浙江农业学报 ›› 2022, Vol. 34 ›› Issue (3): 507-516.DOI: 10.3969/j.issn.1004-1524.2022.03.11
兰国湘1(
), 金思琪1, 李星润2, 刘喜雨2, 李国美1, 董新星1,*
收稿日期:2021-07-02
出版日期:2022-03-25
发布日期:2022-03-30
作者简介:董新星,E-mail:dong-xinxing@qq.com通讯作者:
董新星
基金资助:
LAN Guoxiang1(
), JIN Siqi1, LI Xingrun2, LIU Xiyu2, LI Guomei1, DONG Xinxing1,*
Received:2021-07-02
Online:2022-03-25
Published:2022-03-30
Contact:
DONG Xinxing
摘要:
筛选高原雨点鸽与詹森鸽胸肌飞行能力差异的关键基因,为赛鸽选育奠定基础。选择性别相同、体况与日龄相近的高原雨点鸽、詹森鸽各3只,屠宰后取胸肌,进行转录组测序,筛选差异表达基因,对差异基因进行Gene Ontology(GO)分析、Kyoto Encyclopedia of Genes and Genomes(KEGG)分析与蛋白质互作网络分析。结果表明:高原雨点鸽与詹森鸽胸肌转录组比较共检测到75个显著差异基因,49个基因上调表达,26个基因下调表达;GO功能分析显示,差异基因主要富集在骨骼肌细胞分化、细胞代谢过程调节等条目;KEGG通路分析显示,差异基因显著富集在胰岛素信号通路、AMPK信号通路等。与詹森鸽相比,高原雨点鸽胸肌SMYD1、STAT1、VEGFA、PPM1K、PLCE1基因上调,MYOD1、SOCS3、MGLL基因下调。STAT1、MYOD1可能导致高原雨点鸽胸肌生长慢于詹森鸽;SOCS3可能导致高原雨点鸽胸肌肌纤维直径变小,爆发力下降;PLCE1可能导致高原雨点鸽胸肌肌纤维增多;SMYD1可能导致肌纤维分化形成更多的红肌纤维;VEGFA可能导致高原雨点鸽体内白色脂肪转化为棕色脂肪;PPM1K、MGLL可能催化支链氨基酸分解,为高原雨点鸽长距离负重飞行提供足够能量,更适宜远距离飞行。
中图分类号:
兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516.
LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516.
| 基因名 Gene name | 上游引物序列(5'→3') Forward primer sequence(5'→3') | 下游引物序列(5'→3') Reverse primer sequence(5'→3') | 产物长度 Length of product/bp |
|---|---|---|---|
| MGLL | GAGCTGCCCGTTCTCATTCT | CGACAGGTTTGGGAGGACAA | 189 |
| SOCS3 | GCCACCAGAGAACGGAAAGA | TTAGTCCCCCGGAAAATGGC | 201 |
| PPM1K | AGATGGCTGCTGATGCAACT | AGCCACCGCACTTCCTAATC | 201 |
| PLCE1 | ATGCTTCCTTCACCTGGGC | TGGTAGGTGTGGTGGGGTTG | 163 |
| SMYD1 | ATCTGTCATACCTGCTTCAAACG | CCAGCCTGATGTTTTCGGT | 169 |
| β-actin | TTACCCACACTGTGCCCATC | AGGGCAACATAGCACAGCTT | 187 |
表1 实时荧光定量PCR引物序列
Table 1 Primer sequences of qRT-PCR
| 基因名 Gene name | 上游引物序列(5'→3') Forward primer sequence(5'→3') | 下游引物序列(5'→3') Reverse primer sequence(5'→3') | 产物长度 Length of product/bp |
|---|---|---|---|
| MGLL | GAGCTGCCCGTTCTCATTCT | CGACAGGTTTGGGAGGACAA | 189 |
| SOCS3 | GCCACCAGAGAACGGAAAGA | TTAGTCCCCCGGAAAATGGC | 201 |
| PPM1K | AGATGGCTGCTGATGCAACT | AGCCACCGCACTTCCTAATC | 201 |
| PLCE1 | ATGCTTCCTTCACCTGGGC | TGGTAGGTGTGGTGGGGTTG | 163 |
| SMYD1 | ATCTGTCATACCTGCTTCAAACG | CCAGCCTGATGTTTTCGGT | 169 |
| β-actin | TTACCCACACTGTGCCCATC | AGGGCAACATAGCACAGCTT | 187 |
| 样品 Sample | 原始读段 Raw reads | 高质量序列所占 比例 Clean reads rate/% | Q30/% | 比对基因组所 占比例 Mapping rate/% |
|---|---|---|---|---|
| JG1 | 50 784 230 | 94.47 | 93.57 | 83.09 |
| JG2 | 49 764 078 | 95.51 | 93.26 | 84.60 |
| JG3 | 48 035 956 | 93.37 | 94.08 | 83.03 |
| JS1 | 51 604 076 | 91.46 | 93.81 | 85.33 |
