莴苣的侵染性[J]. 浙江农业学报, 2025, 37(1): 126-133. |
| [7] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. |
| [8] | 朱贵爽, 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军. 蓖麻GeBP转录因子的全基因组鉴定与GeBP2基因的克隆、表达分析[J]. 浙江农业学报, 2024, 36(8): 1731-1740. |
| [9] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
| [10] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
| [11] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
| [12] | 张余, 金明伟, 任丽, 章毅颖, 赵洪, 刘昆, 邓姗, 褚云霞, 李寿国, 张靖立, 黄静艳, 陈海荣. 辣椒CaERF70的表达特征和转录自激活活性分析[J]. 浙江农业学报, 2024, 36(10): 2247-2256. |
| [13] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
| [14] | 张丽, 王媛媛, 王瑞, 刘丽霞. 牦牛DRA基因克隆测序及生物信息学分析[J]. 浙江农业学报, 2023, 35(7): 1564-1570. |
| [15] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||