Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (2): 417-425.DOI: 10.3969/j.issn.1004-1524.20240138
• Plant Protection • Previous Articles Next Articles
SHEN Lan1(), YANG Xiaofang2, ZHANG Guofang1,*(
)
Received:
2024-02-06
Online:
2025-02-25
Published:
2025-03-20
Contact:
ZHANG Guofang
CLC Number:
SHEN Lan, YANG Xiaofang, ZHANG Guofang. Identification and fungicide sensitivity of the pathogen causing root rot on strawberry[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 417-425.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240138
杀菌剂 Fungicides | 供试浓度 Effective concentration/(μg·mL-1) |
---|---|
咪鲜胺Prochloraz | 150.0、30.0、4.0、1.0、0.2 |
吡唑醚菌酯 | 50、20、10、5、1 |
Pyraclostrobin | |
溴菌腈Bromothalonil | 30、20、10、8、5 |
抑霉唑Imazalil | 5.00、2.00、1.00、0.10、0.01 |
嘧菌酯Azoxystrobin | 200、150、50、10、5 |
戊唑醇Tebuconazole | 15.0、10.0、5.0、1.0、0.5 |
氟啶胺Fluazinam | 0.050 0、0.001 0、0.000 8、0.000 5、0.000 1 |
Table 1 Effective concentration of fungicides
杀菌剂 Fungicides | 供试浓度 Effective concentration/(μg·mL-1) |
---|---|
咪鲜胺Prochloraz | 150.0、30.0、4.0、1.0、0.2 |
吡唑醚菌酯 | 50、20、10、5、1 |
Pyraclostrobin | |
溴菌腈Bromothalonil | 30、20、10、8、5 |
抑霉唑Imazalil | 5.00、2.00、1.00、0.10、0.01 |
嘧菌酯Azoxystrobin | 200、150、50、10、5 |
戊唑醇Tebuconazole | 15.0、10.0、5.0、1.0、0.5 |
氟啶胺Fluazinam | 0.050 0、0.001 0、0.000 8、0.000 5、0.000 1 |
Fig.2 Colony and microscopic characteristics of the isolate A, B, Colony cultured for 5 days; C, Sclerotium; D, Mycelium; E, Pycnidia releasing conidia; F, Conidia (elliptic to obova).
Fig.3 Symptoms of strawberry after artificial inoculation with XXmy-1 for 10 d A, C, Control; B, 10 d after inoculation with XXmy-1; D, Root and crown of strawberry inoculated with XXmy-1 for 10 d; E, Petiole of strawberry inoculated with XXmy-1 for 10 d.
Fig.4 Symptoms of strawberry after artificial inoculation with XXmy-1 at different parts A, C, E, Control; B, D, 48 h after inoculation with XXmy-1; F, 72 h after inoculation with XXmy-1; G, Pycnidia; H, Conidia.
Fig.5 PCR products of partial ITS and TEF1-α amplification of the isolates A, PCR products of partial ITS sequences amplification; B, PCR products of partial TEF1-α sequences amplification; M, 2 kb DNA ladder; 1-4, ITS fragment of XXmy-1, XXmy-2, XXmy-3, XXmy-4; 5-8, TEF1-α fragment of XXmy-1, XXmy-2, XXmy-3, XXmy-4.
