浙江农业学报 ›› 2022, Vol. 34 ›› Issue (3): 498-506.DOI: 10.3969/j.issn.1004-1524.2022.03.10
王乾昆1(), 张小辉1,2, 庞有志1,2,*(
), 祁艳霞1,2, 雷莹1,2, 白俊艳1,2, 户运奇1, 赵毅威1, 苑志文1, 王涛1
收稿日期:
2021-07-12
出版日期:
2022-03-25
发布日期:
2022-03-30
通讯作者:
庞有志
作者简介:
庞有志,Email: pyzh2006@126.com基金资助:
WANG Qiankun1(), ZHANG Xiaohui1,2, PANG Youzhi1,2,*(
), QI Yanxia1,2, LEI Ying1,2, BAI Junyan1,2, HU Yunqi1, ZHAO Yiwei1, YUAN Zhiwen1, WANG Tao1
Received:
2021-07-12
Online:
2022-03-25
Published:
2022-03-30
Contact:
PANG Youzhi
摘要:
鹌鹑的羽色自别雌雄现象是由性染色体上的基因决定的,但具体的分子机制未知。本研究以北京白羽公鹌鹑和朝鲜栗羽母鹌鹑为研究对象,利用RNA-seq技术分析了F1公鹑和F1母鹑胚胎期第10天皮肤组织样品的转录组,以筛选调控鹌鹑羽色自别雌雄的关键基因,并利用qRT-PCR技术进行验证。结果表明:RNA-Seq共得到38.94 G的原始数据,平均每个样本获得了6.49 G的原始数据,6个库的Q30均在90%以上,GC含量平均值为49.7%,所测样品至少89%的reads比对到参考基因组上。通过数据库比对共得到16 013个基因,其中,上调基因69个,下调基因22个。GO富集分析发现有13 841个基因注释到GO数据库中,其中包含78个差异表达基因。KEGG富集结果显示,有22个差异基因富集到38条通路中。对全部差异基因进行筛选,得到了7个与羽色表型相关的基因,分别是DCT、MLANA、SLC45A2、TYRP1、TRPM1、FAM174A和KIT。qRT-PCR结果表明,候选基因均在栗羽鹌鹑中高表达,与RNA-seq结果一致,这7个候选基因可能与自别雌雄有关。
中图分类号:
王乾昆, 张小辉, 庞有志, 祁艳霞, 雷莹, 白俊艳, 户运奇, 赵毅威, 苑志文, 王涛. 基于RNA-seq技术挖掘鹌鹑羽色自别雌雄相关基因[J]. 浙江农业学报, 2022, 34(3): 498-506.
WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506.
基因 Gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 产物长度 Product length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|---|
KIT | TCATTCAAGGGCTGCTACCA | GCTTGTACGCTGCTATCCAC | 197 | 59 |
DCT | TGATGAGTGGATGAAGCGGT | GCAGGTCAATGGCATAGGTG | 170 | 59 |
MLANA | AAGGACGCACCTATTTCACA | GTTGCTCCCTCACTCACCAC | 178 | 57 |
FAM174A | CAGTGCGGCTCAGAAGAAAT | TTGAGTGCATTCTGTTCCGA | 163 | 60 |
SLC45A2 | AATGGTACGAGTAAGCCG | GGTAGCGATAATGGGATG | 118 | 54 |
TYRP1 | TGAGGGACCTGCTTTCGT | GATTTCTGCGGATGGGAC | 299 | 56 |
TRPM1 | AGCAGGTCTTAGTGCCTCTTAC | TCCTTTATAGTCTTGGCTTTCC | 156 | 56 |
EIF4E | GACTGCGTCAAGCAATCG | CAGAAGTACAAGACAAAGGCG | 139 | 56 |
表1 实时荧光定量PCR引物信息
Table 1 Primer information of real-time fluorescent quantitative PCR
基因 Gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 产物长度 Product length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|---|
KIT | TCATTCAAGGGCTGCTACCA | GCTTGTACGCTGCTATCCAC | 197 | 59 |
DCT | TGATGAGTGGATGAAGCGGT | GCAGGTCAATGGCATAGGTG | 170 | 59 |
MLANA | AAGGACGCACCTATTTCACA | GTTGCTCCCTCACTCACCAC | 178 | 57 |
FAM174A | CAGTGCGGCTCAGAAGAAAT | TTGAGTGCATTCTGTTCCGA | 163 | 60 |
SLC45A2 | AATGGTACGAGTAAGCCG | GGTAGCGATAATGGGATG | 118 | 54 |
TYRP1 | TGAGGGACCTGCTTTCGT | GATTTCTGCGGATGGGAC | 299 | 56 |
TRPM1 | AGCAGGTCTTAGTGCCTCTTAC | TCCTTTATAGTCTTGGCTTTCC | 156 | 56 |
EIF4E | GACTGCGTCAAGCAATCG | CAGAAGTACAAGACAAAGGCG | 139 | 56 |
样本名称 Sample | 原始数据 Raw reads/M | 过滤后数据 Clean reads/M | 分析数据 Clean bases/G | Q30/% | GC含量 GC content/% | 总比对读段 Total mapped reads | 多位点比对读段 Multiple mapped | 唯一比对读段 Uniquely mapped |
