Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (4): 746-755.DOI: 10.3969/j.issn.1004-1524.2022.04.11
• Horticultural Science • Previous Articles Next Articles
LIU Tongjin1(
), XU Mingjie1, WANG Jinglei2, LIU Liangfeng3, CUI Qunxiang1, BAO Chonglai2,*(
), WANG Changyi1,*(
)
Received:2021-07-30
Online:2022-04-25
Published:2022-04-28
Contact:
BAO Chonglai,WANG Changyi
CLC Number:
LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.04.11
| 基因名称 Gene name | 登录号 Accession No. | 氨基酸数量 Number of amino acids/aa | 分子量 Molecular weight/u | 等电点 Isoeletric point | 不稳定指数 Instability index | 亲水性 GRAVY | 脂肪指数 Aliphatic index | 跨膜结构 Transmembrane domain | 拟南芥同源基因 Homologue of AtALMT |
|---|---|---|---|---|---|---|---|---|---|
| RsALMT1 | Rsa10013723 | 525 | 58 320.75 | 6.40 | 36.07 | 0.010 | 91.22 | 5 | AT2G17470 |
| RsALMT2 | Rsa10016259 | 542 | 60 681.27 | 8.99 | 42.72 | -0.072 | 96.88 | 5 | AT5G46600 |
| RsALMT3 | Rsa10035068 | 621 | 70 102.62 | 6.18 | 36.65 | -0.043 | 89.98 | 5 | AT3G18440 |
| RsALMT4 | Rsa10034640 | 491 | 54 643.38 | 8.77 | 32.83 | -0.027 | 99.61 | 5 | AT3G11680 |
| RsALMT5 | Rsa10021670 | 479 | 53 569.17 | 8.30 | 36.44 | 0.014 | 89.37 | 5 | AT4G00910 |
| RsALMT6 | Rsa10022591 | 481 | 53 733.47 | 9.04 | 32.19 | -0.020 | 90.58 | 6 | AT4G00910 |
| RsALMT7 | Rsa10025402 | 543 | 60 482.70 | 8.84 | 40.46 | -0.071 | 95.91 | 6 | AT4G17970 |
| RsALMT8 | Rsa10010851 | 618 | 68 136.96 | 7.59 | 38.48 | -0.174 | 90.95 | 5 | AT5G46610 |
| RsALMT9 | Rsa10020182 | 404 | 45 923.80 | 8.41 | 30.84 | -0.125 | 94.03 | 6 | AT2G27240 |
| RsALMT10 | Rsa10011190 | 489 | 54 469.32 | 9.10 | 32.90 | 0.032 | 104.03 | 5 | AT3G11680 |
| RsALMT11 | Rsa10039953 | 580 | 65 364.87 | 7.21 | 40.72 | -0.098 | 86.60 | 6 | AT1G25480 |
| RsALMT12 | Rsa10038217 | 603 | 67 587.76 | 6.32 | 46.06 | -0.036 | 90.10 | 6 | AT1G18420 |
| RsALMT13 | Rsa10037498 | 505 | 56 082.17 | 6.53 | 40.90 | -0.049 | 97.84 | 5 | AT1G08440 |
| RsALMT14 | Rsa10040558 | 515 | 58 157.37 | 6.11 | 41.97 | -0.104 | 88.62 | 5 | AT1G25480 |
| RsALMT15 | Rsa10041290 | 510 | 56 863.94 | 6.69 | 38.69 | -0.123 | 94.43 | 5 | AT1G08440 |
| RsALMT16 | Rsa10041291 | 471 | 52 544.32 | 6.11 | 42.05 | -0.020 | 98.09 | 5 | AT1G08430 |
| RsALMT17 | Rsa10003573 | 484 | 54 188.99 | 8.59 | 31.96 | 0.067 | 93.22 | 6 | AT4G00910 |
Table 1 Information of ALMT gene family members in radish
| 基因名称 Gene name | 登录号 Accession No. | 氨基酸数量 Number of amino acids/aa | 分子量 Molecular weight/u | 等电点 Isoeletric point | 不稳定指数 Instability index | 亲水性 GRAVY | 脂肪指数 Aliphatic index | 跨膜结构 Transmembrane domain | 拟南芥同源基因 Homologue of AtALMT |
|---|---|---|---|---|---|---|---|---|---|
| RsALMT1 | Rsa10013723 | 525 | 58 320.75 | 6.40 | 36.07 | 0.010 | 91.22 | 5 | AT2G17470 |
| RsALMT2 | Rsa10016259 | 542 | 60 681.27 | 8.99 | 42.72 | -0.072 | 96.88 | 5 | AT5G46600 |
| RsALMT3 | Rsa10035068 | 621 | 70 102.62 | 6.18 | 36.65 | -0.043 | 89.98 | 5 | AT3G18440 |
| RsALMT4 | Rsa10034640 | 491 | 54 643.38 | 8.77 | 32.83 | -0.027 | 99.61 | 5 | AT3G11680 |
