浙江农业学报 ›› 2023, Vol. 35 ›› Issue (9): 2202-2211.DOI: 10.3969/j.issn.1004-1524.20220998
韩静(), 朱依婷, 郑驰, 马莉红, 张亚男, 曾秋艳, 刘书亮, 陈姝娟(
)
收稿日期:
2022-07-05
出版日期:
2023-09-25
发布日期:
2023-10-09
作者简介:
韩静(1998—),女,四川眉山人,硕士研究生,研究方向为食品安全快速检测。E-mail:813376771@qq.com
通讯作者:
陈姝娟,E-mail:基金资助:
HAN Jing(), ZHU Yiting, ZHENG Chi, MA Lihong, ZHANG Yanan, ZENG Qiuyan, LIU Shuliang, CHEN Shujuan(
)
Received:
2022-07-05
Online:
2023-09-25
Published:
2023-10-09
摘要:
以KOH为活化剂,优化毛豆壳活化生物炭(A-SBC)的制备条件,研究不同体系对A-SBC吸附甲萘威的影响,分析A-SBC对甲萘威的吸附动力学、热力学特性,以期为实现毛豆壳的资源化利用和控制甲萘威农药的环境污染提供理论依据和技术支撑。结果表明:将毛豆壳在700 ℃、1 h预碳化后,与KOH按1∶2.0的质量比混合,在750 ℃、1.5 h的条件下活化,获得的A-SBC对甲萘威的吸附性能最佳,吸附率达89.63%,吸附容量为113.28 mg·g-1。与未经活化的毛豆壳生物炭相比,A-SBC的表面凹陷,孔隙密集,有机官能团减少。当体系pH为2.0~6.5时,A-SBC对甲萘威的吸附良好,并在pH值为5.5时吸附容量最大;A-SBC对甲萘威的吸附随温度升高而增多,在离子强度(NaCl)为0.01 mol·L-1时吸附容量最大。A-SBC对甲萘威的吸附更符合准二级动力学模型,等温吸附曲线更适于用朗缪尔(Langmuir)方程拟合,说明其以化学吸附为主。吸附热力学结果表明,A-SBC对甲萘威的吸附由疏水作用主导,是自发的吸热反应。A-SBC对甲萘威的吸附性能优良,可为去除水体环境中的甲萘威污染提供新途径与新材料。
中图分类号:
韩静, 朱依婷, 郑驰, 马莉红, 张亚男, 曾秋艳, 刘书亮, 陈姝娟. 毛豆壳生物炭的活化及其对甲萘威的吸附性能[J]. 浙江农业学报, 2023, 35(9): 2202-2211.
HAN Jing, ZHU Yiting, ZHENG Chi, MA Lihong, ZHANG Yanan, ZENG Qiuyan, LIU Shuliang, CHEN Shujuan. Activation of soybean shell biochar and its adsorption performance for carbaryl[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2202-2211.
图1 不同生物炭对甲萘威吸附的影响 S-500、S-600、S-700分别为在500、600、700 ℃制备的毛豆壳生物炭。A-SBC为S-700活化后的产物,即毛豆壳活化生物炭。柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.1 Effect of biochars on carbary adsorption S-500, S-600, S-700 represent soybean shell biochars produced at 500, 600, 700 ℃, respectively. A-SBC represents the activated biochar from S-700, namely, the activated soybeam shell biochar. Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
图3 毛豆壳生物炭活化前(a、b)和活化后(c、d)的扫描电镜图
Fig.3 Scanning electron microscope (SEM) images of soybean shell biochar before activation (a, b) and after activation (c, d)
图4 毛豆壳生物炭活化前后的红外谱图 A-SBC*为最佳活化条件下制备的毛豆壳活化生物炭。
Fig.4 Infrared spectra of soybean shell biochar before and after activation A-SBC* represents the activated soybeam shell biochar produced under the optimized activation conditions.
图5 不同体系条件下A-SBC对甲萘威的吸附容量(Q)和吸附率(R) 吸附容量柱(点)上无相同字母的表示差异显著(P<0.05)。
Fig.5 Adsorption capacity (Q) and adsorption rate (R) of carbaryl by A-SBC under different system conditions Absorption capacity columns (dots) marked without the same letter indicate significant difference at P<0.05.
