浙江农业学报 ›› 2022, Vol. 34 ›› Issue (4): 695-705.DOI: 10.3969/j.issn.1004-1524.2022.04.05
余艳玲1(
), 罗洪林1, 罗辉2, 冯鹏霏1, 潘传燕1, 宋漫玲1, 肖蕊1, 张永德1,*(
)
收稿日期:2020-10-13
出版日期:2022-04-25
发布日期:2022-04-28
作者简介:*张永德,E-mail: yondar@126.com通讯作者:
张永德
基金资助:
YU Yanling1(
), LUO Honglin1, LUO Hui2, FENG Pengfei1, PAN Chuanyan1, SONG Manling1, XIAO Rui1, ZHANG Yongde1,*(
)
Received:2020-10-13
Online:2022-04-25
Published:2022-04-28
Contact:
ZHANG Yongde
摘要:
为研究卵形鲳鲹生肌调节因子(MRF)在胚胎发育中所发挥的重要作用,对卵形鲳鲹MRF基因家族进行了全基因组鉴定和生物信息学分析,并对其在13个胚胎发育阶段的基因表达进行了定量分析。结果表明:在卵形鲳鲹基因组中共鉴定出5个MRF基因家族成员:MyoD1、MyoD2、Myf5、Myf6和MyoG,分别编码297、263、240、231、250个氨基酸。MRF家族基因存在典型的BASIC与HLH结构域,其中MyoD1、MyoD2与MyoG分别定位于9号、1号与2号染色体,而Myf5与Myf6基因均定位于22号染色体且位于同一基因座。MRF家族基因胚胎定量表达研究表明,MyoG在受精卵到胚体形成期表达量极低,在眼囊、耳囊与心脏跳动期表达量迅速升高,而到晶体出现期表达量又有所降低,推测其可能在眼囊、耳囊与心脏跳动期发挥主要的生肌调节作用,而后期在维持肌肉形态或肌肉发育中仍发挥重要作用。MyoD1、MyoD2、Myf5与Myf6在受精卵到原肠中期表达量较低,而从原肠末期到晶体出现期表达量迅速升高(P<0.05),表明其主要从原肠末期开始发挥生肌调控作用。结果表明,MRF家族成员在胚胎发育过程中发挥重要的作用,但不同的MRF家族成员发挥作用的时间及功能可能不同。
中图分类号:
余艳玲, 罗洪林, 罗辉, 冯鹏霏, 潘传燕, 宋漫玲, 肖蕊, 张永德. 卵形鲳鲹生肌调节因子基因家族的鉴定及在胚胎中的表达[J]. 浙江农业学报, 2022, 34(4): 695-705.
YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705.
| 引物名称Primer | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (5'-3') |
|---|---|---|
| MyoD1 | AACGCCATCAGCTACATCGAG | ACAGGTGGGGCCGTTAAAATC |
| MyoD2 | CGGCCTACTGAAGCCCGAA | CTCATGGTTGCTGCTTTTCTCC |
| Myf5 | AAGAACGAGAGTTTGGGCGA | AGGACGTGGTATATGGGCCT |
| Myf6 | TCAGCTACATCGAGCGGTT | TCCAGTGGTACTCATGACCG |
| MyoG | CTTCTACGAGGGAGGGGACA | GCTGGATGGAGAGGCTTTGT |
| 18S rRNA | GACTCGGGGAGGTAGTGACG | AGATACGCTATTGGAGCTGGAA |
表1 卵形鲳鲹MRF家族基因qRT-PCR引物信息
Table 1 qRT-PCR primers used for T. ovatus MRF family genes
| 引物名称Primer | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (5'-3') |
|---|---|---|
| MyoD1 | AACGCCATCAGCTACATCGAG | ACAGGTGGGGCCGTTAAAATC |
| MyoD2 | CGGCCTACTGAAGCCCGAA | CTCATGGTTGCTGCTTTTCTCC |
| Myf5 | AAGAACGAGAGTTTGGGCGA | AGGACGTGGTATATGGGCCT |
| Myf6 | TCAGCTACATCGAGCGGTT | TCCAGTGGTACTCATGACCG |
| MyoG | CTTCTACGAGGGAGGGGACA | GCTGGATGGAGAGGCTTTGT |
| 18S rRNA | GACTCGGGGAGGTAGTGACG | AGATACGCTATTGGAGCTGGAA |
| 蛋白质名称 Protein name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa | 相对分子质量 Molecular weight/u | 等电点 Pi | 不稳定指数 Instability index | 疏水性均值 GRAVY |
|---|---|---|---|---|---|---|
