浙江农业学报 ›› 2022, Vol. 34 ›› Issue (7): 1493-1501.DOI: 10.3969/j.issn.1004-1524.2022.07.17
娄飞1(), 付天岭2, 代良羽3, 周凯4, 林大松5, 何腾兵1,2,*(
)
收稿日期:
2021-02-19
出版日期:
2022-07-25
发布日期:
2022-07-26
通讯作者:
何腾兵
作者简介:
* 何腾兵,E-mail: hetengbing@163.com基金资助:
LOU Fei1(), FU Tianling2, DAI Liangyu3, ZHOU Kai4, LIN Dasong5, HE Tengbing1,2,*(
)
Received:
2021-02-19
Online:
2022-07-25
Published:
2022-07-26
Contact:
HE Tengbing
摘要:
为验证土壤调理剂在黔中酸性Cd污染稻田上的应用效果,通过田间小区试验,分析不同土壤调理剂对土壤pH值、总Cd、有效Cd、水稻各部位Cd积累量和水稻产量的影响。结果表明:相对于空白对照,施用石灰和11种调理剂使土壤pH值显著(P<0.05)提高0.25~1.02个单位,土壤有效态Cd含量显著(P<0.05)降低8.90%~22.14%。施用石灰和11种调理剂均可有效降低水稻各部位Cd含量和Cd富集系数,其中,糙米中的Cd含量显著(P<0.05)降低19.09%~85.45%,根、茎、叶、糙米中的Cd富集系数分别显著(P<0.05)降低16.62%~69.90%、18.40%~94.18%、25.82%~78.02%、18.02%~85.46%。石灰和11种调理剂均能显著(P<0.05)降低Cd从叶到穗轴和从稻壳到糙米的转运。应用11种调理剂的经济成本均高于石灰,其中,特贝钙土壤调理剂的经济成本最低,为7 200元·hm-2。综合分析降Cd效果和成本因素,试验条件下,以特贝钙土壤调理剂的效果最佳,可在黔中地区推荐使用。
中图分类号:
娄飞, 付天岭, 代良羽, 周凯, 林大松, 何腾兵. 不同土壤调理剂对黔中地区水稻Cd积累转运和产量的影响[J]. 浙江农业学报, 2022, 34(7): 1493-1501.
LOU Fei, FU Tianling, DAI Liangyu, ZHOU Kai, LIN Dasong, HE Tengbing. Effects of soil conditioners on Cd translocation and accumulation and yield of rice in central Guizhou Province, China[J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1493-1501.
图1 不同处理对土壤pH值、Cd含量和水稻产量的影响 柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.1 Effect of different treatments on soil pH, Cd content and rice yield Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | 穗轴 Rachis | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|
CK-0 | 3.117±0.336 a | 2.346±0.122 a | 0.234±0.005 a | 0.192±0.065 a | 0.063±0.004 a | 0.220±0.007 a |
CK-1 | 3.085±0.012 a | 2.170±0.123 a | 0.062±0.017 fg | 0.028±0.001 d | 0.040±0.004 bc | 0.069±0.002 d |
T1 | 1.036±0.139 fg | 0.140±0.025 f | 0.069±0.006 efg | 0.060±0.025 cd | 0.019±0.007 ef | 0.178±0.010 b |
T2 | 1.381±0.032 ef | 0.720±0.005 e | 0.171±0.005 b | 0.053±0.023 d | 0.022±0.009 def | 0.102±0.004 c |
T3 | 1.564±0.062 de | 0.743±0.027 e | 0.081±0.026 def | 0.041±0.007 d | 0.022±0.001 def | 0.032±0.002 e |
T4 | 0.912±0.006 g | 0.326±0.037 f | 0.084±0.007 def | 0.066±0.036 cd | 0.021±0.004 def | 0.033±0.001 e |
T5 | 0.924±0.023 g | 0.132±0.010 f | 0.072±0.010 defg | 0.047±0.007 d | 0.029±0.012 cdef | 0.065±0.001 d |
T6 | 1.827±0.025 cd | 1.335±0.022 cd | 0.061±0.002 fg | 0.048±0.016 d | 0.015±0.003 ef | 0.084±0.011 cd |
T7 | 2.517±0.264 b | 1.850±0.303 b | 0.135±0.016 c | 0.183±0.017 a | 0.035±0.001 cd | 0.116±0.003 c |
T8 | 1.291±0.009 efg | 0.142±0.028 f | 0.072±0.014 defg | 0.074±0.009 bcd | 0.014±0.002 f | 0.099±0.014 c |
T9 | 1.121±0.031 efg | 0.219±0.015 f | 0.097±0.006 d | 0.124±0.013 b | 0.052±0.012 ab | 0.151±0.032 b |
T10 | 2.554±0.032 b | 1.234±0.056 d | 0.050±0.003 g | 0.191±0.007 a | 0.015±0.003 ef | 0.105±0.003 c |
T11 | 2.060±0.050 c | 1.519±0.073 c | 0.093±0.016 de | 0.107±0.013 bc | 0.031±0.003 cde | 0.048±0.008 e |
表1 不同处理下水稻各部位的Cd含量
Table 1 Effects of different treatments on Cd content in different parts of rice mg·kg-1