| RsALMT5 | Rsa10021670 | 479 | 53 569.17 | 8.30 | 36.44 | 0.014 | 89.37 | 5 | AT4G00910 |
| RsALMT6 | Rsa10022591 | 481 | 53 733.47 | 9.04 | 32.19 | -0.020 | 90.58 | 6 | AT4G00910 |
| RsALMT7 | Rsa10025402 | 543 | 60 482.70 | 8.84 | 40.46 | -0.071 | 95.91 | 6 | AT4G17970 |
| RsALMT8 | Rsa10010851 | 618 | 68 136.96 | 7.59 | 38.48 | -0.174 | 90.95 | 5 | AT5G46610 |
| RsALMT9 | Rsa10020182 | 404 | 45 923.80 | 8.41 | 30.84 | -0.125 | 94.03 | 6 | AT2G27240 |
| RsALMT10 | Rsa10011190 | 489 | 54 469.32 | 9.10 | 32.90 | 0.032 | 104.03 | 5 | AT3G11680 |
| RsALMT11 | Rsa10039953 | 580 | 65 364.87 | 7.21 | 40.72 | -0.098 | 86.60 | 6 | AT1G25480 |
| RsALMT12 | Rsa10038217 | 603 | 67 587.76 | 6.32 | 46.06 | -0.036 | 90.10 | 6 | AT1G18420 |
| RsALMT13 | Rsa10037498 | 505 | 56 082.17 | 6.53 | 40.90 | -0.049 | 97.84 | 5 | AT1G08440 |
| RsALMT14 | Rsa10040558 | 515 | 58 157.37 | 6.11 | 41.97 | -0.104 | 88.62 | 5 | AT1G25480 |
| RsALMT15 | Rsa10041290 | 510 | 56 863.94 | 6.69 | 38.69 | -0.123 | 94.43 | 5 | AT1G08440 |
| RsALMT16 | Rsa10041291 | 471 | 52 544.32 | 6.11 | 42.05 | -0.020 | 98.09 | 5 | AT1G08430 |
| RsALMT17 | Rsa10003573 | 484 | 54 188.99 | 8.59 | 31.96 | 0.067 | 93.22 | 6 | AT4G00910 |
Fig.5 Expression profiles of RsALMT genes in various tissues ESS, seedling stage; SS, splitting stage; EES, early expanding stage; RES, rapid expanding stage; MS, mature stage.
Fig.6 Expression profiles of RsALMT genes in different growing stage of taproot of white and green flesh S1, September 25th; S2, October 2nd; S3, October 9th; S4, October 16th; S5, October 23th.
Fig.7 Expression profiles of ALMT gene family members in 7 d after incubated with A. tumefaciens of hypocotyls Line_18 and Line_19 was resistance and susceptible radish inbred lines to A. tumefaciens, respectively. CK, 7 d after incubated with LB medium; T, 7 d after incubated with A. tumefaciens.
| [1] | SHARMA T, DREYER I, KOCHIAN L, et al. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security[J]. Frontiers in Plant Science, 2016, 7: 1488. |
| [2] |
BARBIER-BRYGOO H, DE ANGELI A, FILLEUR S, et al. Anion channels/transporters in plants: from molecular bases to regulatory networks[J]. Annual Review of Plant Biology, 2011, 62: 25-51.
DOI URL |
| [3] |
LIU J, ZHOU M X. The ALMT gene family performs multiple functions in plants[J]. Agronomy, 2018, 8(2): 20.
DOI URL |
| [4] |
XU M Y, GRUBER B D, DELHAIZE E, et al. The barley anion channel, HvALMT 1, has multiple roles in guard cell physiology and grain metabolism[J]. Physiologia Plantarum, 2015, 153(1): 183-193.
DOI URL |
| [5] | MOTODA H, SASAKI T, KANO Y, et al. The membrane topology of ALMT1, an aluminum-activated malate transport protein in wheat (Triticum aestivum)[J]. Plant Signaling & Behavior, 2007, 2(6): 467-472. |
| [6] |
PENG W T, WU W W, PENG J C, et al. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation[J]. Journal of Integrative Plant Biology, 2018, 60(3): 216-231.