药剂 Fungicide | 回归方程 Regression equation | EC50/(μg·mL-1) | 相关系数 Correlation coefficient |
---|---|---|---|
咪鲜胺Prochloraz | y=4.893+1.083x | 1.179 | 0.988 |
吡唑醚菌酯Pyraclostrobin | y=4.859+0.258x | 3.549 | 0.957 |
溴菌腈Bromothalonil | y=2.566+2.669x | 8.078 | 0.946 |
抑霉唑Imazalil | y=5.011+0.613x | 0.959 | 0.944 |
嘧菌酯Azoxystrobin | y=3.095+0.953x | 98.793 | 0.966 |
戊唑醇Tebuconazole | y=5.407+1.331x | 0.568 | 0.963 |
氟啶胺Fluazinam | y=10.967+1.592x | 0.000 178 | 0.927 |
Table 2 Toxicity of seven fungicides to M. phaseolina
药剂 Fungicide | 回归方程 Regression equation | EC50/(μg·mL-1) | 相关系数 Correlation coefficient |
---|---|---|---|
咪鲜胺Prochloraz | y=4.893+1.083x | 1.179 | 0.988 |
吡唑醚菌酯Pyraclostrobin | y=4.859+0.258x | 3.549 | 0.957 |
溴菌腈Bromothalonil | y=2.566+2.669x | 8.078 | 0.946 |
抑霉唑Imazalil | y=5.011+0.613x | 0.959 | 0.944 |
嘧菌酯Azoxystrobin | y=3.095+0.953x | 98.793 | 0.966 |
戊唑醇Tebuconazole | y=5.407+1.331x | 0.568 | 0.963 |
氟啶胺Fluazinam | y=10.967+1.592x | 0.000 178 | 0.927 |
[1] | AFRIN S, GASPARRINI M, FORBES-HERNANDEZ T Y, et al. Promising health benefits of the strawberry: a focus on clinical studies[J]. Journal of Agricultural and Food Chemistry, 2016, 64(22): 4435-4449. |
[2] | BERKELEY G H, LAUDER-THOMSON I. Root rots of strawberry in Britain the “black lesion” type of strawberry root rot[J]. Journal of Pomology and Horticultural Science, 1934, 12(3): 222-246. |
[3] | 曹奎荣. 草莓根腐病病原菌鉴定及生物学特性的研究[D]. 兰州: 甘肃农业大学, 2006. |
CAO K R. Studies on pathogen identification and biological characteristics of strawberry root rot[D]. Lanzhou: Gansu Agricultural University, 2006. (in Chinese with English abstract) | |
[4] | 尹沙亮, 钟珊, 刘奇志, 等. 草莓丝核菌根腐病病原菌鉴定及7种杀菌剂的抑菌作用测定[J]. 植物保护, 2019, 45(4): 132-136. |
YIN S L, ZHONG S, LIU Q Z, et al. Identification of Rhizoctonia species causing root rot of strawberry and inhibition effects of seven fungicides[J]. Plant Protection, 2019, 45(4): 132-136. (in Chinese with English abstract) | |
[5] | 张悦丽, 张博, 任凤山, 等. 草莓腐霉根腐病病原菌鉴定[J]. 植物保护学报, 2015, 42(3): 477-478. |
ZHANG Y L, ZHANG B, REN F S, et al. Pathogen identification of strawberry Pythium root rot[J]. Journal of Plant Protection, 2015, 42(3): 477-478. (in Chinese with English abstract) | |
[6] | 盛茹媛, 肖长坤, 郑书恒, 等. 镰刀菌引起的北京市草莓根腐病病原鉴定[J]. 中国蔬菜, 2012(12): 52-56. |
SHENG R Y, XIAO C K, ZHENG S H, et al. Identification of strawberry root rot pathogeny caused by Fusarium in Beijing[J]. China Vegetables, 2012(12): 52-56. (in Chinese with English abstract) | |
[7] | 胡彦江, 张茹琴. 烟台地区草莓根腐病病原鉴定及致病性测定[J]. 北方园艺, 2012(10): 141-144. |
HU Y J, ZHANG R Q. Pathogenicity test and pathogen identification of strawberry root rot in Yantai Area[J]. Northern Horticulture, 2012(10): 141-144. (in Chinese with English abstract) | |
[8] | 徐淑华, 蒋继志, 郝志敏. 河北满城地区草莓根腐病病原真菌的分离鉴定[C]// 中国植物病理学会2004年学术年会论文集. 北京: 中国植物病理学会, 2004: 81-84. |
[9] | CHEN Q, YIN S L, ZHANG X G, et al. Dactylonectria species associated with black root rot of strawberry in China[J]. Australasian Plant Pathology, 2021, 50(5): 501-511. |
[10] | ZHANG L Q, DUAN K, GAO Q H, et al. First report of Nectria pseudotrichia causing crown rot of strawberry in China[J]. Plant Disease, 2018, 102(8): 1655. |
[11] | SUN Q, HARISHCHANDRA D, JIA J Y, et al. Role of Neopestalotiopsis rosae in causing root rot of strawberry in Beijing, China[J]. Crop Protection, 2021, 147: 105710. |
[12] | MOHD M H, SALLEH B, ZAKARIA L. Identification and molecular characterizations of Neoscytalidium dimidiatum causing stem canker of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia[J]. Journal of Phytopathology, 2013, 161(11/12): 841-849. |
[13] | COHEN R, ELKABETZ M, PARIS H S, et al. Occurrence of Macrophomina phaseolina in Israel: challenges for disease management and crop germplasm enhancement[J]. Plant Disease, 2022, 106(1): 15-25. |