| ToMyoD1 | EVM0022498 | 297 | 32 206.38 | 5.33 | 71.51 | -0.591 |
| ToMyoD2 | EVM0018159 | 263 | 28 731.83 | 5.87 | 66.57 | -0.634 |
| ToMyf5 | EVM0020882 | 240 | 26 187.14 | 6.23 | 89.12 | -0.594 |
| ToMyf6 | EVM0005068 | 231 | 25 542.27 | 5.93 | 65.35 | -0.849 |
| ToMyoG | EVM0008148 | 250 | 27 421.64 | 6.33 | 65.97 | -0.650 |
表2 卵形鲳鲹MRF家族蛋白质的理化特性
Table 2 Physicochemical properties of MRF family proteins in T. ovatus
| 蛋白质名称 Protein name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa | 相对分子质量 Molecular weight/u | 等电点 Pi | 不稳定指数 Instability index | 疏水性均值 GRAVY |
|---|---|---|---|---|---|---|
| ToMyoD1 | EVM0022498 | 297 | 32 206.38 | 5.33 | 71.51 | -0.591 |
| ToMyoD2 | EVM0018159 | 263 | 28 731.83 | 5.87 | 66.57 | -0.634 |
| ToMyf5 | EVM0020882 | 240 | 26 187.14 | 6.23 | 89.12 | -0.594 |
| ToMyf6 | EVM0005068 | 231 | 25 542.27 | 5.93 | 65.35 | -0.849 |
| ToMyoG | EVM0008148 | 250 | 27 421.64 | 6.33 | 65.97 | -0.650 |
图3 卵形鲳鲹MRF基因家族的结构域及保守基序 a,MRF家族成员的结构域及保守基序位置;b,MRF家族成员的保守基序组成。
Fig.3 Domain and conserved motif of MRF gene family in T.ovatus a, Domain and conserved motif position of MRF family genes; b, Conserved motif composition of MRF family genes.
| 物种 Species | 分类 Taxonomy | 基因名称 Gene name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa |
|---|---|---|---|---|
| 高体鰤 | 鲹形目Carangiformes; | SdMyoD1 | ENSSDUP00000023227 | 298 |
| S. dumerili | 鲹科Carangidae; | SdMyoD2 | ENSSDUP00000025164 | 262 |
| 鰤属Seriola | SdMyf5 | ENSSDUP00000025182 | 240 | |
| SdMyf6 | ENSSDUP00000025208 | 238 | ||
| SdMyoG | ENSSDUP00000002433 | 250 | ||
| 黄尾鰤 | 鲹形目Carangiformes; | SlMyoD1 | ENSSLDP00000028917 | 298 |
| S. lalandi dorsalis | 鲹科Carangidae; | SlMyoD2 | ENSSLDP00000027557 | 263 |
| 鰤属Seriola | SlMyf5 | ENSSLDP00000024335 | 240 | |
| SlMyf6 | ENSSLDP00000024364 | 239 | ||
| SlMyoG | ENSSLDP00000009264 | 250 | ||
| 半滑舌鳎 | 鲽形目Pleuronectiformes; | CsMyoD1 | ENSCSEP00000003405 | 296 |
| C. semilaevis | 舌鳎科Cynoglossidae; | CsMyoD2 | ENSCSEP00000016973 | 214 |
| 舌鳎属Cynoglossus | CsMyf5 | ENSCSEP00000006862 | 246 | |
| CsMyf6 | ENSCSEP00000006878 | 241 | ||
| CsMyoG | ENSCSEP00000007229 | 243 | ||
| 大菱鲆 | 鲽形目Pleuronectiformes; | SmMyoD1 | ENSSMAP00000005978 | 297 |
| S. maximus | 菱鲆科Scophthalmidae; | SmMyoD2 | ENSSMAP00000010597 | 265 |