---|---|---|---|---|---|---|---|---|
BF1 | 46.16 | 44.44 | 6.19 | 91.25 | 49.74 | 40 037 396(90.08%) | 1 269 910(2.86%) | 38 767 486(87.23%) |
BF2 | 47.33 | 45.61 | 6.35 | 91.47 | 49.78 | 41 019 585(89.93%) | 1 239 218(2.72%) | 39 780 367(87.21%) |
BF3 | 49.89 | 48.13 | 6.68 | 91.78 | 49.87 | 43 274 927(89.91%) | 1 321 985(2.75%) | 41 952 942(87.16%) |
LF1 | 50.57 | 48.39 | 6.67 | 90.75 | 50.04 | 43 467 145(89.83%) | 1 365 790(2.82%) | 42 101 355(87.01%) |
LF2 | 47.27 | 45.35 | 6.35 | 90.96 | 49.21 | 41 127 739(90.68%) | 1 255 232(2.77%) | 39 872 507(87.92%) |
LF3 | 49.85 | 47.80 | 6.70 | 90.90 | 49.23 | 43 289 872(90.56%) | 1 332 581(2.79%) | 41 957 291(87.77%) |
表2 测序数据质量预处理结果与基因组比对率
Table 2 Reference of sequencing data quality pretreatment and statistical results of genome comparison rate
样本名称 Sample | 原始数据 Raw reads/M | 过滤后数据 Clean reads/M | 分析数据 Clean bases/G | Q30/% | GC含量 GC content/% | 总比对读段 Total mapped reads | 多位点比对读段 Multiple mapped | 唯一比对读段 Uniquely mapped |
---|---|---|---|---|---|---|---|---|
BF1 | 46.16 | 44.44 | 6.19 | 91.25 | 49.74 | 40 037 396(90.08%) | 1 269 910(2.86%) | 38 767 486(87.23%) |
BF2 | 47.33 | 45.61 | 6.35 | 91.47 | 49.78 | 41 019 585(89.93%) | 1 239 218(2.72%) | 39 780 367(87.21%) |
BF3 | 49.89 | 48.13 | 6.68 | 91.78 | 49.87 | 43 274 927(89.91%) | 1 321 985(2.75%) | 41 952 942(87.16%) |
LF1 | 50.57 | 48.39 | 6.67 | 90.75 | 50.04 | 43 467 145(89.83%) | 1 365 790(2.82%) | 42 101 355(87.01%) |
LF2 | 47.27 | 45.35 | 6.35 | 90.96 | 49.21 | 41 127 739(90.68%) | 1 255 232(2.77%) | 39 872 507(87.92%) |
LF3 | 49.85 | 47.80 | 6.70 | 90.90 | 49.23 | 43 289 872(90.56%) | 1 332 581(2.79%) | 41 957 291(87.77%) |
图2 基因表达火山图 灰色为非显著差异表达的基因,红色表示显著上调基因,绿色表示显著下调基因。
Fig.2 Volcanic maps of gene expression Gray represented genes with no significant difference,red indicated up-regulation genes, and green indicated down-regulated genes.
图4 差异表达基因KEGG Level2 水平分布图 横轴是注释到各 Level2 通路的上调(下调)差异表达基因和所有注释到KEGG通路的上调(下调)差异表达基因总数的比值(%),纵轴表示 Level2 Pathway 的名称,柱子右边数字代表注释到该 Level2 Pathway 的上调(下调)差异表达基因数量。红色表示显著上调基因,绿色表示显著下调基因。
Fig.4 KEGG Level2 distribution map ofdifferentially expressed gene Horizontal axis was the ratio (%) of the total number of up-regulated (down-regulated) differentially expressed genes annotated to each Level2 pathway and all up-regulated (down-regulated) genes annotated to the KEGG pathway, vertical axis represented the name of Level2 pathway, and the number on the right side of the column represented the number of up-regulated (down-regulated) differentially expressed genes annotated to the Level2 pathway.Red indicated up-regulation genes and green indicated down-regulated genes.