吸附剂 Adsorbent | 准一级动力学模型Quasi first-order dynamic model | 准二级动力学模型Quasi second-order dynamic model | ||||
---|---|---|---|---|---|---|
K1/min-1 | qe/(mg·g-1) | R2 | K2/(g·mg-1·min-1) | qe/(mg·g-1) | R2 | |
A-SBC | 0.123 5 | 115.10 | 0.904 | 2.5×10-3 | 118.18 | 0.974 |
表1 A-SBC吸附甲萘威的动力学模型参数
Table 1 Adsorption kinetics parameters of carbaryl by A-SBC
吸附剂 Adsorbent | 准一级动力学模型Quasi first-order dynamic model | 准二级动力学模型Quasi second-order dynamic model | ||||
---|---|---|---|---|---|---|
K1/min-1 | qe/(mg·g-1) | R2 | K2/(g·mg-1·min-1) | qe/(mg·g-1) | R2 | |
A-SBC | 0.123 5 | 115.10 | 0.904 | 2.5×10-3 | 118.18 | 0.974 |
θ/℃ | 朗缪尔方程Langmuir equation | 弗罗因德利希方程Freundlich equation | ||||
---|---|---|---|---|---|---|
qm/(mg·g-1) | KL/(L·mg-1) | R2 | KF/[mg·g-1·(L·mg-1)1/n] | 1/n | R2 | |
25 | 246.61 | 0.563 | 0.951 | 83.61 | 0.524 | 0.947 |
35 | 255.86 | 0.701 | 0.968 | 96.65 | 0.520 | 0.952 |
45 | 279.16 | 1.028 | 0.940 | 128.84 | 0.475 | 0.834 |
表2 A-SBC对甲萘威的等温吸附平衡参数
Table 2 Adsorption equilibrium isothermal parameters of carbaryl by A-SBC
θ/℃ | 朗缪尔方程Langmuir equation | 弗罗因德利希方程Freundlich equation | ||||
---|---|---|---|---|---|---|
qm/(mg·g-1) | KL/(L·mg-1) | R2 | KF/[mg·g-1·(L·mg-1)1/n] | 1/n | R2 | |
25 | 246.61 | 0.563 | 0.951 | 83.61 | 0.524 | 0.947 |
35 | 255.86 | 0.701 | 0.968 | 96.65 | 0.520 | 0.952 |
45 | 279.16 | 1.028 | 0.940 | 128.84 | 0.475 | 0.834 |
θ/℃ | ΔG0/(kJ· mol-1) | ΔH0/(kJ· mol-1) | ΔS0/(J· mol-1·K-1) |
---|---|---|---|
25 | -23.671 | 27.471 | 172.695 |
35 | -25.386 | 27.471 | 172.695 |
45 | -27.445 | 27.471 | 172.695 |
表3 A-SBC对甲萘威的吸附热力学参数
Table 3 Thermodynamic parameters of adsorption of carbaryl by A-SBC
θ/℃ | ΔG0/(kJ· mol-1) | ΔH0/(kJ· mol-1) | ΔS0/(J· mol-1·K-1) |
---|---|---|---|
25 | -23.671 | 27.471 | 172.695 |
35 | -25.386 | 27.471 | 172.695 |
45 | -27.445 | 27.471 | 172.695 |
[1] | 郭雪琰, 付大友, 袁东, 等. 西维因荧光分子印迹聚合物的制备及性能表征[J]. 分析试验室, 2017, 36(12): 1439-1443. |
GUO X Y, FU D Y, YUAN D, et al. Study on preparation and characterization of carbaryl fluorescent molecularly imprintied polymers[J]. Chinese Journal of Analysis Laboratory, 2017, 36(12): 1439-1443. (in Chinese with English abstract) | |
[2] | 帅丽芳, 赵勇, 银涛, 等. 西维因人工抗原的合成与鉴定[J]. 山西农业大学学报(自然科学版), 2017, 37(10): 749-753. |
SHUAI L F, ZHAO Y, YIN T, et al. Synthesis and identification of artificial antigen for carbary[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2017, 37(10): 749-753. (in Chinese with English abstract) | |
[3] | SAXENA P N, GUPTA S K, MURTHY R C. Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida: a possible mechanism[J]. Ecotoxicology and Environmental Safety, 2014, 100: 218-225. |
[4] | 孙航. 生物炭对西北黄土中农药敌草隆和西维因吸附行为影响的研究[D]. 兰州: 兰州交通大学, 2017. |
SUN H. Effect of biochar on the adsorption behavior of diuron and carbaryl onto loess soil[D]. Lanzhou: Lanzhou Jiatong University, 2017. (in Chinese with English abstract) | |
[5] | 董顺玲, 胡家炽, 何志强, 等. 中药材中氨基甲酸酯类农药残留量的反相高效液相色谱法[J]. 药物分析杂志, 2002, 22(3): 178-182. |
DONG S L, HU J C, HE Z Q, et al. RP-HPLC determination of residual amount of aldicarb, carbofuran and carbaryl in Chinese crude drugs[J]. Chinese Journal of Pharmaceutical Analysis, 2002, 22(3): 178-182. (in Chinese with English abstract) | |
