Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (1): 90-102.DOI: 10.3969/j.issn.1004-1524.20240082
• Horticultural Science • Previous Articles Next Articles
LI Xing(), LIU Yan, GAO Jianzhou*(
)
Received:
2024-01-18
Online:
2025-01-25
Published:
2025-02-14
引物名称 Primer name | 上游引物序列 Forward primer sequence(5’→3’) | 下游引物序列 Reverse primer sequence(5’→3’) | 退火温度 Annealing temperature/℃ | 用途 Function |
---|---|---|---|---|
F01 | ATGCCTAGAAATAGGGATCC | TTATCTTCTTCCGCCTGATC | 52 | 基因克隆Gene cloning |
F02 | AGAGTCCACGCCCAACTGCT | GCCACTGGTGAGCCAAGATTA | 57 | 实时荧光定量PCR qRT-PCR |
A01 | CATGGTATAGTCAGCAACTGGGATG | GGCTTTGGGGTTAAGGGGTG | 57 | 实时荧光定量PCR qRT-PCR |
Table 1 Primers used in this study
引物名称 Primer name | 上游引物序列 Forward primer sequence(5’→3’) | 下游引物序列 Reverse primer sequence(5’→3’) | 退火温度 Annealing temperature/℃ | 用途 Function |
---|---|---|---|---|
F01 | ATGCCTAGAAATAGGGATCC | TTATCTTCTTCCGCCTGATC | 52 | 基因克隆Gene cloning |
F02 | AGAGTCCACGCCCAACTGCT | GCCACTGGTGAGCCAAGATTA | 57 | 实时荧光定量PCR qRT-PCR |
A01 | CATGGTATAGTCAGCAACTGGGATG | GGCTTTGGGGTTAAGGGGTG | 57 | 实时荧光定量PCR qRT-PCR |
Fig.1 Cloning of FT genes from three species of Paeonia M, DL 2 000 marker; PaFT, PlFT1, and PvFT represent PCR products of the FT genes of P. anomala, P. lactiflora ‘Fenghuangnipan’ and P. veitchii, respectively.
Fig.2 Nucleotide sequence alignment of FT genes in three species of Paeonia and PlFT gene in P. lactiflora ‘Dafugui’ Black blocks, Similarity=100%; Red blocks, Similarity≥75%; Blue blocks, Similarity≥50%; Red boxes represent differential base sites.
Fig.3 Multiple sequence alignment of FT amino acid sequence from three species of Paeonia with FT proteins from other plants Black blocks, Amino acids with similarity=100%; Red blocks, Amino acids with similarity ≥ 75%; Blue blocks, Amino acids with similarity ≥ 50%. CmFT, Castanea mollissima, No.OL411873.1; CsFT1, Camellia japonica, No.AB741571.1; FcFT, Fagus crenata, No.AB775532.1; HmFT, Hydrangea macrophylla, No.MF374627.1; PnFT2b, Populus nigra, No.AB161108.1; PsFT, P. suffruticosa, No.KF113360.1; ZjFT, Ziziphus jujuba, No.KR8728441.