处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | 穗轴 Rachis | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|
CK-0 | 3.117±0.336 a | 2.346±0.122 a | 0.234±0.005 a | 0.192±0.065 a | 0.063±0.004 a | 0.220±0.007 a |
CK-1 | 3.085±0.012 a | 2.170±0.123 a | 0.062±0.017 fg | 0.028±0.001 d | 0.040±0.004 bc | 0.069±0.002 d |
T1 | 1.036±0.139 fg | 0.140±0.025 f | 0.069±0.006 efg | 0.060±0.025 cd | 0.019±0.007 ef | 0.178±0.010 b |
T2 | 1.381±0.032 ef | 0.720±0.005 e | 0.171±0.005 b | 0.053±0.023 d | 0.022±0.009 def | 0.102±0.004 c |
T3 | 1.564±0.062 de | 0.743±0.027 e | 0.081±0.026 def | 0.041±0.007 d | 0.022±0.001 def | 0.032±0.002 e |
T4 | 0.912±0.006 g | 0.326±0.037 f | 0.084±0.007 def | 0.066±0.036 cd | 0.021±0.004 def | 0.033±0.001 e |
T5 | 0.924±0.023 g | 0.132±0.010 f | 0.072±0.010 defg | 0.047±0.007 d | 0.029±0.012 cdef | 0.065±0.001 d |
T6 | 1.827±0.025 cd | 1.335±0.022 cd | 0.061±0.002 fg | 0.048±0.016 d | 0.015±0.003 ef | 0.084±0.011 cd |
T7 | 2.517±0.264 b | 1.850±0.303 b | 0.135±0.016 c | 0.183±0.017 a | 0.035±0.001 cd | 0.116±0.003 c |
T8 | 1.291±0.009 efg | 0.142±0.028 f | 0.072±0.014 defg | 0.074±0.009 bcd | 0.014±0.002 f | 0.099±0.014 c |
T9 | 1.121±0.031 efg | 0.219±0.015 f | 0.097±0.006 d | 0.124±0.013 b | 0.052±0.012 ab | 0.151±0.032 b |
T10 | 2.554±0.032 b | 1.234±0.056 d | 0.050±0.003 g | 0.191±0.007 a | 0.015±0.003 ef | 0.105±0.003 c |
T11 | 2.060±0.050 c | 1.519±0.073 c | 0.093±0.016 de | 0.107±0.013 bc | 0.031±0.003 cde | 0.048±0.008 e |
处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | 穗轴 Rachis | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|
CK-0 | 2.419±0.261 a | 1.821±0.094 a | 0.182±0.004 a | 0.149±0.050 a | 0.049±0.003 a | 0.172±0.006 a |
CK-1 | 2.412±0.009 a | 1.696±0.096 ab | 0.048±0.013 ef | 0.022±0.001 d | 0.031±0.003 bc | 0.053±0.001 ef |
T1 | 0.821±0.110 fg | 0.110±0.020 e | 0.054±0.005 ef | 0.047±0.020 cd | 0.015±0.005 ef | 0.141±0.007 b |
T2 | 1.095±0.025 ef | 0.571±0.004 d | 0.135±0.004 b | 0.042±0.018 d | 0.017±0.007 def | 0.081±0.003 d |
T3 | 1.227±0.048 de | 0.583±0.021 d | 0.063±0.020 de | 0.032±0.006 d | 0.017±0.001 def | 0.025±0.002 g |
T4 | 0.728±0.005 g | 0.260±0.029 e | 0.067±0.005 de | 0.053±0.025 cd | 0.017±0.003 def | 0.026±0.001 g |
T5 | 0.741±0.019 g | 0.106±0.008 e | 0.058±0.008 def | 0.038±0.005 d | 0.023±0.007 cdef | 0.052±0.001 ef |
T6 | 1.462±0.020 cd | 1.068±0.017 c | 0.049±0.001 ef | 0.038±0.013 d | 0.011±0.002 f | 0.067±0.009 de |
T7 | 1.736±0.182 bc | 1.486±0.243 b | 0.108±0.013 c | 0.147±0.013 a | 0.028±0.001 cd | 0.089±0.003 d |
T8 | 1.015±0.007 efg | 0.112±0.022 e | 0.057±0.011 def | 0.058±0.007 bcd | 0.011±0.001 f | 0.078±0.011 d |
T9 | 0.875±0.024 fg | 0.171±0.012 e | 0.076±0.005 d | 0.096±0.010 b | 0.041±0.009 ab | 0.118±0.025 c |
T10 | 2.017±0.025 b | 0.974±0.044 c | 0.040±0.002 f | 0.151±0.005 a | 0.012±0.003 f | 0.083±0.002 d |