| JS2 | 49 022 332 | 91.97 | 93.85 | 85.90 |
| JS3 | 47 948 950 | 94.94 | 93.56 | 84.03 |
表2 测序输出结果
Table 2 Output of sequencing data
| 样品 Sample | 原始读段 Raw reads | 高质量序列所占 比例 Clean reads rate/% | Q30/% | 比对基因组所 占比例 Mapping rate/% |
|---|---|---|---|---|
| JG1 | 50 784 230 | 94.47 | 93.57 | 83.09 |
| JG2 | 49 764 078 | 95.51 | 93.26 | 84.60 |
| JG3 | 48 035 956 | 93.37 | 94.08 | 83.03 |
| JS1 | 51 604 076 | 91.46 | 93.81 | 85.33 |
| JS2 | 49 022 332 | 91.97 | 93.85 | 85.90 |
| JS3 | 47 948 950 | 94.94 | 93.56 | 84.03 |
| 类别 Category | 登记号 Accession | 条目 Term | P值 P value | 差异表达 基因数量 Number of DEGs |
|---|---|---|---|---|
| 肌肉生长 | GO:0007259 | JAK-STAT级联JAK-STAT cascade | 0.003 5 | 2 |
| Muscle growth | GO:0035914 | 骨骼肌细胞分化Skeletal muscle cell differentiation | 0.005 7 | 2 |
| GO:0010830 | 肌管分化调控Regulation of myotube differentiation | 0.008 4 | 2 | |
| GO:0045661 | 成肌细胞分化调控Regulation of myoblast differentiation | 0.011 0 | 2 | |
| GO:0051153 | 横纹肌细胞分化调控Regulation of striated muscle cell differentiation | 0.024 0 | 2 | |
| GO:0006937 | 肌肉收缩调节Regulation of muscle contraction | 0.044 0 | 1 | |
| 能量利用 | GO:0009083 | 支链氨基酸分解过程Branched-chain amino acid catabolic process | 0.000 9 | 2 |
| Energy utilization | GO:0016042 | 脂质分解过程Lipid catabolic process | 0.001 0 | 5 |
| GO:0009081 | 支链氨基酸代谢过程Branched-chain amino acid metabolic process | 0.001 3 | 2 | |
| GO:0006651 | 甘油二酯生物合成过程Diacylglycerol biosynthetic process | 0.007 1 | 1 | |
| GO:0036155 | 酰基甘油链重构Acylglycerol acyl-chain remodeling | 0.007 1 | 1 | |
| GO:0006638 | 中性脂质代谢过程Neutral lipid metabolic process | 0.017 0 | 2 | |
| GO:0006639 | 酰基甘油代谢过程Acylglycerol metabolic process | 0.017 0 | 2 | |
| GO:0006633 | 脂肪酸生物合成过程Fatty acid biosynthetic process | 0.030 0 | 2 | |
| GO:0046339 | 二酰基甘油代谢过程Diacylglycerol metabolic process | 0.031 0 | 2 | |
| GO:0019433 | 甘油三酯分解过程Triglyceride catabolic process | 0.038 0 | 2 | |
| GO:0006629 | 脂质代谢过程Lipid metabolic process | 0.041 0 | 7 | |
| GO:0006631 | 脂肪酸代谢过程Fatty acid metabolic process | 0.047 0 | 3 | |
| 肌肉生长与能量利用 | GO:0031323 | 细胞代谢过程调节Regulation of cellular metabolic process | 8.5×10-6 | 27 |
| Muscle growth and | GO:0080090 | 初级代谢过程调节Regulation of primary metabolic process | 1.8×10-5 | 26 |
| energy utilization | GO:0019222 | 代谢过程调节Regulation of metabolic process | 3.5×10-5 | 27 |
| GO:0060255 | 大分子代谢过程调控Regulation of macromolecule metabolic process | 0.000 2 | 26 | |
| GO:0051171 | 氮化合物代谢过程的调节 | 0.000 8 | 24 | |
| Regulation of nitrogen compound metabolic process | ||||