基因 Gene | 基因ID Gene ID | 分子量 Molecular mass/u | 总原子个数 Total number of atoms | 等电点 Isoelectric point | 分子式 Molecular formula | 亲水性总平均值 Total average hydrophilicity | 不稳定指数 Instability index |
---|---|---|---|---|---|---|---|
PaFT | OQ079526 | 19 599.15 | 2 729 | 8.42 | C868H1347N253O255S6 | -0.41 | 37.16 |
PlFT1 | OQ079527 | 19 613.17 | 2 732 | 8.42 | C869H1349N253O255S6 | -0.394 | 37.22 |
PvFT | OQ079529 | 19 599.15 | 2 729 | 8.42 | C868H1347N253O255S6 | -0.41 | 37.16 |
Table 2 Physical and chemical properties of FT proteins in three species of Paeonia
基因 Gene | 基因ID Gene ID | 分子量 Molecular mass/u | 总原子个数 Total number of atoms | 等电点 Isoelectric point | 分子式 Molecular formula | 亲水性总平均值 Total average hydrophilicity | 不稳定指数 Instability index |
---|---|---|---|---|---|---|---|
PaFT | OQ079526 | 19 599.15 | 2 729 | 8.42 | C868H1347N253O255S6 | -0.41 | 37.16 |
PlFT1 | OQ079527 | 19 613.17 | 2 732 | 8.42 | C869H1349N253O255S6 | -0.394 | 37.22 |
PvFT | OQ079529 | 19 599.15 | 2 729 | 8.42 | C868H1347N253O255S6 | -0.41 | 37.16 |
氨基酸种类 Types of amino acid | PaFT/PvFT | PlFT1 | ||
---|---|---|---|---|
氨基酸数量 Number of amino acids | 占氨基酸总量的百分比 Percentage of total amino acids/% | 氨基酸数量 Number of amino acids | 占氨基酸总量的百分比 Percentage of total amino acids/% | |
丙氨酸Ala(A) | 7 | 4.0 | 6 | 3.5 |
精氨酸Arg(R) | 19 | 11.0 | 19 | 11.0 |
天冬酰胺Asn(N) | 9 | 5.2 | 9 | 5.2 |
天冬氨酸Asp(D) | 11 | 6.4 | 11 | 6.4 |
半胱氨酸Cys(C) | 4 | 2.3 | 4 | 2.3 |
谷氨酰胺Gln(Q) | 7 | 4.0 | 7 | 4.0 |
谷氨酸Glu(E) | 7 | 4.0 | 7 | 4.0 |
甘氨酸Gly(G) | 14 | 8.1 | 14 | 8.1 |
组氨酸His(H) | 2 | 1.2 | 2 | 1.2 |
异亮氨酸lle(I) | 6 | 3.5 | 6 | 3.5 |
亮氨酸Leu(L) | 14 | 8.1 | 13 | 7.5 |
赖氨酸Lys(K) | 1 | 0.6 | 1 | 0.6 |
蛋氨酸Met(M) | 2 | 1.2 | 2 | 1.2 |
苯丙氨酸Phe(F) | 9 | 5.2 | 9 | 5.2 |
脯氨酸Pro(P) | 14 | 8.1 | 14 | 8.1 |
丝氨酸Ser(S) | 9 | 5.2 | 9 | 5.2 |
苏氨酸Thr(T) | 13 | 7.5 | 13 | 7.5 |
色氨酸Trp(W) | 2 | 1.2 | 2 | 1.2 |
酪氨酸Tyr(Y) | 7 | 4.0 | 7 | 4.0 |
缬氨酸Val(V) | 16 | 9.2 | 18 | 10.4 |
Table 3 Differences in amino acid composition of FT proteins in three species of Paeonia
氨基酸种类 Types of amino acid | PaFT/PvFT | PlFT1 | ||
---|---|---|---|---|
氨基酸数量 Number of amino acids | 占氨基酸总量的百分比 Percentage of total amino acids/% | 氨基酸数量 Number of amino acids | 占氨基酸总量的百分比 Percentage of total amino acids/% | |
丙氨酸Ala(A) | 7 | 4.0 | 6 | 3.5 |
精氨酸Arg(R) | 19 | 11.0 | 19 | 11.0 |
天冬酰胺Asn(N) | 9 | 5.2 | 9 | 5.2 |
天冬氨酸Asp(D) | 11 | 6.4 | 11 | 6.4 |
半胱氨酸Cys(C) | 4 | 2.3 | 4 | 2.3 |
谷氨酰胺Gln(Q) | 7 | 4.0 | 7 | 4.0 |
谷氨酸Glu(E) | 7 | 4.0 | 7 | 4.0 |
甘氨酸Gly(G) | 14 | 8.1 | 14 | 8.1 |
组氨酸His(H) | 2 | 1.2 | 2 | 1.2 |
异亮氨酸lle(I) | 6 | 3.5 | 6 | 3.5 |
亮氨酸Leu(L) | 14 | 8.1 | 13 | 7.5 |
赖氨酸Lys(K) | 1 | 0.6 | 1 | 0.6 |
蛋氨酸Met(M) | 2 | 1.2 | 2 | 1.2 |