T11 | 1.665±0.040 c | 1.193±0.057 c | 0.075±0.012 d | 0.087±0.010 bc | 0.026±0.003 cde | 0.038±0.007 fg |
表2 不同处理对水稻各部位Cd富集系数的影响
Table 2 Effects of different treatments on Cd enrichment coefficient in different parts of rice
处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | 穗轴 Rachis | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|
CK-0 | 2.419±0.261 a | 1.821±0.094 a | 0.182±0.004 a | 0.149±0.050 a | 0.049±0.003 a | 0.172±0.006 a |
CK-1 | 2.412±0.009 a | 1.696±0.096 ab | 0.048±0.013 ef | 0.022±0.001 d | 0.031±0.003 bc | 0.053±0.001 ef |
T1 | 0.821±0.110 fg | 0.110±0.020 e | 0.054±0.005 ef | 0.047±0.020 cd | 0.015±0.005 ef | 0.141±0.007 b |
T2 | 1.095±0.025 ef | 0.571±0.004 d | 0.135±0.004 b | 0.042±0.018 d | 0.017±0.007 def | 0.081±0.003 d |
T3 | 1.227±0.048 de | 0.583±0.021 d | 0.063±0.020 de | 0.032±0.006 d | 0.017±0.001 def | 0.025±0.002 g |
T4 | 0.728±0.005 g | 0.260±0.029 e | 0.067±0.005 de | 0.053±0.025 cd | 0.017±0.003 def | 0.026±0.001 g |
T5 | 0.741±0.019 g | 0.106±0.008 e | 0.058±0.008 def | 0.038±0.005 d | 0.023±0.007 cdef | 0.052±0.001 ef |
T6 | 1.462±0.020 cd | 1.068±0.017 c | 0.049±0.001 ef | 0.038±0.013 d | 0.011±0.002 f | 0.067±0.009 de |
T7 | 1.736±0.182 bc | 1.486±0.243 b | 0.108±0.013 c | 0.147±0.013 a | 0.028±0.001 cd | 0.089±0.003 d |
T8 | 1.015±0.007 efg | 0.112±0.022 e | 0.057±0.011 def | 0.058±0.007 bcd | 0.011±0.001 f | 0.078±0.011 d |
T9 | 0.875±0.024 fg | 0.171±0.012 e | 0.076±0.005 d | 0.096±0.010 b | 0.041±0.009 ab | 0.118±0.025 c |
T10 | 2.017±0.025 b | 0.974±0.044 c | 0.040±0.002 f | 0.151±0.005 a | 0.012±0.003 f | 0.083±0.002 d |
T11 | 1.665±0.040 c | 1.193±0.057 c | 0.075±0.012 d | 0.087±0.010 bc | 0.026±0.003 cde | 0.038±0.007 fg |
处理 Treatment | 根-茎 Root-stem | 茎-叶 Stem-leaf | 叶-穗轴 Leaf-rachis | 穗轴-稻壳 Rachis-rice husk | 稻壳-糙米 Rice husk-brown rice |
---|---|---|---|---|---|
CK-0 | 0.842±0.047 a | 0.100±0.007 f | 1.932±0.151 a | 0.199±0.023 f | 3.250±0.140 a |
CK-1 | 0.685±0.055 bc | 0.802±0.003 a | 0.547±0.108 f | 0.123±0.012 f | 1.502±0.058 cde |
T1 | 0.344±0.059 g | 0.500±0.046 c | 0.658±0.069 ef | 0.358±0.036 cde | 1.122±0.038 f |
T2 | 0.522±0.016 de | 0.237±0.006 de | 0.523±0.011 f | 0.270±0.094 def | 1.661±0.154 bc |
T3 | 0.475±0.001 ef | 0.225±0.004 de | 0.873±0.029 de | 0.839±0.014 a | 1.045±0.083 f |
T4 | 0.606±0.039 cd | 0.298±0.027 d | 1.162±0.126 c | 0.552±0.103 b | 1.138±0.054 f |
T5 | 0.311±0.023 g | 0.612±0.037 b | 0.670±0.074 ef | 0.494±0.027 bc | 1.307±0.027 def |
T6 | 0.733±0.010 ab | 0.436±0.057 c | 1.055±0.068 cd | 0.458±0.046 bc | 1.219±0.125 ef |
T7 | 0.636±0.060 bcd | 0.080±0.003 f | 1.544±0.192 b | 0.146±0.008 f | 1.689±0.006 bc |
T8 | 0.377±0.066 fg | 0.500±0.091 c | 0.836±0.126 de | 0.160±0.026 f | 1.971±0.159 b |
T9 | 0.478±0.042 ef | 0.436±0.055 c | 1.282±0.188 bc | 0.406±0.095 bcd | 1.894±0.034 b |
T10 | 0.483±0.028 ef | 0.405±0.028 c | 1.452±0.111 b | 0.478±0.031 bc | 1.572±0.149 cd |
T11 | 0.737±0.017 ab | 0.159±0.019 ef | 1.166±0.060 c | 0.214±0.053 ef | 1.499±0.124 cde |