| GO:0044238 | 初级代谢过程Primary metabolic process | 0.003 5 | 29 | |
| GO:0071704 | 有机物代谢过程Organic substance metabolic process | 0.008 2 | 28 | |
| GO:0008152 | 代谢过程Metabolic process | 0.018 0 | 28 |
表3 肌肉生长、能量利用相关的差异表达基因主要显著富集GO条目
Table 3 Main GO items of DEGs enrichment analysis related to muscle growth and energy utilization
| 类别 Category | 登记号 Accession | 条目 Term | P值 P value | 差异表达 基因数量 Number of DEGs |
|---|---|---|---|---|
| 肌肉生长 | GO:0007259 | JAK-STAT级联JAK-STAT cascade | 0.003 5 | 2 |
| Muscle growth | GO:0035914 | 骨骼肌细胞分化Skeletal muscle cell differentiation | 0.005 7 | 2 |
| GO:0010830 | 肌管分化调控Regulation of myotube differentiation | 0.008 4 | 2 | |
| GO:0045661 | 成肌细胞分化调控Regulation of myoblast differentiation | 0.011 0 | 2 | |
| GO:0051153 | 横纹肌细胞分化调控Regulation of striated muscle cell differentiation | 0.024 0 | 2 | |
| GO:0006937 | 肌肉收缩调节Regulation of muscle contraction | 0.044 0 | 1 | |
| 能量利用 | GO:0009083 | 支链氨基酸分解过程Branched-chain amino acid catabolic process | 0.000 9 | 2 |
| Energy utilization | GO:0016042 | 脂质分解过程Lipid catabolic process | 0.001 0 | 5 |
| GO:0009081 | 支链氨基酸代谢过程Branched-chain amino acid metabolic process | 0.001 3 | 2 | |
| GO:0006651 | 甘油二酯生物合成过程Diacylglycerol biosynthetic process | 0.007 1 | 1 | |
| GO:0036155 | 酰基甘油链重构Acylglycerol acyl-chain remodeling | 0.007 1 | 1 | |
| GO:0006638 | 中性脂质代谢过程Neutral lipid metabolic process | 0.017 0 | 2 | |
| GO:0006639 | 酰基甘油代谢过程Acylglycerol metabolic process | 0.017 0 | 2 | |
| GO:0006633 | 脂肪酸生物合成过程Fatty acid biosynthetic process | 0.030 0 | 2 | |
| GO:0046339 | 二酰基甘油代谢过程Diacylglycerol metabolic process | 0.031 0 | 2 | |
| GO:0019433 | 甘油三酯分解过程Triglyceride catabolic process | 0.038 0 | 2 | |
| GO:0006629 | 脂质代谢过程Lipid metabolic process | 0.041 0 | 7 | |
| GO:0006631 | 脂肪酸代谢过程Fatty acid metabolic process | 0.047 0 | 3 | |
| 肌肉生长与能量利用 | GO:0031323 | 细胞代谢过程调节Regulation of cellular metabolic process | 8.5×10-6 | 27 |
| Muscle growth and | GO:0080090 | 初级代谢过程调节Regulation of primary metabolic process | 1.8×10-5 | 26 |
| energy utilization | GO:0019222 | 代谢过程调节Regulation of metabolic process | 3.5×10-5 | 27 |
| GO:0060255 | 大分子代谢过程调控Regulation of macromolecule metabolic process | 0.000 2 | 26 | |
| GO:0051171 | 氮化合物代谢过程的调节 | 0.000 8 | 24 | |
| Regulation of nitrogen compound metabolic process | ||||
| GO:0044238 | 初级代谢过程Primary metabolic process | 0.003 5 | 29 | |
| GO:0071704 | 有机物代谢过程Organic substance metabolic process | 0.008 2 | 28 | |
| GO:0008152 | 代谢过程Metabolic process | 0.018 0 | 28 |