苯丙氨酸Phe(F) | 9 | 5.2 | 9 | 5.2 |
脯氨酸Pro(P) | 14 | 8.1 | 14 | 8.1 |
丝氨酸Ser(S) | 9 | 5.2 | 9 | 5.2 |
苏氨酸Thr(T) | 13 | 7.5 | 13 | 7.5 |
色氨酸Trp(W) | 2 | 1.2 | 2 | 1.2 |
酪氨酸Tyr(Y) | 7 | 4.0 | 7 | 4.0 |
缬氨酸Val(V) | 16 | 9.2 | 18 | 10.4 |
Fig.4 Prediction of the secondary and tertiary structure of FT proteins in three species of Paeonia A, Prediction of the secondary structure of PlFT1; B, Prediction of the secondary structure of PaFT and PvFT proteins; C, Prediction template of the tertiary structure of FT proteins in three species of Paeonia. The pink straight lines represent random coil, the blue arrows represent β-sheet, orange wavy lines represent α-helix, black box represent the difference area in figures A and B.
Fig.5 Phylogenetic relationship among FT proteins in three species of Paeonia and other FT-like proteins The number represents the percentage of 1 000 bootstrap replications, only above 40% is showed. The family members of the PEBPs used in the tree are as follows: At, Arabidopsis thaliana; Bj, Brassica juncea; Ca, Camellia azalea; Ed, Eriobotrya deflexa; Ej, Eriobotrya japonica; Gh, Gossypium hirsutum; Hs, Hibiscus syriacus; Md, Malus domestica; Ms, Malus sylvestris; Pb, Pyrus x bretschneideri; Pc, Pyrus communis; Pf, Pyracantha fortuneana; Pp, Pyrus pyrifolia; Ps, P. suffruticosa; Rc, Rosa chinensis; Rr, Rosa rugosa; Vu, Vigna unguiculata; Vv, Vitis vinifera; Zj, Ziziphus jujuba.
Fig.6 Observation on the anatomical structure of seed hypocotyl dormancy release process during sand storage in three species of Paeonia(×10) A, B, C represent the anatomical structures during the process of releasing the hypocotyl of P. veitchii, P. anomala and P. lactiflora ‘Fenghuangnipan’, respectively; Ⅰ represent the spherical embryo stage, Ⅱ represent the heart-shaped embryo stage, Ⅲ represent the torpedo embryo stage, and Ⅳ represent the cotyledon embryo stage; EM, Embryo; EN, Endosperml; CP, Cotyledon primordia; The timelines represent the sand accumulation time required for the seed development of three species of Paeonia to reach their corresponding stages.
Fig.7 The relative expression levels of FT genes in three species of Paeonia during the dormancy breaking stage of seed hypocotyls The bars marked without the same lowercase letter indicat significant differences at P<0.05. The same as below.
Fig.8 Observation on the growth and development process of flowering P. veitchii and P. lactiflora ‘Fenghuangniepan’ introduced to Beijing A and B are the four growth and development stages of flowering P. veitchii and P. lactiflora ‘Fenghuangniepan’, respectively; I, Leaf spreading period; Ⅱ, Budding stage; Ⅲ, Flowering period; Ⅳ, Flower and withering period.