表3 不同处理对水稻各部位Cd转运系数的影响
Table 3 Effects of different treatments on Cd translocation coefficient in different parts of rice
处理 Treatment | 根-茎 Root-stem | 茎-叶 Stem-leaf | 叶-穗轴 Leaf-rachis | 穗轴-稻壳 Rachis-rice husk | 稻壳-糙米 Rice husk-brown rice |
---|---|---|---|---|---|
CK-0 | 0.842±0.047 a | 0.100±0.007 f | 1.932±0.151 a | 0.199±0.023 f | 3.250±0.140 a |
CK-1 | 0.685±0.055 bc | 0.802±0.003 a | 0.547±0.108 f | 0.123±0.012 f | 1.502±0.058 cde |
T1 | 0.344±0.059 g | 0.500±0.046 c | 0.658±0.069 ef | 0.358±0.036 cde | 1.122±0.038 f |
T2 | 0.522±0.016 de | 0.237±0.006 de | 0.523±0.011 f | 0.270±0.094 def | 1.661±0.154 bc |
T3 | 0.475±0.001 ef | 0.225±0.004 de | 0.873±0.029 de | 0.839±0.014 a | 1.045±0.083 f |
T4 | 0.606±0.039 cd | 0.298±0.027 d | 1.162±0.126 c | 0.552±0.103 b | 1.138±0.054 f |
T5 | 0.311±0.023 g | 0.612±0.037 b | 0.670±0.074 ef | 0.494±0.027 bc | 1.307±0.027 def |
T6 | 0.733±0.010 ab | 0.436±0.057 c | 1.055±0.068 cd | 0.458±0.046 bc | 1.219±0.125 ef |
T7 | 0.636±0.060 bcd | 0.080±0.003 f | 1.544±0.192 b | 0.146±0.008 f | 1.689±0.006 bc |
T8 | 0.377±0.066 fg | 0.500±0.091 c | 0.836±0.126 de | 0.160±0.026 f | 1.971±0.159 b |
T9 | 0.478±0.042 ef | 0.436±0.055 c | 1.282±0.188 bc | 0.406±0.095 bcd | 1.894±0.034 b |
T10 | 0.483±0.028 ef | 0.405±0.028 c | 1.452±0.111 b | 0.478±0.031 bc | 1.572±0.149 cd |
T11 | 0.737±0.017 ab | 0.159±0.019 ef | 1.166±0.060 c | 0.214±0.053 ef | 1.499±0.124 cde |
土壤指标 Soil index | 土壤pH值 Soil pH | 水稻不同部位Cd含量Cd content in different parts of rice | |||||
---|---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 穗轴Rachis | 稻壳Rice husk | 糙米Brown rice | ||
pH | — | -0.099 | 0.010 | -0.446 | -0.595* | -0.361 | -0.469 |
总Cd Total Cd | -0.223 | 0.291 | 0.130 | 0.263 | 0.131 | 0.467 | 0.486 |
有效态Cd Available Cd | -0.573* | 0.260 | 0.361 | 0.564* | 0.272 | 0.567* | 0.393 |
表4 土壤pH值,及总Cd、有效态Cd含量与水稻各部位Cd含量的相关系数(n=52)
Table 4 Correlation coefficients of soil pH, and contents of total Cd and available Cd with Cd content in different parts of rice (n=52)
土壤指标 Soil index | 土壤pH值 Soil pH | 水稻不同部位Cd含量Cd content in different parts of rice | |||||
---|---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 穗轴Rachis | 稻壳Rice husk | 糙米Brown rice | ||
pH | — | -0.099 | 0.010 | -0.446 | -0.595* | -0.361 | -0.469 |
总Cd Total Cd | -0.223 | 0.291 | 0.130 | 0.263 | 0.131 | 0.467 | 0.486 |
有效态Cd Available Cd | -0.573* | 0.260 | 0.361 | 0.564* | 0.272 | 0.567* | 0.393 |
[1] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部, 2014. |
[2] | 代允超, 吕家珑, 曹莹菲, 等. 石灰和有机质对不同性质镉污染土壤中镉有效性的影响[J]. 农业环境科学学报, 2014, 33(3): 514-519. |
DAI Y C, LÜ J L, CAO Y F, et al. Effects of lime and organic amendments on Cd availability in Cd-contaminated soils with different properties[J]. Journal of Agro-Environment Science, 2014, 33(3): 514-519. (in Chinese with English abstract) | |
[3] |
韩科峰, 陈余平, 胡铁军, 等. 硅钙钾镁肥对浙江省酸性水稻土壤的改良效果[J]. 浙江农业学报, 2018, 30(1): 117-122.