| 菱鲆属 Scophthalmus | SmMyf5 | ENSSMAP00000007369 | 297 | |
| SmMyf6 | ENSSMAP00000007390 | 269 | ||
| SmMyoG | ENSSMAP00000010312 | 246 |
表3 四种鱼类MRF家族基因信息
Table 3 Information of the MRF family genes in four fish species
| 物种 Species | 分类 Taxonomy | 基因名称 Gene name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa |
|---|---|---|---|---|
| 高体鰤 | 鲹形目Carangiformes; | SdMyoD1 | ENSSDUP00000023227 | 298 |
| S. dumerili | 鲹科Carangidae; | SdMyoD2 | ENSSDUP00000025164 | 262 |
| 鰤属Seriola | SdMyf5 | ENSSDUP00000025182 | 240 | |
| SdMyf6 | ENSSDUP00000025208 | 238 | ||
| SdMyoG | ENSSDUP00000002433 | 250 | ||
| 黄尾鰤 | 鲹形目Carangiformes; | SlMyoD1 | ENSSLDP00000028917 | 298 |
| S. lalandi dorsalis | 鲹科Carangidae; | SlMyoD2 | ENSSLDP00000027557 | 263 |
| 鰤属Seriola | SlMyf5 | ENSSLDP00000024335 | 240 | |
| SlMyf6 | ENSSLDP00000024364 | 239 | ||
| SlMyoG | ENSSLDP00000009264 | 250 | ||
| 半滑舌鳎 | 鲽形目Pleuronectiformes; | CsMyoD1 | ENSCSEP00000003405 | 296 |
| C. semilaevis | 舌鳎科Cynoglossidae; | CsMyoD2 | ENSCSEP00000016973 | 214 |
| 舌鳎属Cynoglossus | CsMyf5 | ENSCSEP00000006862 | 246 | |
| CsMyf6 | ENSCSEP00000006878 | 241 | ||
| CsMyoG | ENSCSEP00000007229 | 243 | ||
| 大菱鲆 | 鲽形目Pleuronectiformes; | SmMyoD1 | ENSSMAP00000005978 | 297 |
| S. maximus | 菱鲆科Scophthalmidae; | SmMyoD2 | ENSSMAP00000010597 | 265 |
| 菱鲆属 Scophthalmus | SmMyf5 | ENSSMAP00000007369 | 297 | |
| SmMyf6 | ENSSMAP00000007390 | 269 | ||
| SmMyoG | ENSSMAP00000010312 | 246 |
图7 MRF家族基因在卵形鲳鲹不同胚胎发育阶段的表达 没有相同小写字母表示差异显著(P<0.05)。
Fig.7 Expression pattern of MRF family genes in different developmental stages of T. ovatus embryos The bars without the same letters meant the significant difference (P<0.05).
| [1] |
RAJESH M, KAMALAM B S, CIJI A, et al. Molecular characterisation and transcriptional regulation of muscle growth regulatory factors myogenin and myogenic factor 6 in the Trans-Himalayan cyprinid fish Schizothorax richardsonii[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 231: 188-200.
DOI URL |
| [2] | ZAMMIT P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Seminars in Cell & Developmental Biology, 2017, 72: 19-32. |
| [3] |
BUCKINGHAM M, RIGBY P W J. Gene regulatory networks and transcriptional mechanisms that control myogenesis[J]. Developmental Cell, 2014, 28(3): 225-238.