[14] | 闫玖英, 马长青, 常博, 等. 改良CTAB法用于苹果果实基因组DNA的提取[J]. 分子植物育种, 2017, 15(9): 3610-3615. |
YAN J Y, MA C Q, CHANG B, et al. A modified CTAB method for genomic DNA extraction from apple fruit[J]. Molecular Plant Breeding, 2017, 15(9): 3610-3615. (in Chinese with English abstract) | |
[15] | WHITE T J, BRUNS T, LEE S, et al. Analysis of phylogenetic relationships by amplification and direct seaquencing of ribosomal RNA genes[M]//INNIS M A. PCR protocols: a guide to methods and applications. San Diego: Academic Press, 1990. |
[16] | CARBONE I, KOHN L M. A method for designing primer sets for speciation studies in filamentous ascomycetes[J]. Mycologia, 1999, 91(3): 553-556. |
[17] | O’DONNELL K, KISTLER H C, CIGELNIK E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(5): 2044-2049. |
[18] | 龚洛, 邓佳辉, 焦芹, 等. 玉米穗腐病防治药剂的室内毒力测定及田间防效[J]. 植物保护, 2022, 48(6): 374-381. |
GONG L, DENG J H, JIAO Q, et al. Determination of indoor toxicity and field control effect of fungicides against maize ear rot[J]. Plant Protection, 2022, 48(6): 374-381. (in Chinese with English abstract) | |
[19] | MARQUEZ N, GIACHERO M L, DECLERCK S, et al. Macrophomina phaseolina: general characteristics of pathogenicity and methods of control[J]. Frontiers in Plant Science, 2021, 12: 634397. |
[20] | SALEH A A, AHMED H U, TODD T C, et al. Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum[J]. Molecular Ecology, 2010, 19(1): 79-91. |
[21] | SINGH S K. Influence of cropping systems on Macrophomina phaseolina populations in soil[J]. Plant Disease, 1990, 74(10): 812. |
[22] | 赵辉, 张春艳, 文艺, 等. 菜豆壳球孢侵染芝麻过程中内参基因的筛选[J]. 中国油料作物学报, 2017, 39(3): 393-398. |
ZHAO H, ZHANG C Y, WEN Y, et al. Screening of reference genes in sesame during Macrophomina phaseolina infection[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(3): 393-398. (in Chinese with English abstract) | |
[23] | 张吉清, 段灿星, 王晓鸣, 等. 大豆炭腐病菌生物学特性的研究[J]. 华北农学报, 2011, 26(S2): 174-179. |
ZHANG J Q, DUAN C X, WANG X M, et al. Study on the biological characteristic of Macrophomina phaseolina causing soybean characol rot[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(S2): 174-179. (in Chinese) | |
[24] | 徐作珽, 李长松, 李林, 等. 冬枣浆胞病病原菌鉴定及其防治研究[J]. 园艺学报, 2007, 34(6): 1379-1386. |
XU Z T, LI C S, LI L, et al. Etiology of thick liquid disease fruit of Ziziphus jujuba Mill. ‘Zhanhua Dongzao’ and its control[J]. Acta Horticulturae Sinica, 2007, 34(6): 1379-1386. (in Chinese with English abstract) | |
[25] | GUPTA G K, SHARMA S K, RAMTEKE R. Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina(Tassi) goid with special reference to charcoal rot of soybean (Glycine max(L.) Merrill)[J]. Journal of Phytopathology, 2012, 160(4): 167-180. |
[26] | ROMERO LUNA M P, MUELLER D, MENGISTU A, et al. Advancing our understanding of charcoal rot in soybeans[J]. Journal of Integrated Pest Management, 2017, 8(1): 8. |
[27] | ISLAM M S, HAQUE M S, ISLAM M M, et al. Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina[J]. BMC Genomics, 2012, 13: 493. |
[28] | KNOGGE W. Fungal infection of plants[J]. The Plant Cell, 1996, 8: 1711-1722. |
[29] | BHATTACHARY D, SIDDIQUI K A I, ALI E. Phytotoxic metabolites of Macrophomina phaseolina[J]. Indian Journal of Mycology and Plant Pathology, 1992, 22(1): 54-57. |
[30] | DHAR T K, SIDDIQUI K A I, ALI E. Structure of phaseolinone, a novel phytotoxin from Macrophomina phaseolina[J]. Tetrahedron Letters, 1982, 23(51): 5459-5462. |
[31] | KITAHARA T, KIYOTA H, KURATA H, et al. Synthesis of oxygenated eremophilanes, gigantenone, phomenone and phaseolinone, phytotoxins from pathogenic fungi[J]. Tetrahedron, 1991, 47(9): 1649-1654. |
[32] | MAHATO S B, SIDDIQUI K A I, BHATTACHARYA G, et al. Structure and stereochemistry of phaseolinic acid: a new acid from Macrophomina phaseolina[J]. Journal of Natural Products, 1987, 50(2): 245-247. |