通路注释 Description | 通路ID Pathway accession | 基因数量 Gene numbers | 基因名称 Gene name | P值 P-vaule |
---|---|---|---|---|
黑色素生成Melanogenesis | gga04916 | 3 | TYRP1,DCT,KIT | 0.001 717 |
酪氨酸代谢Tyrosine metabolism | gga00350 | 2 | TYRP1,DCT | 0.003 700 |
神经活性配体受体相互作用Neuroactive ligand-receptor interaction | gga04080 | 4 | C3,GRP,CCK,HRH3 | 0.010 209 |
苯丙氨酸、酪氨酸和伤寒杆菌生物合成 | gga00400 | 1 | PAH | 0.014 978 |
Phenylalanine, tyrosine and typtohan biosynthesis | ||||
MAPK信号通路MAPK signaling pathway | gga04010 | 3 | CACNGS,AMHR2,KIT | 0.028 778 |
苯丙氨酸代谢Phenylalanine metabolism | gga00360 | 1 | PAH | 0.037 033 |
表3 差异表达基因显著富集的KEGG通路
Table 3 KEGG pathway for differentially expressed genes
通路注释 Description | 通路ID Pathway accession | 基因数量 Gene numbers | 基因名称 Gene name | P值 P-vaule |
---|---|---|---|---|
黑色素生成Melanogenesis | gga04916 | 3 | TYRP1,DCT,KIT | 0.001 717 |
酪氨酸代谢Tyrosine metabolism | gga00350 | 2 | TYRP1,DCT | 0.003 700 |
神经活性配体受体相互作用Neuroactive ligand-receptor interaction | gga04080 | 4 | C3,GRP,CCK,HRH3 | 0.010 209 |
苯丙氨酸、酪氨酸和伤寒杆菌生物合成 | gga00400 | 1 | PAH | 0.014 978 |
Phenylalanine, tyrosine and typtohan biosynthesis | ||||
MAPK信号通路MAPK signaling pathway | gga04010 | 3 | CACNGS,AMHR2,KIT | 0.028 778 |
苯丙氨酸代谢Phenylalanine metabolism | gga00360 | 1 | PAH | 0.037 033 |
图5 白羽鹌鹑和栗羽朝鲜鹌鹑不同发育阶段胚胎中候选基因相对表达水平 *和**分别表示在P<0.05 和P<0.01 水平差异显著。
Fig.5 Relative expression levels of candidate genes in embryos of white feather and maroon feather Korean quails at different developmental stages * and ** meant significant differences at the levels of P<0.05 and P<0.01, respectively.
[1] |
NG C S, LI W H. Genetic and molecular basis of feather diversity in birds[J]. Genome Biology and Evolution, 2018, 10(10): 2572-2586.
DOI URL |
[2] | 陈黎, 沈军达, 李国勤, 等. 不同羽色斑嘴野鸭毛囊中Tyr, Tyrp1及C-kit基因的表达及调控分析[J]. 浙江农业学报, 2015, 27(5): 729-733. |
CHEN L, SHEN J D, LI G Q, et al. Expression and regulation of Tyr, Tyrp1 and C-kit gene in feather bulbs of spot-billed ducks[J]. Acta AgriculturaeZhejiangensis, 2015, 27(5): 729-733. (in Chinese with English abstract) | |
[3] |
SHULTZ A J, BURNS K J. The role of sexual and natural selection in shaping patterns of sexual dichromatism in the largest family of songbirds (Aves: Thraupidae)[J]. Evolution; International Journal of Organic Evolution, 2017, 71(4): 1061-1074.
DOI URL |
[4] | MCQUEEN A, NAIMO A C, TEUNISSEN N, et al. Bright birds are cautious: seasonally conspicuous plumage prompts risk avoidance by male superb fairy-wrens[J]. ProceedingsBiological Sciences, 2017, 284(1857): 20170446. |
[5] | YANG T, JOEL W. Automatic feather sexing of poultry chicks using ultraviolet imaging:US6396938 [P/OL].(2002-05-28) [2021-07-12]. https://www.freepatentsonline.com/6396938.html . |
[6] | YANG C W, DU H R, ZHANG Z R, et al. Genetic and breeding progress analysis on five pure lines of dahen broiler[J]. Agricultural Biotechnology, 2018, 7(5): 130-132. |
[7] | ZHANG L, XU H D, LENG Q Y, et al. A genetics laboratory class to analyze early and late feather traits of chicken[J]. Hereditas, 2018, 40(3): 250-256. |
[8] |
GALVÁN I, RODRÍGUEZ-MARTÍNEZ S. A negative association between melanin-based plumage color heterogeneity and intensity in birds[J]. Physiological and Biochemical Zoology: PBZ, 2019, 92(3): 266-273.