Fig.9 Relative expression levels of FT genes in different developmental stages of non-flowering P. veitchii, flowering P. veitchii, P. anomala and P. lactiflora ‘Fenghuangniepan’
[1] | HONG D Y, PAN K Y, TURLAND N J. Flora of China(Vol.6)[M]. Beijing: Science Press & St. Louis:Missouri Botanical Garden Press, 2001: 127-132. |
[2] | 张逸璇. 中国野生芍药耐荫性评价及应用于耐荫品种培育初步研究[D]. 北京: 北京林业大学, 2019. |
ZHANG Y X. Shade tolerance evaluation of Chinese wild paeonia and preliminary study of cultivation of shade-tolerant varieties[D]. Beijing: Beijing Forestry University, 2019. (in Chinese with English abstract) | |
[3] | 于娇, 陈娜, 龚欢, 等. 芍药属植物种子和花器官研究进展[J]. 现代农业科技, 2020(21): 73-75, 78. |
YU J, CHEN N, GONG H, et al. Progress in research on seeds and flower organs of Paeonia plants[J]. Modern Agricultural Science and Technology, 2020(21): 73-75, 78. (in Chinese) | |
[4] | 孟家松, 朱梦圆, 孙静, 等. 芍药属植物种子研究进展[J]. 种子, 2017, 36(6): 50-54. |
MENG J S, ZHU M Y, SUN J, et al. Research progress in the seeds of Paeonia ssp[J]. Seed, 2017, 36(6): 50-54. (in Chinese with English abstract) | |
[5] | 张慜. 多花芍药种子上胚轴休眠解除过程中形态和生理的低温响应研究[D]. 北京: 北京林业大学, 2021. |
ZHANG M. Study of morphological and physiological responses of Paeonia emodi seeds to cold in the process of epicotyl dormancy breaking[D]. Beijing: Beijing Forestry University, 2021. (in Chinese with English abstract) | |
[6] | 王桐霖, 吕梦雯, 徐金光, 等. 芍药鳞芽年发育进程及生理机制的研究[J]. 植物生理学报, 2019, 55(8): 1178-1190. |
WANG T L, LÜ M W, XU J G, et al. Study on the developmental process and physiological mechanism of the bulbils of Paeonia lactiflora[J]. Plant Physiology Journal, 2019, 55(8): 1178-1190. (in Chinese with English abstract) | |
[7] | LI X T, FEI R W, CHEN Z J, et al. Plant hormonal changes and differential expression profiling reveal seed dormancy removal process in double dormant plant-herbaceous peony[J]. PLoS One, 2020, 15(4): e0231117. |
[8] | 陆沁怡, 沈永宝, 史锋厚. 芍药种胚发育及物质代谢的探究[J/OL]. (2022-05-18) [2024-12-03]. 分子植物育种. http://kns.cnki.net/kcms/detail/46.1068.S.20220518.1139.006.html. |
LU Q Y, SHEN Y B, SHI F H. Exploration on the development and material metabolism of Paeonia lactiflora seed embryo[J/OL]. (2022-05-18) [2024-12-03]. Molecular Plant Breeding. http://kns.cnki.net/kcms/detail/46.1068.S.20220518.1139.006.html. (in Chinese with English abstract) | |
[9] | 穆赢通. 芍药种子休眠解除过程生理变化及分子机理研究[D]. 呼和浩特: 内蒙古农业大学, 2022. |
MU Y T. Study on the physiological changes and molecular mechanisms in Paeonia lactiflora pall seeds during dormancy releasing[D]. Hohhot: Inner Mongolia Agricultural University, 2022. (in Chinese with English abstract) | |
[10] | 吴彦庆, 葛金涛, 陶俊. 芍药花分生组织决定基因(AP1)克隆、序列分析及其在不同发育时期花瓣中的表达变化规律[J]. 农业生物技术学报, 2015, 23(12): 1559-1567. |
WU Y Q, GE J T, TAO J. cDNA cloning, sequence analysis and tissue expression detection of apetala 1 gene(AP 1) in Paeonia lactiflora Pall. petals of different development stages[J]. Journal of Agricultural Biotechnology, 2015, 23(12): 1559-1567. (in Chinese with English abstract) | |
[11] | 杨小凤, 李小蒙, 廖万金. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性, 2021, 29(6): 825-842. |
YANG X F, LI X M, LIAO W J. Advances in the genetic regulating pathways of plant flowering time[J]. Biodiversity Science, 2021, 29(6): 825-842. (in Chinese with English abstract) | |
[12] | FAN H J, ZHUO R Y, WANG H Y, et al. A comprehensive analysis of the floral transition in ma bamboo (Dendrocalamus latiflorus) reveals the roles of DlFTs involved in flowering[J]. Tree Physiology, 2022, 42(9): 1899-1911. |