| 功能ID Function ID | 功能描述 Description of function | P值 P value | 差异表达基因 DEGs |
|---|---|---|---|
| map04910 | 胰岛素信号通路Insulin signaling pathway | 0.000 4 | SOCS3、ACACB、PPP1R3C |
| map04931 | 胰岛素抵抗Insulin resistance | 0.003 3 | SOCS3、ACACB、PPP1R3C |
| map04919 | 甲状腺激素信号通路Thyroid hormone signaling pathway | 0.003 8 | STAT1、HIF1A、PLCE1 |
| map04920 | 脂肪细胞因子信号通路Adipocytokine signaling pathway | 0.014 0 | SOCS3、ACACB |
| map00061 | 脂肪酸生物合成Fatty acid biosynthesis | 0.039 0 | ACACB |
| map04152 | AMPK信号通路AMPK signal pathway | 0.042 0 | ACACB |
| map04630 | Jak-STAT信号通路Jak-STAT signaling pathway | 0.050 0 | SOCS3、STAT1 |
表4 肌肉生长与能量利用相关的差异表达基因主要显著富集信号通路
Table 4 Pathways of DEGs enrichment analysis related to muscle growth and energy utilization
| 功能ID Function ID | 功能描述 Description of function | P值 P value | 差异表达基因 DEGs |
|---|---|---|---|
| map04910 | 胰岛素信号通路Insulin signaling pathway | 0.000 4 | SOCS3、ACACB、PPP1R3C |
| map04931 | 胰岛素抵抗Insulin resistance | 0.003 3 | SOCS3、ACACB、PPP1R3C |
| map04919 | 甲状腺激素信号通路Thyroid hormone signaling pathway | 0.003 8 | STAT1、HIF1A、PLCE1 |
| map04920 | 脂肪细胞因子信号通路Adipocytokine signaling pathway | 0.014 0 | SOCS3、ACACB |
| map00061 | 脂肪酸生物合成Fatty acid biosynthesis | 0.039 0 | ACACB |
| map04152 | AMPK信号通路AMPK signal pathway | 0.042 0 | ACACB |
| map04630 | Jak-STAT信号通路Jak-STAT signaling pathway | 0.050 0 | SOCS3、STAT1 |
图2 蛋白质互作网络 圆圈代表蛋白质,其颜色深浅表示在网络中的权重,颜色越深表示权重越大。直线代表蛋白质之间的相互作用,线条越粗表示相互作用越大。
Fig.2 Protein interaction network Circles represented proteins, and their color shades represented their weights in the network, with darker colors representing greater weights. Straight lines represented interactions between proteins, with thicker lines representing grater interactions.
图3 高原雨点鸽和詹森鸽胸肌差异表达基因的相对表达水平 A,转录组测序结果;B,qRT-PCR结果。
Fig.3 Relative expression levels of DEGs in breast muscle between Plateau raindrop pigeon and Janssen pigeon A, Transcriptome sequencing results; B,qRT-PCR results.
图4 高原雨点鸽和詹森鸽胸肌肌纤维横切面 A,高原雨点鸽(40×40);B,詹森鸽(40×40)。
Fig.4 Breast muscle fiber transection of Plateau raindrop pigeon and Janssen pigeon A, Plateau raindrop pigeon(40×40); B, Janssen pigeon(40×40).
| [1] | 王萨仁图雅. 赛鸽人工孵化与哺育技术的研究[D]. 呼和浩特: 内蒙古农业大学, 2009. |
| WANG S R T Y. Studies on artificial incubation and hand-fed of match pigeon[D]. Hohhot: Inner Mongolia Agricultural University, 2009. (in Chinese with English abstract) | |
| [2] |
JACKSON B E, DIAL K P. Scaling of mechanical power output during burst escape flight in the Corvidae[J]. The Journal of Experimental Biology, 2011, 214(Pt 3): 452-461.