DOI URL |
[9] | 刘坤举, 张小辉, 庞有志, 等. 朝鲜鹌鹑GNAS基因表达、克隆及其多态性与羽色的相关性[J]. 浙江农业学报, 2020, 32(8): 1369-1377. |
LIU K J, ZHANG X H, PANG Y Z, et al. Relationship of plumage color with expression and polymorphism of GNAS gene in Korean quail[J]. Acta AgriculturaeZhejiangensis, 2020, 32(8): 1369-1377. (in Chinese with English abstract) | |
[10] | 张小辉, 庞有志, 雷莹, 等. 鹌鹑性别的分子鉴定方法研究[J]. 中国家禽, 2020, 42(5): 20-23. |
ZHANG X H, PANG Y Z, LEI Y, et al. Study on molecular sex identification in quail[J]. China Poultry, 2020, 42(5): 20-23. (in Chinese with English abstract) | |
[11] |
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120.
DOI URL |
[12] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
DOI URL |
[13] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550.
DOI URL |
[14] |
YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. Omics: a Journal of Integrative Biology, 2012, 16(5): 284-287.
DOI URL |
[15] | CHEN T Z, ZHAO B L, LIU Y, et al. MITF-M regulates melanogenesis in mouse melanocytes[J]. Journal of Dermatological Science, 2018, 90(3): 253-262. |
[16] | 岳丹, 刘兴能, 熊和丽, 等. 兰坪乌骨绵羊黑色素及其候选基因研究进展[J]. 家畜生态学报, 2021, 42(5): 1-6. |
YUE D, LIU X N, XIONG H L, et al. Research progress on melanin and its candidate gene of Lanping black-bone sheep(Ovisaris)[J]. Journal of Domestic Animal Ecology, 2021, 42(5): 1-6. (in Chinese with English abstract) | |
[17] | 黄海艳, 杜娟, 张杰, 等. 紫铆素通过AMPK通路促进正常人黑素细胞黑素合成的机制研究[J]. 中国中西医结合皮肤性病学杂志, 2020, 19(5): 406-409. |
HUANG H Y, DU J, ZHANG J, et al. Butin promotes melanocyte cytochrome synthesis in PIG1 cells through AMPK pathway[J]. Chinese Journal of Dermatovenereology of Integrated Traditional and Western Medicine, 2020, 19(5): 406-409. (in Chinese with English abstract) | |
[18] | WU Y, ZHANG Y L, HOU Z C, et al. Population genomic data reveal genes related to important traits of quail[J]. GigaScience, 2018, 7(5): giy049. |
[19] |
SUN L, ZHOU T, WAN Q H, et al. Transcriptome comparison reveals key components of nuptial plumage coloration in crested ibis[J]. Biomolecules, 2020, 10(6): 905.
DOI URL |
[20] |
SULTANA H, SEO D, CHOI N R, et al. Identification of polymorphisms in MITF and DCT genes and their associations with plumage colors in Asian duck breeds[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(2): 180-188.
DOI URL |
[21] |
XI Y, LIU H, LI L, et al. Transcriptome reveals multi pigmentation genes affecting dorsoventral pattern in avian body[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 560766.
DOI URL |
[22] |
YAO L D, BAO A, HONG W J, et al. Transcriptome profiling analysis reveals key genes of different coat color in sheep skin[J]. PeerJ, 2019, 7: e8077.
DOI URL |
[23] |
LE L, ESCOBAR I E, HO T, et al. SLC45A2 protein stability and regulation of melanosome pH determine melanocyte pigmentation[J]. Molecular Biology of the Cell, 2020, 31(24): 2687-2702.
DOI URL |
[24] |
DU Z, HUANG K, ZHAO J, et al. Comparative transcriptome analysis of raccoon dog skin to determine melanin content in hair and melanin distribution in skin[J]. Scientific Reports, 2017, 7: 40903.
DOI URL |
[25] |
LAI X L, WICHERS H J, SOLER-LOPEZ M, et al. Phenylthiourea binding to human tyrosinase-related protein 1[J]. International Journal of Molecular Sciences, 2020, 21(3): 915.
DOI URL |
[26] | LI J Y, BED'HOM B, MARTHEY S, et al. A missense mutation in TYRP1 causes the chocolate plumage color in chicken and alters melanosome structure[J]. Pigment Cell & Melanoma Research, 2019, 32(3): 381-390. |
[27] |
WENG Z X, XU Y J, LI W N, et al. Genomic variations and signatures of selection in Wuhua yellow chicken[J]. PLoS One, 2020, 15(10): e0241137.