[13] | 孙庆锋. 赪桐FLOWERING LOCUS T(FT)同源基因的克隆与鉴定[D]. 广州: 仲恺农业工程学院, 2022. |
SUN Q F. Cloning and identification of FLOWERING LOCUS T(FT) homologous genes from Clerodendrum japonicumon[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2022. (in Chinese with English abstract) | |
[14] | 李铮, 潘根, 陶杰, 等. 大麻FT同源基因CsHd3a的克隆及表达谱分析[J]. 华北农学报, 2021, 36(3): 41-49. |
LI Z, PAN G, TAO J, et al. Cloning and expression profile analysis of FT homologous gene CsHd3a in Cannabis[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(3): 41-49. (in Chinese with English abstract) | |
[15] | KIYAK A, MUTLU A G. Molecular cloning, characterization and expression profile of FLOWERING LOCUS T (FT) gene from Prunus armeniaca L[J]. South African Journal of Botany, 2023, 155: 330-339. |
[16] | NAKAMURA Y, ANDRÉS F, KANEHARA K, et al. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering[J]. Nature Communications, 2014, 5: 3553. |
[17] | 李敏. 北柴胡成花基因克隆及时空表达模式分析[D]. 济南: 山东中医药大学, 2021. |
LI M. Cloning and spatio-temporal expression pattern analysis of flowering genes of Bupleurum chinense DC[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2021. (in Chinese with English abstract) | |
[18] | ADEYEMO O S, CHAVARRIAGA P, TOHME J, et al. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz)[J]. PLoS One, 2017, 12(7): e0181460. |
[19] | CHEN M, PENFIELD S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time[J]. Science, 2018, 360(6392): 1014-1017. |
[20] | VERGARA R, NORIEGA X, PARADA F, et al. Relationship between endodormancy, FLOWERING LOCUS T and cell cycle genes in Vitis vinifera[J]. Planta, 2016, 243(2): 411-419. |
[21] | ZARETSKAYA M V, LEBEDEVA O N, FEDORENKO O M. Role of DOG1 and FT, key regulators of seed dormancy, in adaptation of Arabidopsis thaliana from the northern natural populations[J]. Russian Journal of Genetics, 2022, 58(7): 783-790. |
[22] | CHEN F Y, LI Y, LI X Y, et al. Ectopic expression of the Arabidopsis florigen gene FLOWERING LOCUS T in seeds enhances seed dormancy via the GA and DOG1 pathways[J]. The Plant Journal, 2021, 107(3): 909-924. |
[23] | 范志毅, 罗聪, 余海霞, 等. 园艺植物FT基因研究进展[J]. 分子植物育种, 2020, 18(24): 8099-8108. |
FAN Z Y, LUO C, YU H X, et al. Research progress of horticulture plants FLOWERING LOCUS T gene[J]. Molecular Plant Breeding, 2020, 18(24): 8099-8108. (in Chinese with English abstract) | |
[24] | 姚彦林, 马骊, 刘丽君, 等. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
YAO Y L, MA L, LIU L J, et al. Bioinformatics and expression analysis of flowering regulation gene BrFT in Brassica rapa L[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 992-1000. (in Chinese with English abstract) | |
[25] | DENG Y T, YARUR-THYS A, BAULCOMBE D C. Virus-induced overexpression of heterologous FLOWERING LOCUS T for efficient speed breeding in tomato[J]. Journal of Experimental Botany, 2024, 75(1): 36-44. |
[26] | SHENG X Y, MAHENDRA R A, WANG C T, et al. CRISPR/Cas9 mutants delineate roles of Populus FT and TFL1/CEN/BFT family members in growth, dormancy release and flowering[J]. Tree Physiology, 2023, 43(6): 1042-1054. |
[27] | WANG L H, XIE J Y, MOU C H, et al. Transcriptomic analysis of the interaction between FLOWERING LOCUS T induction and photoperiodic signaling in response to spaceflight[J]. Frontiers in Cell and Developmental Biology, 2022, 9: 813246. |