DOI URL |
| [3] | 刘铸, 杨春文, 金志民. 浅谈鸟类适应飞翔的探究问题与理论知识[J]. 生物学教学, 2010, 35(10): 67-68. |
| LIU Z, YANG C W, JIN Z M. A brief talk on inquiry questions and theoretical knowledge of birds’ adaptation to flying[J]. Biology Teaching, 2010, 35(10): 67-68. (in Chinese) | |
| [4] | 郭云. 风靡宁夏山川的“2595”詹森鸽系: 凤城名鸽探析之二[J]. 环球赛鸽科技, 2006(3): 62-63. |
| GUO Y. The “2595” Jason pigeon line popular in Ningxia: the second analysis of Fengcheng famous pigeons[J]. Global Racing Pigeon Science, 2006(3): 62-63. (in Chinese) | |
| [5] | 毛竹. 禽品种资源[J]. 云南政报, 1991(1): 44-45. |
| MAO Z. Poultry variety resources[J]. Bulletin of the People’s Government of Yunnan Province, 1991(1): 44-45. (in Chinese) | |
| [6] | 蒋明雅, 邹小利, 罗文, 等. 不同生长速度型鸡胚胎发育后期肌纤维形态学对比分析[J]. 中国家禽, 2017, 39(16): 10-16. |
| JIANG M Y, ZOU X L, LUO W, et al. Skeletal muscle fiber morphological comparative study in chickens with different growth rate during the late embryonic development[J]. China Poultry, 2017, 39(16): 10-16. (in Chinese with English abstract) | |
| [7] |
TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5): 511-515.
DOI URL |
| [8] |
WANG W, WANG Y J, ZHANG Q, et al. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing[J]. BMC Genomics, 2009, 10: 465.
DOI URL |
| [9] |
FRANCESCHINI A, SZKLARCZYK D, FRANKILD S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration[J]. Nucleic Acids Research, 2012, 41(D1): D808-D815.
DOI URL |
| [10] | 翁锡全. 运动时骨骼肌的能量供应过程[J]. 中国体育教练员, 2014, 22(2): 38-39. |
| WENG X Q. Energy supply process of skeletal muscles during exercise[J]. China Sports Coaches, 2014, 22(2): 38-39. (in Chinese) | |
| [11] | 王平, 漆正堂, 丁树哲. Smyd1基因选择性剪接的组蛋白修饰机制调控应力刺激下骨骼肌肥大作用研究进展[J]. 中国运动医学杂志, 2013, 32(9): 845-850. |
| WANG P, QI Z T, DING S Z. Research progress on the histone modification mechanism of alternative splicing of Smyd1 gene in regulating skeletal muscle hypertrophy under stress[J]. Chinese Journal of Sports Medicine, 2013, 32(9): 845-850. (in Chinese) | |
| [12] | 王娟, 叶湘漓, 姜丽, 等. IGF-1通过SRF结合位点调节SMYD1在C2C12细胞中的表达[J]. 中国生物化学与分子生物学报, 2010, 26(12): 1113-1120. |
| WANG J, YE X L, JIANG L, et al. IGF-1 regulates SMYD1 expression through SRF response element in C2C12 cells[J]. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(12): 1113-1120. (in Chinese with English abstract) | |
| [13] |
NAGANDLA H, LOPEZ S, YU W, et al. Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1[J]. Developmental Biology, 2016, 410(1): 86-97.
DOI URL |
| [14] |
CHU W Y, ZHANG F L, SONG R, et al. Proteomic and microRNA transcriptome analysis revealed the microRNA-SmyD1 network regulation in skeletal muscle fibers performance of Chinese perch[J]. Scientific Reports, 2017, 7: 16498.
DOI URL |
| [15] |
NOMURA D K, LONG J Z, NIESSEN S, et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis[J]. Cell, 2010, 140(1): 49-61.
DOI URL |
| [16] |
NOMURA D K, LOMBARDI D P, CHANG J W, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer[J]. Chemistry & Biology, 2011, 18(7): 846-856.
DOI URL |
| [17] |
SCALVINI L, PIOMELLI D, MOR M. Monoglyceride lipase: structure and inhibitors[J]. Chemistry and Physics of Lipids, 2016, 197: 13-24.
DOI URL |
| [18] |
TASCHLER U, RADNER F P W, HEIER C, et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance[J]. Journal of Biological Chemistry, 2011, 286(20): 17467-17477.