DOI URL |
| [4] | HERNÁNDEZ-HERNÁNDEZ J M, GARCÍA-GONZÁLEZ E G, BRUN C E, et al. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration[J]. Seminars in Cell & Developmental Biology, 2017, 72: 10-18. |
| [5] | BENTZINGER C F, WANG Y X, RUDNICKI M A. Building muscle: molecular regulation of myogenesis[J]. Cold Spring Harbor Perspectives in Biology, 2012, 4(2): a008342. |
| [6] |
ZHAO X, YU Q, HUANG L, et al. Patterns of positive selection of the myogenic regulatory factor gene family in vertebrates[J]. PLoS One, 2014, 9(3): e92873.
DOI URL |
| [7] |
ASFOUR H A, ALLOUH M Z, SAID R S. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery[J]. Experimental Biology and Medicine (Maywood, N J), 2018, 243(2): 118-128.
DOI URL |
| [8] |
OZERNYUK N D, MYUGE N S. Evolutional principles of homology in regulatory genes of myogenesis[J]. Biology Bulletin, 2012, 39(4): 316-322.
DOI URL |
| [9] |
MASSARI M E, MURRE C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms[J]. Molecular and Cellular Biology, 2000, 20(2): 429-440.
DOI URL |
| [10] |
FONG A P, YAO Z Z, ZHONG J W, et al. Genetic and epigenetic determinants of neurogenesis and myogenesis[J]. Developmental Cell, 2012, 22(4): 721-735.
DOI URL |
| [11] |
FONG A P, YAO Z Z, ZHONG J W, et al. Conversion of MyoD to a neurogenic factor: binding site specificity determines lineage[J]. Cell Reports, 2015, 10(12): 1937-1946.
DOI URL |
| [12] | 刘宁, 邓雪娟, 王建平, 等. 生肌调节因子及肌生成调控因素研究进展[J]. 中国畜牧兽医, 2015, 42(10): 2644-2649. |
| LIU N, DENG X J, WANG J P, et al. Research progress on regulation factors of myogenic regulatory factors and myogenesis[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(10): 2644-2649. (in Chinese with English abstract) | |
| [13] | 陈洪强, 夏惠, 王进, 等. 葡萄STS基因家族的鉴定与表达分析[J]. 浙江农业学报, 2019, 31(3): 401-407. |
| CHEN H Q, XIA H, WANG J, et al. Identification and expression analysis of STS gene family in grape[J]. Acta Agriculturae Zhejiangensis, 2019, 31(3): 401-407. (in Chinese with English abstract) | |
| [14] |
CHEN X J, ZHANG X Q, HUANG S, et al. Selection of reference genes for quantitative real-time RT-PCR on gene expression in golden pompano (Trachinotus ovatus)[J]. Polish Journal of Veterinary Sciences, 2017, 20(3): 583-594.
DOI URL |
| [15] | FUJITA R, CRIST C. Translational control of the myogenic program in developing, regenerating, and diseased skeletal muscle[J]. Current Topics in Developmental Biology, 2018, 126: 67-98. |
| [16] |
CAMPOS C, VALENTE L M P, CONCEIÇÃO L E C, et al. Incubation temperature induces changes in muscle cellularity and gene expression in Senegalese sole (Solea senegalensis)[J]. Gene, 2013, 516(2): 209-217.
DOI URL |
| [17] |
CAMPOS C, VALENTE L, CONCEIÇÃO L, et al. Temperature affects methylation of the myogenin putative promoter, its expression and muscle cellularity in Senegalese sole larvae[J]. Epigenetics, 2013, 8(4): 389-397.