[6] | XIE T, REDDY K R, WANG C W, et al. Characteristics and applications of biochar for environmental remediation: a review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(9): 939-969. |
[7] | LUO Z R, YAO B, YANG X, et al. Novel insights into the adsorption of organic contaminants by biochar: a review[J]. Chemosphere, 2022, 287(Pt 2): 132113. |
[8] | TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85. |
[9] | FERNANDES J O, BERNARDINO C A R, MAHLER C F, et al. Biochar generated from agro-industry sugarcane residue by low temperature pyrolysis utilized as an adsorption agent for the removal of thiamethoxam pesticide in wastewater[J]. Water, Air, & Soil Pollution, 2021, 232(2): 67. |
[10] | VIJETHA P, SUBBAIAH T, VINEET A, et al. Torrefied and unmodified capsicum annuam biochar for the removal of synthetic hazardous pesticide (carbofuran) from watershed[J]. Biointerface Research in Applied Chemistry, 2019, 9(5): 4384-4393. |
[11] | BAHARUM N A, NASIR H M, ISHAK M Y, et al. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar[J]. Arabian Journal of Chemistry, 2020, 13(7): 6106-6121. |
[12] | AZARGOHAR R, DALAI A K. Steam and KOH activation of biochar: experimental and modeling studies[J]. Microporous and Mesoporous Materials, 2008, 110(2/3): 413-421. |
[13] | TAN G C, SUN W L, XU Y R, et al. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution[J]. Bioresource Technology, 2016, 211: 727-735. |
[14] | 李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报, 2012, 31(11): 2277-2283. |
LI L, LU Y C, LIU Y, et al. Adsorption mechanisms of cadmium(Ⅱ)on biochars derived from corn straw[J]. Journal of Agro-Environment Science, 2012, 31(11): 2277-2283. (in Chinese with English abstract) | |
[15] | 李霞, 陈思莉, 卓琼芳, 等. 热改性活性炭吸附甲萘威的性能[J]. 安全与环境学报, 2017, 17(5): 1915-1921. |
LI X, CHEN S L, ZHUO Q F, et al. On the adsorptive performance of carbaryl onto the activated carbons with the thermal treatment[J]. Journal of Safety and Environment, 2017, 17(5): 1915-1921. (in Chinese with English abstract) | |
[16] | 黄玉芬, 魏岚, 李翔, 等. 不同裂解温度稻壳生物炭对阿特拉津的吸附行为及机制[J]. 环境科学研究, 2020, 33(8): 1919-1928. |
HUANG Y F, WEI L, LI X, et al. Adsorption of atrazine by biochar obtained from pyrolysis of rice husk at different temperatures[J]. Research of Environmental Sciences, 2020, 33(8): 1919-1928. (in Chinese with English abstract) | |
[17] | WANG L L, WANG X F, ZOU B, et al. Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis[J]. Bioresource Technology, 2011, 102(17): 8220-8224. |
[18] | HAN X Y, CHU L, LIU S M, et al. Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar[J]. BioResources, 2015, 10(2): 2836-2849. |
[19] | QIU Z P, WANG Y S, BI X, et al. Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors[J]. Journal of Power Sources, 2018, 376: 82-90. |
[20] | 刘慧冉, 谢昶琰, 康亚龙, 等. 不同裂解温度对梨树枝条生物炭理化性质的影响[J]. 南京农业大学学报, 2019, 42(5): 895-902. |
LIU H R, XIE C Y, KANG Y L, et al. Influence of different pyrolysis temperatures on physical and chemical properties of biochar derived from pear branches[J]. Journal of Nanjing Agricultural University, 2019, 42(5): 895-902. (in Chinese with English abstract) | |