DOI URL |
| [19] |
KIENS B. Skeletal muscle lipid metabolism in exercise and insulin resistance[J]. Physiological Reviews, 2006, 86(1): 205-243.
DOI URL |
| [20] |
BISWAS D, DUFFLEY L, PULINILKUNNIL T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis[J]. FASEB Journal, 2019, 33(8): 8711-8731.
DOI URL |
| [21] | 吴江维. 猪SOCS-3基因cDNA的克隆及其在脂肪和肌肉组织表达的初步研究[D]. 杨凌:西北农林科技大学, 2006. |
| WU J W. Cloning the porcine SOCS-3 cDNA and its expression in porcine adipose and muscle tissue[D]. Yangling: Northwest A & F University, 2006. (in Chinese with English abstract) | |
| [22] | 林娜, 姚晓光, 李南方. 细胞因子信号转导抑制因子3的研究进展[J]. 中国医学科学院学报, 2012, 34(2): 178-182. |
| LIN N, YAO X G, LI N F. Research advances in suppressor of cytokine signaling 3[J]. Acta Academiae Medicinae Sinicae, 2012, 34(2): 178-182. (in Chinese with English abstract) | |
| [23] | 郑琪, 睢梦华, 凌英会. 骨骼肌卫星细胞增殖与成肌分化过程中关键信号通路的作用[J]. 畜牧兽医学报, 2017, 48(11): 2005-2014. |
| ZHENG Q, SUI M H, LING Y H. The role of key signaling pathways in the proliferation and differentiation of skeletal muscle satellite cells[J]. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(11): 2005-2014. (in Chinese with English abstract) | |
| [24] |
SWIDERSKI K, THAKUR S S, NAIM T, et al. Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury[J]. Skeletal Muscle, 2016, 6: 36.
DOI URL |
| [25] | 朱道立. 运动和内分泌器官: 骨骼肌[J]. 生物学教学, 2007(8): 2-3. |
| ZHU D L. Exercise and endocrine organs-skeletal muscles[J]. Biology Teaching, 2007(8): 2-3. (in Chinese) | |
| [26] | 刘莉, 马爽, 李岩溪, 等. 高脂饮食大鼠脂肪组织SOCS-3及FAS表达[J]. 中国公共卫生, 2009, 25(4): 428-430. |
| LIU L, MA S, LI Y X, et al. Study on SOCS-3 and FAS expression of adipose tissues in rats fed with high-fat diet[J]. Chinese Journal of Public Health, 2009, 25(4): 428-430. (in Chinese with English abstract) | |
| [27] | 刘莉, 顾海伦, 杨军, 等. 大鼠重组瘦素对成熟脂肪细胞细胞因子信号转导抑制因子3表达的影响[J]. 卫生研究, 2009, 38(2): 160-162. |
| LIU L, GU H L, YANG J, et al. Effect of rat recombinant leptin on expression of SOCS-3 in mature adipocytes[J]. Journal of Hygiene Research, 2009, 38(2): 160-162. (in Chinese with English abstract) | |
| [28] | 林佳盛. 瘦素及其受体基因对猪脂肪组织沉积影响的研究[D]. 福州: 福建农林大学, 2015. |
| LIN J S. The effects of leptin and its receptor genes on the deposition of adipose tissue of pigs[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese with English abstract) | |
| [29] | 钮小玲, 黄文彦. PLCE1基因突变与激素耐药性肾病综合征的关系[J]. 国际病理科学与临床杂志, 2009, 29(4): 337-341. |
| NIU X L, HUANG W Y. Mutation of PLCE1 gene and steroid-resistant nephrotic syndrome[J]. International Journal of Pathology and Clinical Medicine, 2009, 29(4): 337-341. (in Chinese with English abstract) | |
| [30] |
ANTIGNY F, KONIG S, BERNHEIM L, et al. Inositol 1, 4, 5 trisphosphate receptor 1 is a key player of human myoblast differentiation[J]. Cell Calcium, 2014, 56(6): 513-521.
DOI URL |
| [31] |
CHOI J Y, HWANG C Y, LEE B, et al. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration[J]. Aging, 2016, 8(9): 2062-2080.