DOI URL |
[28] |
JIA Q, HU S X, JIAO D X, et al. Synaptotagmin-4 promotes dendrite extension and melanogenesis in alpaca melanocytes by regulating Ca2+ influx via TRPM1 channels[J]. Cell Biochemistry and Function, 2020, 38(3): 275-282.
DOI URL |
[29] |
XU Q, LIU X M, CHAO Z, et al. Transcriptomic analysis of coding genes and non-coding RNAs reveals complex regulatory networks underlying the black back and white belly coat phenotype in Chinese Wuzhishan pigs[J]. Genes, 2019, 10(3): 201.
DOI URL |
[30] |
NIE C S, ZHANG Z B, ZHENG J X, et al. Genome-wide association study revealed genomic regions related to white/red earlobe color trait in the Rhode Island Red chickens[J]. BMC Genetics, 2016, 17(1): 115.
DOI URL |
[31] |
JONES M, SERGEANT C, RICHARDSON M, et al. A non-synonymous SNP in exon 3 of the KIT gene is responsible for the classic grey phenotype in alpacas (Vicugna pacos)[J]. Animal Genetics, 2019, 50(5): 493-500.
DOI URL |
[1] | 兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516. |
[2] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[3] | 贾利强, 赵秋芳, 陈曙, 丁波. 玉米转录因子bZIP G亚家族基因的表达模式[J]. 浙江农业学报, 2022, 34(2): 221-231. |
[4] | 杨生海, 刘西兰, 张勇. 利用加权基因共表达网络分析牛口蹄疫病毒感染通路变化[J]. 浙江农业学报, 2021, 33(9): 1617-1624. |
[5] | 马杰, 屈雯, 陈春艳, 王磊, 马俊, 刘针杉, 马维, 周平, 何远宽, 孙勃. 基于转录组序列的叶用芥菜奶奶青菜EST-SSR标记开发与遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1640-1649. |
[6] | 董智豪, 陈宇, 黄高想, 白俊艳, 李静云, 赵淑娟, 雷莹, 王新乐, 胡琦杭, 范征宇. 蛋用鹌鹑的VIPR-1基因的多态性与早期生长性状的关联分析[J]. 浙江农业学报, 2021, 33(8): 1393-1401. |
[7] | 黄长兵, 程培蕾, 杨绍宗, 张焕朝, 姜正之, 金立敏. 萱草根茎低温胁迫转录组分析[J]. 浙江农业学报, 2021, 33(8): 1445-1460. |
[8] | 赵国富, 严亚琴, 汪精磊, 魏庆镇, 包崇来. 茄子脂氧合酶家族基因全基因组鉴定与表达分析[J]. 浙江农业学报, 2021, 33(6): 1025-1034. |
[9] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
[10] | 黄咏明, 宋放, 王策, 姚京磊, 王志静, 何利刚, 吴黎明, 蒋迎春. 根系修剪对枳生长及相关基因表达的影响[J]. 浙江农业学报, 2021, 33(2): 270-277. |
[11] | 白皓, 李潇凡, 仲黎, 宋倩倩, 江勇, 张扬, 王志秀, 徐琪, 常国斌, 陈国宏. 连城白鸭不同组织中主要矿物元素沉积规律与关键基因表达水平研究[J]. 浙江农业学报, 2021, 33(12): 2264-2274. |
[12] | 蒋智芳, 韩怡蝶, 楼盼盼, 郭宏, 冯尚国, 沈晨佳, 王慧中. 苦蘵P450家族基因鉴定与表达分析[J]. 浙江农业学报, 2021, 33(11): 2009-2016. |
[13] | 冯上乐, 李雪男, 陈一格, 刘瑞琦, 白志毅, 李文娟. 三角帆蚌细胞周期蛋白基因筛选及其表达分析[J]. 浙江农业学报, 2021, 33(11): 2041-2050. |
[14] | 杜金梁, 曹丽萍, 贾睿, 顾郑琰, 何勤, 徐跑, JENEYGalina, 马玉忠, 殷国俊. 甘草总黄酮对高脂条件下罗非鱼肝损伤的保护作用[J]. 浙江农业学报, 2021, 33(10): 1826-1835. |
[15] | 杨海健, 张云贵, 周心智, 洪林, 杨蕾, 彭芳芳, 王武. 不同PE材料遮光下血橙转色期果皮花色苷合成及其相关基因的表达分析[J]. 浙江农业学报, 2021, 33(10): 1861-1869. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||