DOI URL |
| [18] | LIN Y, ZHOU J, LI R, et al. MRF gene family in Schizothorax prenanti: molecular cloning, tissue expression, and mRNA expression in muscle development[J]. Turkish Journal of Fisheries & Aquatic Sciences, 2016, 16(2):461-467. |
| [19] |
CHUROVA M V, MESHCHERYAKOVA O V, RUCHEV M, et al. Age-and stage-dependent variations of muscle-specific gene expression in brown trout Salmo trutta L[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017, 211: 16-21.
DOI URL |
| [20] | 陈敦学. 黄鳝生肌调节因子(MRFs)家族基因的克隆与营养调控及进化分析[D]. 武汉: 华中农业大学, 2015. |
| CHEN D X. Cloning and expression of the MRFs in the monoptepus albus and analysis the evolutionary relationship based on complete mitochondrial DNA[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese with English abstract) | |
| [21] | 沈伟良, 钱宝英, 薛良义. 饥饿和复投喂对大黄鱼(Larimichthys crocea) IGF-Ⅰ、mTOR、MyoD和MHC基因表达的影响[J]. 海洋与湖沼, 2019, 50(4): 894-902. |
| SHEN W L, QIAN B Y, XUE L Y. Effects of starvation and refeeding on the expression of IGF-Ⅰ, mTOR, MyoD, and MHC in large yellow croaker Larimichthys crocea[J]. Oceanologia et Limnologia Sinica, 2019, 50(4): 894-902. (in Chinese with English abstract) | |
| [22] |
ZHANG D C, GUO L, GUO H Y, et al. Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae[J]. Scientific Data, 2019, 6: 216.
DOI URL |
| [23] |
CARVAJAL J J, KEITH A, RIGBY P W J. Global transcriptional regulation of the locus encoding the skeletal muscle determination genes Mrf4 and Myf5[J]. Genes & Development, 2008, 22(2): 265-276.
DOI URL |
| [24] |
AASE-REMEDIOS M E, COLL-LLADÓ C, FERRIER D E K. More than one-to-four via 2R: evidence of an independent amphioxus expansion and two-gene ancestral vertebrate state for MyoD-related myogenic regulatory factors (MRFs)[J]. Molecular Biology and Evolution, 2020, 37(10): 2966-2982.
DOI URL |
| [25] |
OLIANI L C, LIDANI K C F, GABRIEL J E. Differentiated evolutionary relationships among chordates from comparative alignments of multiple sequences of MyoD and MyoG myogenic regulatory factors[J]. Genetics and Molecular Research, 2015, 14(4): 12561-12566.
DOI URL |
| [26] | 冀云燕, 薛霖莉, 曹靖, 等. 小鼠不同生长阶段骨骼肌组织中Myf5的表达[J]. 山西农业科学, 2019, 47(9): 1532-1536. |
| JI Y Y, XUE L L, CAO J, et al. Expression of Myf in skeletal muscle tissues of mice at different growth stages[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(9): 1532-1536. (in Chinese with English abstract) | |
| [27] | 李虹辉, 黄雪晴, 高鹏, 等. MRFs家族基因在翘嘴鳜成体不同组织及器官中的表达特征[J]. 基因组学与应用生物学, 2019, 38(1): 51-55. |
| LI H H, HUANG X Q, GAO P, et al. Expression characteristics of myogenic regulatory factors in different tissues and organs of adult mandarin fish(Siniperca chuatsi)[J]. Genomics and Applied Biology, 2019, 38(1): 51-55. (in Chinese with English abstract) | |
| [28] |
ZHU X, LI Y L, LIU L, et al. Molecular characterization of Myf5 and comparative expression patterns of myogenic regulatory factors in Siniperca chuatsi[J]. Gene Expression Patterns, 2016, 20(1): 1-10.
DOI URL |
| [29] |
GANASSI M, BADODI S, ORTUSTE QUIROGA H P, et al. Myogenin promotes myocyte fusion to balance fibre number and size[J]. Nature Communications, 2018, 9(1): 4232.