DOI URL |
| [32] |
KERESZTES M, HÄGGBLAD J, HEILBRONN E. Basal and ATP-stimulated phosphoinositol metabolism in fusing rat skeletal muscle cells in culture[J]. Experimental Cell Research, 1991, 196(2): 362-364.
DOI URL |
| [33] |
LEE S J, LEE Y H, KIM Y S, et al. Transcriptional regulation of phospholipase C-gamma 1 gene during muscle differentiation[J]. Biochemical and Biophysical Research Communications, 1995, 206(1): 194-200.
DOI URL |
| [34] |
HINKES B, WIGGINS R C, GBADEGESIN R, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible[J]. Nature Genetics, 2006, 38(12): 1397-1405.
DOI URL |
| [35] |
BALUCH D P, KOENEMAN B A, HATCH K R, et al. PKC isotypes in post-activated and fertilized mouse eggs: association with the meiotic spindle[J]. Developmental Biology, 2004, 274(1): 45-55.
DOI URL |
| [36] |
YU Y S, HALET G, LAI F A, et al. Regulation of diacylglycerol production and protein kinase C stimulation during sperm-and PLCzeta-mediated mouse egg activation[J]. Biology of the Cell, 2008, 100(11): 633-643.
DOI URL |
| [37] | TATONE C, DELLE MONACHE S, FRANCIONE A, et al. Ca2+-independent protein kinase C signalling in mouse eggs during the early phases of fertilization[J]. The International Journal of Developmental Biology, 2003, 47(5): 327-333. |
| [38] | HALET G. PKC signaling at fertilization in mammalian eggs[J]. Biochimica et Biophysica Acta, 2004, 1742(1/2/3): 185-189. |
| [39] |
SUGURO T, WATANABE T, KANOME T, et al. Serotonin acts as an up-regulator of acyl-coenzyme A: cholesterol acyltransferase-1 in human monocyte-macrophages[J]. Atherosclerosis, 2006, 186(2): 275-281.
DOI URL |
| [40] |
GAO Y, LI Y F, GUO X, et al. Loss of STAT1 in bone marrow-derived cells accelerates skeletal muscle regeneration[J]. PLoS One, 2012, 7(5): e37656.
DOI URL |
| [41] |
GOLDBERG A A, NKENGFAC B, SANCHEZ A M J, et al. Regulation of ULK1 expression and autophagy by STAT1[J]. Journal of Biological Chemistry, 2017, 292(5): 1899-1909.
DOI URL |
| [42] |
MEDLEY S C, RATHNAKAR B H, GEORGESCU C, et al. Fibroblast-specific Stat1 deletion enhances the myofibroblast phenotype during tissue repair[J]. Wound Repair and Regeneration, 2020, 28(4): 448-459.
DOI URL |
| [43] |
ANTONY A, LIAN Z Q, PERRARD X D, et al. Deficiency of Stat1 in CD11c+ cells alters adipose tissue inflammation and improves metabolic dysfunctions in mice fed a high-fat diet[J]. Diabetes, 2021, 70(3): 720-732.
DOI URL |
| [44] |
HODGE B A, ZHANG X P, GUTIERREZ-MONREAL M A, et al. MYOD 1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle[J]. eLife, 2019, 8: e43017.
DOI URL |
| [45] | 张勇. 骨髓间充质干细胞成肌分化及其对肌损伤修复的实验研究[D]. 重庆: 第三军医大学, 2002. |
| ZHANG Y. Myogenic differentiation of mesenchymal stem cells in vitro and its graft in repair of muscle injury in mice[D]. Chongqing: Third Military Medical University, 2002. (in Chinese with English abstract) | |
| [46] |
RUDNICKI M A, LE GRAND F, MCKINNELL I, et al. The molecular regulation of muscle stem cell function[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73: 323-331.
DOI URL |
| [47] |
MESHORER E, MISTELI T. Chromatin in pluripotent embryonic stem cells and differentiation[J]. Nature Reviews Molecular Cell Biology, 2006, 7(7): 540-546.
DOI URL |
| [48] |
WANG C, LIU W Y, NIE Y H, et al. Loss of MyoD promotes fate transdifferentiation of myoblasts into brown adipocytes[J]. EBioMedicine, 2017, 16: 212-223.