DOI |
HAN K F, CHEN Y P, HU T J, et al. Effects of silicon, calcium, potassium and magnesium fertilizer on acid paddy soil improvement in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2018, 30(1): 117-122. (in Chinese with English abstract) | |
[4] | 卓晨, 陈琪, 苏增强, 等. 微生物缓解镉对水稻的毒害研究进展[J]. 应用与环境生物学报, 2020, 26(5): 1154-1160. |
ZHUO C, CHEN Q, SU Z Q, et al. Advances in microbial mitigation of cadmium toxicity in rice[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(5): 1154-1160. (in Chinese with English abstract) | |
[5] | 王建乐, 谢仕斌, 涂国权, 等. 多种材料对铅镉污染农田土壤原位修复效果的研究[J]. 农业环境科学学报, 2019, 38(2): 325-332. |
WANG J L, XIE S B, TU G Q, et al. Comparison of several amendments for in situ remediation of lead- and cadmium-contaminated farmland soil[J]. Journal of Agro-Environment Science, 2019, 38(2): 325-332. (in Chinese with English abstract) | |
[6] | 罗梅, 柏宏成, 陈亭悦, 等. 腐殖酸对土壤铅镉吸附、赋存形态及生物可给性的影响[J]. 中国环境科学, 2020, 40(3): 1191-1202. |
LUO M, BAI H C, CHEN T Y, et al. Effects of humic acids on the adsorption, chemical speciation, and bioaccessibility of soil lead and cadmium[J]. China Environmental Science, 2020, 40(3): 1191-1202. (in Chinese with English abstract) | |
[7] |
温鑫, 谷晋川, 魏春梅, 等. 腐殖酸-海泡石复合钝化剂的制备及其对Cd污染土壤的修复[J]. 化工环保, 2020, 40(5): 518-523.
DOI |
WEN X, GU J C, WEI C M, et al. Preparation of humic acid-sepiolite composite passivator and its remediation effect on Cd contaminated soil[J]. Environmental Protection of Chemical Industry, 2020, 40(5): 518-523. (in Chinese with English abstract)
DOI |
|
[8] | 韦小了, 牟力, 付天岭, 等. 不同钝化剂组合对水稻各部位吸收积累Cd及产量的影响[J]. 土壤学报, 2019, 56(4): 883-894. |
WEI X L, MOU L, FU T L, et al. Effects of passivator on Cd absorption and accumulation and yield of rice as affected by its combination[J]. Acta Pedologica Sinica, 2019, 56(4): 883-894. (in Chinese with English abstract) | |
[9] | 刘玉玲, 朱虎成, 彭鸥, 等. 玉米秸秆生物炭固化细菌对镉砷吸附[J]. 环境科学, 2020, 41(9): 4322-4332. |
LIU Y L, ZHU H C, PENG O, et al. Adsorption of cadmium and arsenic by corn stalk biochar solidified microorganism[J]. Environmental Science, 2020, 41(9): 4322-4332. (in Chinese with English abstract) | |
[10] | 孙向辉, 蔡寒玉, 赵京, 等. 黏土矿物与磷肥复配对潮土中镉钝化效果及麦苗Cd吸收的影响[J]. 灌溉排水学报, 2020, 39(9): 20-25. |
SUN X H, CAI H Y, ZHAO J, et al. The effects of coupling clay and phosphorus fertilization on passivation and uptake of cadmium by wheat seedling in fluvo-aquic soil[J]. Journal of Irrigation and Drainage, 2020, 39(9): 20-25. (in Chinese with English abstract) | |
[11] | 李龙, 李咏梅, 郭照辉, 等. 新型土壤调理剂对镉砷复合污染土壤修复效果的研究[J]. 湖南农业科学, 2019(5): 34-36. |
LI L, LI Y M, GUO Z H, et al. Remediation effects of a novel soil conditioner on cadmium and arsenic contaminated soil in early-season paddy field[J]. Hunan Agricultural Sciences, 2019(5): 34-36. (in Chinese with English abstract) | |