[28] | 吴燕. 芍药开花转录组分析及PlFT基因功能验证[D]. 扬州: 扬州大学, 2020. |
WU Y. Analysis of flowering transcriptome of Paeonia lactiflora and functional verification of PlFT gene[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract) | |
[29] | 于晓南, 张建军, 陈莉祺, 等. 一种芍药地下根茎的石蜡切片制作方法: CN201910026196.4[P]. 2019-04-16. |
[30] | 刘丽, 陈骄羽, 邵明侠, 等. 毛竹PheFT6和PheFT17基因对外界环境的应答及蛋白互作分析[J]. 农业生物技术学报, 2021, 29(3): 506-520. |
LIU L, CHEN J Y, SHAO M X, et al. Responses of PheFT6 and PheFT17 genes in Phyllostachys pubescens to external environment and protein interaction analysis[J]. Journal of Agricultural Biotechnology, 2021, 29(3): 506-520. (in Chinese with English abstract) | |
[31] | 王云梦, 宋贺云, 刘娟, 等. FT和TFL1基因调控植物开花的分子机理[J]. 植物生理学报, 2022, 58(1): 77-90. |
WANG Y M, SONG H Y, LIU J, et al. Molecular mechanism of FT and TFL1 genes on regulation of plant flowering[J]. Plant Physiology Journal, 2022, 58(1): 77-90. (in Chinese with English abstract) | |
[32] | SONG C, LI G H, DAI J, et al. Genome-wide analysis of PEBP genes in Dendrobium huoshanense: unveiling the antagonistic functions of FT/TFL1 in flowering time[J]. Frontiers in Genetics, 2021, 12: 687689. |
[33] | ZHANG L M, CHENG F Y, HUANG H, et al. PsFT, PsTFL1, and PsFD are involved in regulating the continuous flowering of tree peony (Paeonia×lemoinei ‘high noon’)[J]. Agronomy, 2023, 13(8): 2071. |
[34] | 李玲达. 牡丹胚发育过程观察及转录组分析[D]. 郑州: 河南农业大学, 2019. |
LI L D. Observation of embryo development and transcriptomeanalysis of peony[D]. Zhengzhou: Henan Agricultural University, 2019. (in Chinese with English abstract) | |
[35] | 陈洁. 水稻FT-Like基因OsFTL4的功能研究[D]. 扬州: 扬州大学, 2020. |
CHENG J. Functional research of FT-Like gene OsFTL4 in rice[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract) | |
[36] | DIXON L E, FARRÉ A, FINNEGAN E J, et al. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1[J]. Plant, Cell & Environment, 2018, 41(7): 1715-1725. |
[37] | 陈磊. 毛竹FLOWERING LOCUS T(FT)成花基因的鉴定与功能分析[D]. 福州: 福建农林大学, 2017. |
CHEN L. Identification and functional analysis of FLOWERING LOCUS T(FT) genes in Phyllostachys heterocycla[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese with English abstract) | |
[38] | 郑小一, 王三红, 张计育, 等. 苹果FT同源基因MdFT的表达特性[J]. 江苏农业学报, 2011, 27(2): 390-395. |
ZHENG X Y, WANG S H, ZHANG J Y, et al. Expression characteristics of FT homologue MdFT in apple(Malus×domestica Fuji)[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(2): 390-395. (in Chinese with English abstract) | |
[39] | 吕波. 植物开花基因FT的遗传转化及其参与开花调控的研究[D]. 泰安: 山东农业大学, 2014. |
LÜ/LV/LU/LYU) B. Genetic transformation of plant flowering gene FT and its involvement in flowering control[D]. Tai’an: Shandong Agricultural University, 2014. (in Chinese with English abstract) | |
[40] | 何静. 茎瘤芥CRISPR/Cas9技术的建立及BjFT基因的功能研究[D]. 重庆: 重庆邮电大学, 2022. |
HE J. The establishment of CRISPR/Cas9 technology and the function study of BjFT gene in Brassica juncea var. tumida[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2022. (in Chinese with English abstract) |
[1] | ZHANG Gensheng, LI Sijin, TIAN Yang, HAN Bing, XIE Chunli, FEI Yingmin. Study on water enzymatic extraction of pine seed oil and enzymatic demulsification technology [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2089-2098. |
[2] | SHAO Yaxu, LIU Tao, WANG Shicheng, YAN Lei. Screening of proportions and molding conditions of seeding substrate with straw and organic fertilizer [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1856-1866. |