DOI URL |
| [30] | 杨建, 佟广香, 郑先虎, 等. 肌间刺缺失突变对斑马鱼胚胎发育过程中肌肉发育的影响[J]. 中国水产科学, 2019, 26(2): 296-303. |
|
YANG J, TONG G X, ZHENG X H, et al. Comparative analysis of embryonic muscle development in wildtype zebrafish and its intermuscular bone deficiency mutant[J]. Journal of Fishery Sciences of China, 2019, 26(2): 296-303. (in Chinese with English abstract)
DOI URL |
|
| [31] |
WEI S, DAI M M, LIU Z T, et al. The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation[J]. Cell Research, 2017, 27(2): 202-225.
DOI URL |
| [32] |
ARNOLD S J, ROBERTSON E J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo[J]. Nature Reviews Molecular Cell Biology, 2009, 10(2): 91-103.
DOI URL |
| [33] | KOJIMA Y, TAM O H, TAM P P L. Timing of developmental events in the early mouse embryo[J]. Seminars in Cell & Developmental Biology, 2014, 34: 65-75. |
| [34] |
SOLNICA-KREZEL L, SEPICH D S. Gastrulation: making and shaping germ layers[J]. Annual Review of Cell and Developmental Biology, 2012, 28: 687-717.
DOI URL |
| [35] |
PENG G D, SUO S B, CHEN J, et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo[J]. Developmental Cell, 2016, 36(6): 681-697.
DOI URL |
| [36] |
OSORNO R, TSAKIRIDIS A, WONG F, et al. The developmental dismantling of pluripotency is reversed by ectopic Oct 4 expression[J]. Development (Cambridge, England), 2012, 139(13): 2288-2298.
DOI URL |
| [37] |
OSBORN D P S, LI K Y, CUTTY S J, et al. Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis[J]. bioRxiv, 2019, DOI: 10.1101/766501.
DOI |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 何昌熙, 郑建波, 马建波, 贾永义, 刘士力, 蒋文枰, 迟美丽, 程顺, 李飞. 翘嘴鲌Runx2b基因的克隆与表达特征分析[J]. 浙江农业学报, 2024, 36(5): 1024-1031. |
| [3] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
| [4] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
| [5] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. |
| [6] | 赵凌吉, 廖香娇, 刘德春, 胡威, 匡柳青, 宋杰, 易明亮, 刘勇, 杨莉. 桃溪蜜柚果实贮藏期有机酸含量变化及相关基因表达分析[J]. 浙江农业学报, 2024, 36(11): 2510-2520. |
| [7] | 吴娇, 龚成宇, 陈超群, 陈红旭, 刘俊宏, 唐文静, 初元琦, 杨文龙, 张瑶, 龚荣高. 不同海拔黄果柑果实有机酸代谢的生态响应[J]. 浙江农业学报, 2023, 35(4): 853-861. |
| [8] | 李虹仪, 周润盛, 梁笑玲, 张楚玥, 吕祺欣, 杨长华, 张茂. 日粮钙磷水平对马岗鹅生长性能及肝脏基因表达的影响[J]. 浙江农业学报, 2023, 35(11): 2533-2542. |
| [9] | 孔凡旺, 张志刚, 李伟, 陈玉峰, 王长江, 郑亚琴, 徐蒙. 桃4CL基因家族鉴定及其在果实色泽发育和采后贮藏冷害中的表达分析[J]. 浙江农业学报, 2023, 35(11): 2600-2610. |
| [10] | 林先玉, 李紫倩, 柏松, 罗军, 屈燕. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析[J]. 浙江农业学报, 2023, 35(11): 2611-2620. |
| [11] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
| [12] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
| [13] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
| [14] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
| [15] | 刘同金, 徐铭婕, 汪精磊, 刘良峰, 崔群香, 包崇来, 王长义. 萝卜ALMT基因家族的鉴定与表达[J]. 浙江农业学报, 2022, 34(4): 746-755. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||