[12] | 朱立军, 李景阳. 碳酸盐岩风化成土作用及其环境效应[M]. 北京: 地质出版社, 2004. |
[13] | 唐启琳, 刘秀明, 刘方, 等. 贵州罗甸北部喀斯特地区耕地土壤镉含量特征与风险评价[J]. 环境科学, 2019, 40(10): 4628-4636. |
TANG Q L, LIU X M, LIU F, et al. Cd accumulation and risk assessment for arable soils in the Karst region of northern Luodian, Guizhou[J]. Environmental Science, 2019, 40(10): 4628-4636. (in Chinese with English abstract) | |
[14] |
CHENG Z Z, XIE X J, YAO W S, et al. Multi-element geochemical mapping in Southern China[J]. Journal of Geochemical Exploration, 2014, 139: 183-192.
DOI URL |
[15] | 杨文钰, 屠乃美. 作物栽培学各论: 南方本[M]. 2版. 北京: 中国农业出版社, 2011. |
[16] | 李心, 林大松, 刘岩, 等. 不同土壤调理剂对镉污染水稻田控镉效应研究[J]. 农业环境科学学报, 2018, 37(7): 1511-1520. |
LI X, LIN D S, LIU Y, et al. Effects of different soil conditioners on cadmium control in cadmium-contaminated paddy fields[J]. Journal of Agro-Environment Science, 2018, 37(7): 1511-1520. (in Chinese with English abstract) | |
[17] | 董霞, 李虹呈, 陈齐, 等. 石灰、硅钙镁改良剂对不同土壤-水稻系统Cd吸收累积的影响[J]. 环境化学, 2019, 38(6): 1298-1306. |
DONG X, LI H C, CHEN Q, et al. Effects of lime, silicon-calcium-magnesium amendments on Cd absorption and accumulation in different soil-rice systems[J]. Environmental Chemistry, 2019, 38(6): 1298-1306. (in Chinese with English abstract) | |
[18] | 李超, 艾绍英, 唐明灯, 等. 矿物调理剂对稻田土壤镉形态和水稻镉吸收的影响[J]. 中国农业科学, 2018, 51(11): 2143-2154. |
LI C, AI S Y, TANG M D, et al. Effects of a mineral conditioner on the forms of Cd in paddy soil and Cd uptake by rice[J]. Scientia Agricultura Sinica, 2018, 51(11): 2143-2154. (in Chinese with English abstract) | |
[19] | 史磊, 郭朝晖, 梁芳, 等. 水分管理和施用石灰对水稻镉吸收与运移的影响[J]. 农业工程学报, 2017, 33(24): 111-117. |
SHI L, GUO Z H, LIANG F, et al. Effects of lime and water management on uptake and translocation of cadmium in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 111-117. (in Chinese with English abstract) | |
[20] | 宋正国, 徐明岗, 丁永祯, 等. 共存阳离子(Ca、Zn、K)对土壤镉有效性的影响[J]. 农业环境科学学报, 2009, 28(3): 485-489. |
SONG Z G, XU M G, DING Y Z, et al. Effect of coexistence cations(Ca, Zn, K)on cadmium bioavailability in lateritic red soils[J]. Journal of Agro-Environment Science, 2009, 28(3): 485-489. (in Chinese with English abstract) | |
[21] | 武琳, 林小兵, 刘晖, 等. 土壤调理剂对Cd污染农田土壤生物因子、有效态Cd及糙米Cd的影响[J]. 环境生态学, 2020, 2(4): 78-84. |
WU L, LIN X B, LIU H, et al. Soil biological factors, available Cd and brown rice Cd under different soil conditioners in Cd-contaminated farmland[J]. Environmental Ecology, 2020, 2(4): 78-84. (in Chinese with English abstract) | |
[22] |
杨发文, 黄衡亮, 宋福如, 等. 有机硅改性复合肥防治水稻镉污染的效果和初步机制[J]. 核农学报, 2020, 34(2): 425-432.