[3] | ZHU Xuehui, XIE Hui, HAN Shouan, WANG Min, BAI Shijian, MA Yunlong, WANG Yanmeng, MAI Sile, PAN Mingqi, ZHANG Wen. Effect of two plant growth regulators on the fruit quality of ‘Centennial Seedless’ grapes [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1309-1319. |
[4] | DENG Lijun, WANG Tie, HU Juan, YAO Yuan, SUN Guochao, XIONG Bo, LIAO Ling, WANG Zhihui. Biological characterization of flowering and pollination of Prunus salicina Lindl.cv. ‘Fengtangli’ [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1320-1328. |
[5] | CHEN Wei, ZHU Yihang, GU Qing, LIN Baogang, ZHANG Xiaobin. Analysis of phenotypic parameters of rapeseed silique based on machine vision and YOLOv5 [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1379-1388. |
[6] | LIU Quandong, SUN Wei, ZHANG Hua, LIU Xiaolong, LI Hui, WANG Hucun. Design and performance study of leaping-over type soil covering device on film [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1173-1184. |
[7] | KONG De, YE Ziran, TAN Xiangfeng, DAI Mengdi, ZHAO Xianliang, KONG Dedong. Measurement of physical contact parameters and discrete element simulation calibration of lettuce seeds [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 932-942. |
[8] | ZHANG Bin, YUAN Zhihui, PENG Lujun, ZHOU Xiangping, ZHOU Deying, WANG Xichun. Fermented rice husk affects the growth and development of tobacco seedlings by enhancing nitrogen metabolism pathway [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 237-246. |
[9] | LIU Xiaolin, SUN Tingting, YANG Jie, HE Hengbin. Cloning and expression analysis of FLS gene of flavonol synthetase in Lilium auratum and L.speciosum var. gloriosoides [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 344-357. |
[10] | HUANG Qianlong, WANG Chutao, HE Yongxin, OUYANG Jie, ZHU Zichao, GUAN Yusheng, JIANG Gang, XIONG Ying, LI Xianyong. Effects of direct seeding methods on weed community composition and ecological niche in paddy fields in Chongqing, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 383-390. |
[11] | ZUO Xiaojie, WU Mingjiang, LUO Lin, MA Zengling, PANG Guanfeng, CHEN Binbin. Comparison of tolerance to high temperature of excellent strains of Sargassum fusiforme [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 148-155. |
[12] | FU Hongfei, GUO Saisai, ZHENG Jirong. Effects of compound substrate with residues of Solanaceous vegetables on cucumber seedling [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1805-1813. |
[13] | QIU Xunchao, CAO Jun, ZHANG Yizhuo. Near-infrared quantitative detection of fat in peeled Korean pine seeds based on manifold learning [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1915-1926. |
[14] | LEI Lian. Effects of regulated deficit drip irrigation under film on plant growth, yield and water use of seed-producing maize [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1542-1549. |
[15] | CHEN Guohu, LI Guang, WEN Hongwei, YIN Qian, WU Siwen, WANG Ying, LIU Xueqing, ZHAO Longlong, KHAN Afrasyab, GUI Shangzhi, TANG Xiaoyan, WANG Chenggang. Genome-wide identification and expression analysis of key genes response to vernalization in radish (Raphanus sativus) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1626-1637. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 218
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||