DOI URL |
| [49] | 金红红. VEGFA和VEGFB调节脂肪组织分化、基因表达和生物学功能的平衡[D]. 长春: 东北师范大学, 2018. |
| JIN H H. VEGFA and VEGFB play balancing roles in adipose differentiation, gene expression and function[D]. Changchun: Northeast Normal University, 2018. (in Chinese with English abstract) | |
| [50] |
PARK J, KIM M, SUN K, et al. VEGF-A-expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-independent metabolic improvements[J]. Diabetes, 2017, 66(6): 1479-1490.
DOI URL |
| [51] | LUDZKI A C, PATAKY M W, CARTEE G D, et al. Acute endurance exercise increases Vegfa mRNA expression in adipose tissue of rats during the early stages of weight gain[J]. Applied Physiology, Nutrition, and Metabolism, 2018, 43(7): 751-754. |
| [1] | 陈凤, 陈虹, 陈兵权, 宝春杰, 周昊亮, 赵鑫, 郭来珍. 核桃无融合生殖核仁内源激素含量变化与基因表达分析[J]. 浙江农业学报, 2025, 37(2): 381-393. |
| [2] | 李俊成, 党芸芝, 孙清明. 高温胁迫下火龙果转录组及热激蛋白响应分析[J]. 浙江农业学报, 2024, 36(5): 1067-1075. |
| [3] | 刘慧春, 许雯婷, 周江华, 张加强, 史小华, 朱开元. 基于牡丹涝害胁迫的转录组分析及SSR引物开发[J]. 浙江农业学报, 2024, 36(3): 544-558. |
| [4] | 何玲钰, 乔贤, 王新越, 李祥龙. 基于转录组与一代测序技术挖掘ADSL基因调控坝上长尾鸡肌苷酸含量[J]. 浙江农业学报, 2024, 36(12): 2676-2686. |
| [5] | 聂红丽, 成琪璐, 孙万春, 马进川, 林辉, 马军伟. 小球藻(Chlorella vulgaris)对泰乐菌素的胁迫响应与耐受性[J]. 浙江农业学报, 2024, 36(10): 2316-2327. |
| [6] | 谢梅琼, 王龙江, 何余容, 吕利华. 玫烟色棒束孢转录组测序及潜在致病相关基因分析[J]. 浙江农业学报, 2023, 35(9): 2169-2180. |
| [7] | 徐红霞, 李晓颖, 葛航, 朱启轩, 陈俊伟. 基于转录组分析内源激素在调控枇杷花发育进程中的作用[J]. 浙江农业学报, 2023, 35(7): 1648-1661. |
| [8] | 罗勤川, 唐伟, 马居奎, 陈晶伟, 杨冬静, 高方园, 孙厚俊, 谢逸萍, 张成玲. 腐皮镰刀菌侵染甘薯的转录组分析[J]. 浙江农业学报, 2023, 35(5): 1097-1107. |
| [9] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
| [10] | 杨清, 刘胜红, 黄二宾, 杜嵘宇, 王芳, 邓佳. 经羧甲基壳聚糖诱导的葡萄柚果实转录组WRKY基因分析及抗性相关基因挖掘[J]. 浙江农业学报, 2023, 35(3): 598-614. |
| [11] | 李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328. |
| [12] | 徐悦, 汪少敏, 谭晓菁, 罗英杰, 常婧一, 邓会, 刘秀丽, 崔维军, 周洁, 吴月燕, 严成其, 王栩鸣. D3基因在抗病防卫反应中的转录调控研究[J]. 浙江农业学报, 2023, 35(12): 2763-2774. |
| [13] | 贺嵘, 赵恺, 贺玉娇, 阿拉腾苏和, 王爱君, 宁静, 韩若霜, 孙贵荣, 张国盛. 基于转录组测序与定量PCR技术挖掘北沙柳株型相关候选基因[J]. 浙江农业学报, 2023, 35(10): 2332-2345. |
| [14] | 叶梅荣, 黄守程, 王晓鹏, 刘爱荣, 崔峰, 康健. 基于Iso-Seq技术的野生马齿苋叶片转录组分析[J]. 浙江农业学报, 2023, 35(1): 67-78. |
| [15] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||