DOI |
YANG F W, HUANG H L, SONG F R, et al. Effect and preliminary mechanism of rice cadmium control by silicone modified compound fertilizers[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(2): 425-432. (in Chinese with English abstract) | |
[23] | 辜娇峰, 周航, 贾润语, 等. 三元土壤调理剂对田间水稻镉砷累积转运的影响[J]. 环境科学, 2018, 39(4): 1910-1917. |
GU J F, ZHOU H, JIA R Y, et al. Effects of a tribasic amendment on cadmium and arsenic accumulation and translocation in rice in a field experiment[J]. Environmental Science, 2018, 39(4): 1910-1917. (in Chinese with English abstract) | |
[24] | 彭鸥, 刘玉玲, 铁柏清, 等. 调理剂及农艺措施对污染稻田中水稻吸收镉的影响[J]. 中国农业科学, 2020, 53(3): 574-584. |
PENG O, LIU Y L, TIE B Q, et al. Effects of conditioning agents and agronomic measures on cadmium uptake by rice in polluted rice fields[J]. Scientia Agricultura Sinica, 2020, 53(3): 574-584. (in Chinese with English abstract) | |
[25] | 彭鸥, 刘玉玲, 铁柏清, 等. 调理剂+淹水措施对Cd污染稻田控Cd效果分析[J]. 环境科学, 2019, 40(9): 4287-4294. |
PENG O, LIU Y L, TIE B Q, et al. Effect of conditioning agent combined with flooding measures on absorption and accumulation of cadmium in rice[J]. Environmental Science, 2019, 40(9): 4287-4294. (in Chinese with English abstract) | |
[26] | LI S S, WANG M, ZHAO Z Q, et al. Adsorption and desorption of Cd by soil amendment: mechanisms and environmental implications in field-soil remediation[J]. Sustainability, 2018, 10(7): 2337. |
[27] |
LIU Y Y, XU Y M, QIN X, et al. Effects of water and organic manure coupling on the immobilization of cadmium by sepiolite[J]. Journal of Soils and Sediments, 2019, 19(2): 798-808.
DOI URL |
[28] | 王建乐, 谢仕斌, 林丹虹, 等. 5种钝化剂对镉砷污染稻田的田间修复效果对比[J]. 环境工程学报, 2019, 13(11): 2691-2700. |
WANG J L, XIE S B, LIN D H, et al. Comparative of the field remediation effect of cadmium and arsenic contaminated paddy by five passivators[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2691-2700. (in Chinese with English abstract) | |
[29] |
潘伯桂, 莫汉乾, 王维, 等. 硅素对水稻幼苗镉积累及抗胁迫应答的调节效应[J]. 应用生态学报, 2021, 32(3): 1096-1104.
DOI |
PAN B G, MO H Q, WANG W, et al. Regulating effects of silicon on Cd-accumulation and stress-resistant responding in rice seedling[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1096-1104. (in Chinese with English abstract) | |
[30] | 贾倩, 胡敏, 张洋洋, 等. 硅钙肥对水稻吸收铅、镉的影响研究[J]. 环境科学与技术, 2017, 40(6): 24-30. |
JIA Q, HU M, ZHANG Y Y, et al. Effect of silicon-calcium fertilizer on Pb and Cd absorption by rice in heavy metal polluted farmland[J]. Environmental Science & Technology, 2017, 40(6): 24-30. (in Chinese with English abstract) | |
[31] | 罗遥, 陈效民, 刘巍, 等. 有机肥添加对镉污染稻田土壤养分及镉有效性的影响[J]. 土壤通报, 2019, 50(6): 1471-1477. |
LUO Y, CHEN X M, LIU W, et al. Effects of organic fertilizer addition on soil nutrients and cadmium availability in cadmium-contaminated paddy soil[J]. Chinese Journal of Soil Science, 2019, 50(6): 1471-1477. (in Chinese with English abstract) | |
[32] | 吴霄霄, 曹榕彬, 米长虹, 等. 重金属污染农田原位钝化修复材料研究进展[J]. 农业资源与环境学报, 2019, 36(3): 253-263. |
WU X X, CAO R B, MI C H, et al. Research progress of in situ passivated remedial materials for heavy metal contaminated soil[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 253-263. (in Chinese with English abstract) | |
[33] |
APPEL C, MA L N. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils[J]. Journal of Environmental Quality, 2002, 31(2): 581-589.