[21] | VEKSHA A, ZAMAN W, LAYZELL D B, et al. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis[J]. Bioresource Technology, 2014, 171: 88-94. |
[22] | ZHANG Y, XU J, LI B, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by KOH-modified peanut shell-derived biochar[J]. Biomass Conversion and Biorefinery, 2021: 1-15. |
[23] | 杨雅芃, 张超兰, 陈俊先, 等. KOH活化制备蚕沙基生物炭及其对镉的吸附特性[J]. 环境工程学报, 2021, 15(11): 3504-3514. |
YANG Y P, ZHANG C L, CHEN J X, et al. Study on adsorption and removal of cadmium by KOH activated silkworm excrement-based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(11): 3504-3514. (in Chinese with English abstract) | |
[24] | ZHANG X F, ELSAYED I, SONG X Z, et al. Microporous carbon nanoflakes derived from biomass cork waste for CO2 capture[J]. Science of the Total Environment, 2020, 748: 142465. |
[25] | WANG J, LIU T L, HUANG Q X, et al. Production and characterization of high quality activated carbon from oily sludge[J]. Fuel Processing Technology, 2017, 162: 13-19. |
[26] | ZHANG B H, REN J W, GU X, et al. A method for the preparation of activated carbon based carbon/carbonaceous composites with controllable surface functionality[J]. Journal of Porous Materials, 2011, 18(6): 743-750. |
[27] | 韩磊, 杨儒, 刘国强, 等. 汉麻杆基活性炭表面织构与储氢性能的研究[J]. 无机化学学报, 2009, 25(12): 2097-2104. |
HAN L, YANG R, LIU G Q, et al. Texture and hydrogen adsorption of activated carbons based on hemp stems[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(12): 2097-2104. (in Chinese with English abstract) | |
[28] | SUN L, CHEN D M, WAN S G, et al. Adsorption studies of dimetridazole and metronidazole onto biochar derived from sugarcane bagasse: kinetic, equilibrium, and mechanisms[J]. Journal of Polymers and the Environment, 2018, 26(2): 765-777. |
[29] | XI X G, YAN J L, QUAN G X, et al. Removal of the pesticide pymetrozine from aqueous solution by biochar produced from brewer’s spent grain at different pyrolytic temperatures[J]. BioResources, 2014, 9(4): 7696-7709. |
[30] | 张晓明, 周志强, 徐彦军, 等. 甲萘威在水环境中的水解及其影响因素[J]. 环境化学, 2006, 25(5): 580-583. |
ZHANG X M, ZHOU Z Q, XU Y J, et al. Hydrolysis and the influencing factors of carbaryl in water[J]. Environmental Chemistry, 2006, 25(5): 580-583. (in Chinese with English abstract) | |
[31] | MA Y F, QI Y, LU T M, et al. Highly efficient removal of imidacloprid using potassium hydroxide activated magnetic microporous loofah sponge biochar[J]. Science of the Total Environment, 2021, 765: 144253. |
[32] | BATOOL S, ALI SHAH A, ABU BAKAR A F, et al. Removal of organochlorine pesticides using zerovalent iron supported on biochar nanocomposite from Nephelium lappaceum(Rambutan) fruit peel waste[J]. Chemosphere, 2022, 289: 133011. |
[33] | YANG J J, SUN H W, LIU Y C, et al. The sorption of tebuconazole and linuron from an aqueous environment with a modified sludge-based biochar: effect, mechanisms, and its persistent free radicals study[J]. Journal of Chemistry, 2021, 2021: 1-15. |