[1] | LI Yani, CHEN Weiliang, MAO Bizeng. Pathogen identification of root rot of Curcuma wenyujin [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1086-1093. |
[2] | JI Songyan, SHAO Changqi, QI Wenkang, HE Yuhui, ZHANG Xin, WANG Cuiping. Identification of Lycium barbarum root rot disease pathogens and biocontrol funguses against root rot disease [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2283-2297. |
[3] | HOU Caixia, DING Dedong, HE Jing, ZHAO Jitao, LI Yanxiang, ZHAO Qian, ZHANG Chongqing, LI Nan. Screening, identification and biocontrol effect of endophytic fungus from Lycium barbarum [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1662-1671. |
[4] | HUANG Wanyuan, LI Caibin, PENG Yu, LI Zhanghai, HUANG Yanzhang, DING Ting. Studies on isolation and identification of antagonistic bacteria against tobacco root black rot pathogen, Thielaviopsis basicola and their biocontrol characteristics [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 873-883. |
[5] | ZHANG Xinyue, YANG Yucheng, DUAN Haoyue, ZHOU Yangjie, HUANG Jiayang, CHEN Ziyue, JIANG Jie, CHEN Shujuan. Preparation of nitrogen-doped carbon quantum dots-chitosan composite film and its preservation effect on strawberry [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2935-2943. |
[6] | YANG Xiaofang, LI Yunduan, SUN Yunfan, LI Shaojia, MIAO Lixiang, ZHANG Yuchao, JIANG Guihua. Influence of substrate cultivation and soil cultivation on sucrose and citric acid accumulation of Yuexin strawberry [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1423-1430. |
[7] | YANG Xiujuan, LI Weiya, LI Caimiao, CHENG Bijun, GAO Fen, ZHAO Jun. Antifungal effect of Camellia seed cake on root rot pathogens of Astragalus membranaceus and Panax notoginseng [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1227-1235. |
[8] | LI Qingbin, QIN Benben, LI Yingying, FAN Kaifeng, YANG Dong, CHEN Lei, LIU Kun. Effects of continuous rain and sunless weather on microclimate, strawberry growth and quality in greenhouse [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 831-839. |
[9] | XU Xuefen, NI Chunhui, LI Huixia, LI Huanyu, LI Wenhao, CHEN Yuan, HU Fangdi. Pathogen identification and indoor toxicity tests on root rot of Codonopsis pilosula [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 96-103. |
[10] | FENG Jiangpeng, QIU Liping, LIANG Xiuyan, CHEN Bixiu, XIA Haiyang, PENG Chunlong, ZHONG Yongjun. Identification of antagonistic bacteria Bacillus velezensis JK3 against anthracnose of strawberry and its antipathogenic activity [J]. , 2020, 32(5): 831-839. |
[11] | ZHANG Xiaoyan, HE Jing, HOU Caixia, ZHANG Shuheng. Screening and identification of antagonistic strains of wolfberry root rot [J]. , 2020, 32(5): 858-865. |
[12] | QIU Jieren, CHAI Weiguo, TONG Jianxin, ZHOU Liping, WANG Shuzhen. Optimization of strawberry gynoecium protein extraction method for mass spectrum-based proteomic study [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2186-2191. |
[13] | WANG Shuzhen, ZHOU Liping, QIU Jieren, TONG Jianxin, YU Hong, CHAI Weiguo, LAI Wenguo. Comparative study on traits of progeny and parents of strawberry interspecific cross [J]. , 2020, 32(10): 1780-1787. |
[14] | WANG Shuzhen, ZHANG Yahui, QIU Jieren, ZHOU Liping, CHEN Sisi, CHAI Weiguo, MAO Bizeng. Comparison of characteristics of strawberry varieties with different ploidy [J]. , 2019, 31(6): 893-899. |
[15] | MA Yisheng, HONG Chunlai, WANG Weiping, YAO Yanlai, ZHU Fengxiang, CHEN Xiaoyang, XUE Zhiyong. Effects of substrates prepared from Dendrobium officinale cultivation waste and mushroom residue on growth, yield and quality of strawberry [J]. , 2018, 30(7): 1175-1181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||