DOI URL |
[34] | 陈佳, 赵秀兰. 水分管理与施硅对水稻根表铁膜及砷镉吸收的影响[J]. 环境科学, 2021, 42(3): 1535-1544. |
CHEN J, ZHAO X L. Effects of water management and silicon application on iron plaque formation and uptake of arsenic and cadmium by rice[J]. Environmental Science, 2021, 42(3): 1535-1544. (in Chinese with English abstract) | |
[35] | 孙岩, 韩颖, 李军, 等. 硅对镉胁迫下水稻生物量及镉的化学形态的影响[J]. 西南农业学报, 2013, 26(3): 1240-1244. |
SUN Y, HAN Y, LI J, et al. Effect of Si on rice biomass and chemical species of Cd under Cd stress[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(3): 1240-1244. (in Chinese with English abstract) | |
[36] | 李小方. 重金属污染农田安全利用: 目标、可选技术与可推广技术[J]. 中国生态农业学报(中英文), 2020, 28(6): 860-866. |
LI X F. Safe utilization of heavy metal-contaminated farmland: goals, technical options, and extendable technology[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 860-866. (in Chinese with English abstract) | |
[37] | 丁军, 唐熙雯. 综合降镉技术在重金属轻度污染农田中对稻米镉含量的影响[J]. 中国农学通报, 2020, 36(5): 74-77. |
DING J, TANG X W. Effect of comprehensive cadmium reduction technology on cadmium content in paddy fields with light heavy metal pollution[J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 74-77. (in Chinese with English abstract) |
[1] | 黄东慧, 钟鹏, 王建丽, 胡云龙, 王志刚. 环境条件对Bacillus altitudinis LZP02生物膜形成的影响[J]. 浙江农业学报, 2022, 34(7): 1466-1473. |
[2] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
[3] | 邰粤鹰, 何腾兵, 陈小然, 张旺, 黄啸云, 刘鸿雁, 高珍冉. 叶面喷施阻控剂对常淹水稻田水稻吸收转运镉的影响[J]. 浙江农业学报, 2022, 34(6): 1248-1257. |
[4] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[5] | 叶迎, 赵考诚, 马军, 祝轲, 庄恒扬. 播期和施氮量组合对水稻南粳9108产量和氮素利用的影响[J]. 浙江农业学报, 2022, 34(5): 879-886. |
[6] | 王灿, 付天岭, 龚思同, 娄飞, 周凯, 代良羽, 刘静, 林大松, 何腾兵. 叶面阻控剂对黔中喀斯特地区水稻Cd富集特征的影响[J]. 浙江农业学报, 2021, 33(9): 1710-1719. |
[7] | 陈闺, 周杰文, 李海平, 张发明, 李春顺, 柳立, 张毅. 土壤调理剂施用对植烟酸化土壤pH值和烤烟根系特性的影响[J]. 浙江农业学报, 2021, 33(7): 1275-1282. |
[8] | 张惠云, 秦丽杰, 贾利. 吉林省水稻生产的碳足迹与水足迹时空变化特征[J]. 浙江农业学报, 2021, 33(6): 974-983. |
[9] | 朱芸, 郭彬, 林义成, 傅庆林, 刘琛, 李凝玉, 李华. 新型矿基土壤调理剂对滨海盐土理化性状和水稻产量的影响[J]. 浙江农业学报, 2021, 33(5): 885-892. |
[10] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[11] | 厉宝仙, 王保君, 怀燕, 沈亚强, 张红梅, 程旺大. 水稻-红鳌螯虾共作对稻田土壤养分、碳库与稻米品质的影响[J]. 浙江农业学报, 2021, 33(4): 688-696. |
[12] | 刘俊, 朱德泉, 于从羊, 薛康, 张顺, 廖娟. 舀勺型孔轮式水稻精量排种器设计与试验[J]. 浙江农业学报, 2021, 33(4): 739-752. |
[13] | 陈丹, 汤翠凤, 董超, 甘树仙, 李俊, 阿新祥, 张斐斐, 杨雅云, 牛赛赛, 戴陆园. 云南软米地方品种籽粒淀粉品质特性研究[J]. 浙江农业学报, 2021, 33(2): 203-214. |
[14] | 邹文雄, 吴伟, 关亚静, 曹栋栋, 卞晓波, 施德云, 丁丽玲. 水稻种子休眠调控技术研究进展[J]. 浙江农业学报, 2021, 33(2): 369-379. |
[15] | 郑雯, 贾良权, 祁亨年, 王瑞琴, 赵光武, 袁俊. 基于TDLAS技术测定水稻种子呼吸的初步研究[J]. 浙江农业学报, 2021, 33(11): 2155-2163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||