[34] | ZHAO Y N, DU D D, LI Q N, et al. Dummy-surface molecularly imprinted polymers based on magnetic graphene oxide for selective extraction and quantification of pyrethroids pesticides in fruit juices[J]. Microchemical Journal, 2020, 159: 105411. |
[35] | 张良静. 生物炭对典型三嗪类和氨基甲酸酯类农药的吸附特征研究[D]. 北京: 中国地质大学(北京), 2019. |
ZHANG L J. Study on sorption characterristics of typical S-triazine and carbamate pesticides to biochars[D]. Beijing: China University of Geosciences, 2019. (in Chinese with English abstract) | |
[36] | ZHU Q Y, MOGGRIDGE G D, D’AGOSTINO C. Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500: part 2: kinetics and diffusion analysis[J]. Chemical Engineering Journal, 2016, 306: 1223-1233. |
[37] | ARAMI M, LIMAEE N Y, MAHMOODI N M, et al. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull[J]. Journal of Hazardous Materials, 2006, 135(1/2/3): 171-179. |
[38] | ZHU S, LIU Y G, LIU S B, et al. Adsorption of emerging contaminant metformin using graphene oxide[J]. Chemosphere, 2017, 179: 20-28. |
[39] | GUO Q W, QI Q, XUE Z H, et al. Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk (Maydis stigma)[J]. Carbohydrate Polymers, 2018, 198: 581-588. |
[40] | 赵璐璐. 改性生物炭对水中阿特拉津的吸附行为及应用研究[D]. 哈尔滨: 东北农业大学, 2017. |
ZHAO L L. Adsorption behavior and applied research of atrazine on modified biochars[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese with English abstract) | |
[41] | LLADÓ J, LAO-LUQUE C, RUIZ B, et al. Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics[J]. Process Safety and Environmental Protection, 2015, 95: 51-59. |
[42] | PENG X M, HU F P, HUANG J L, et al. Preparation of a graphitic ordered mesoporous carbon and its application in sorption of ciprofloxacin: kinetics, isotherm, adsorption mechanisms studies[J]. Microporous and Mesoporous Materials, 2016, 228: 196-206. |
[1] | 徐洋, 任奕林, 王浩杰, 黄秋航, 邢博源, 曹红亮. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价[J]. 浙江农业学报, 2023, 35(4): 893-902. |
[2] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
[3] | 袁太艳, 严正娟, 黄成东, 张志业, 王辛龙. 聚磷酸铵在紫色土壤中的吸附-解吸特征[J]. 浙江农业学报, 2023, 35(2): 403-416. |
[4] | 季洋洋, 张鹏, 刘小强, 董贞汝, 张伟, 樊霆. 纳米银胁迫下黄曲霉(Aspergillus flavus)TL-F3的氧化应激响应及其吸附能力[J]. 浙江农业学报, 2023, 35(1): 128-137. |
[5] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[6] | 崔文芳, 陈静, 鲁富宽, 秦丽, 秦德志, 王利平, 高聚林. 生物炭结合氮肥减量对玉米产量和氮效率的影响[J]. 浙江农业学报, 2022, 34(2): 248-254. |
[7] | 林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699. |
[8] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[9] | 杨依彬, 陈小娟, 邓兰生, 林净净, 程凤娴, 胡克纬, 张承林, 涂攀峰. 聚磷酸铵对砖红壤和石灰性土壤上磷素吸附解吸行为的影响[J]. 浙江农业学报, 2021, 33(4): 697-703. |
[10] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[11] | 张春荣, 单凌燕, 郭钤, 许振岚, 何红梅, 吴珉, 赵学平. 异恶唑草酮在环境介质中的挥发、土壤吸附和水-沉积物系统降解特性[J]. 浙江农业学报, 2019, 31(6): 930-937. |
[12] | 周文志, 孙向阳, 李素艳, 张乐. 生物有机材料对滨海盐碱土的改良效果[J]. 浙江农业学报, 2019, 31(4): 607-615. |
[13] | 黄惠群, 蔡文昌, 张健瑜, 李灿, 曾和平. 炭化温度对牛粪生物炭结构性质的影响[J]. 浙江农业学报, 2018, 30(9): 1561-1568. |
[14] | 索桂芳, 吕豪豪, 汪玉瑛, 刘玉学, 何莉莉, 杨生茂. 炭基微生物肥料制备工艺及性质分析[J]. 浙江农业学报, 2018, 30(7): 1218-1228. |
[15] | 王代懿, 张丰松, 潘娟, 刘登璐, 苟体忠. 水稻秸秆生物炭对雄烯二酮在土壤中吸附与降解行为的影响[J]. 浙江农业学报, 2018, 30(4): 632-639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||