DOI URL |
| [7] |
SASAKI T, YAMAMOTO Y, EZAKI B, et al. A wheat gene encoding an aluminum-activated malate transporter[J]. The Plant Journal, 2004, 37(5): 645-653.
DOI URL |
| [8] |
KOVERMANN P, MEYER S, HÖRTENSTEINER S, et al. The Arabidopsis vacuolar malate channel is a member of the ALMT family[J]. The Plant Journal, 2007, 52(6): 1169-1180.
DOI URL |
| [9] |
KOBAYASHI Y, KOBAYASHI Y, SUGIMOTO M, et al. Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers[J]. Plant Physiology, 2013, 162(2): 732-740.
DOI URL |
| [10] | HOEKENGA O A, MARON L G, PIÑEROS M A, et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(25): 9738-9743. |
| [11] | LIGABA A, MARON L, SHAFF J, et al. Maize ZmALMT2 is a is a root anion transporter that mediates constitutive root malate efflux[J]. Plant, Cell & Environment, 2012, 35(7): 1185-1200. |
| [12] | CHEN Z C, YOKOSHO K, KASHINO M, et al. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus[J]. The Plant Journal, 2013, 76(1): 10-23. |
| [13] |
LIANG C Y, PIÑEROS M A, TIAN J, et al. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils[J]. Plant Physiology, 2013, 161(3): 1347-1361.
DOI URL |
| [14] |
LIGABA A, KATSUHARA M, RYAN P R, et al. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells[J]. Plant Physiology, 2006, 142(3): 1294-1303.
DOI URL |
| [15] |
CHEN Q, WU K H, WANG P, et al. Overexpression of MsALMT1, from the aluminum-sensitive Medicago sativa, enhances malate exudation and aluminum resistance in tobacco[J]. Plant Molecular Biology Reporter, 2013, 31(3): 769-774.
DOI URL |
| [16] |
EISENACH C, BAETZ U, HUCK N V, et al. ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis[J]. The Plant Cell, 2017, 29(10): 2552-2569.
DOI URL |
| [17] |
DE ANGELI A, ZHANG J, MEYER S, et al. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis[J]. Nature Communications, 2013, 4: 1804.
DOI URL |
| [18] |
MEYER S, SCHOLZ-STARKE J, DE ANGELI A, et al. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation[J]. The Plant Journal, 2011, 67(2): 247-257.
DOI URL |
| [19] | SASAKI T, MORI I C, FURUICHI T, et al. Closing plant stomata requires a homolog of an aluminum-activated malate transporter[J]. Plant & Cell Physiology, 2010, 51(3): 354-365. |
| [20] |
DE ANGELI A, BAETZ U, FRANCISCO R, et al. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera[J]. Planta, 2013, 238(2): 283-291.
DOI URL |
| [21] | MA B Q, LIAO L, ZHENG H Y, et al. Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple[J/OL]. The Plant Genome, 2015, 8(3):1-14.[2021-07-20]. https://acsess.onlinelibrary.wiley.com/doi/10.3835/plantgenome2015.03.0016. |
| [22] |
XU M Y, GRUBER B D, DELHAIZE E, et al. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism[J]. Physiologia Plantarum, 2015, 153(1): 183-193.
DOI URL |
| [23] |
XU L L, QIAO X, ZHANG M Y, et al. Genome-Wide analysis of aluminum-activated malate transporter family genes in six Rosaceae species, and expression analysis and functional characterization on malate accumulation in Chinese white pear[J]. Plant Science, 2018, 274: 451-465.
DOI URL |
| [24] |
MA B Q, YUAN Y Y, GAO M, et al. Genome-wide identification, molecular evolution, and expression divergence of aluminum-activated malate transporters in apples[J]. International Journal of Molecular Sciences, 2018, 19(9): 2807.
DOI URL |
| [25] |
MA X W, AN F, WANG L F, et al. Genome-wide identification of aluminum-activated malate transporter (ALMT) gene family in rubber trees (Hevea brasiliensis) highlights their involvement in aluminum detoxification[J]. Forests, 2020, 11(2): 142.
DOI URL |
| [26] | 张慧, 李泽锋, 徐国云, 等. 普通烟草ALMT基因家族的鉴定与表达分析[J]. 烟草科技, 2020, 53(5): 1-9. |
| ZHANG H, LI Z F, XU G Y, et al. Identification and expression analysis of ALMT gene family in Nicotiana tabacum[J]. Tobacco Science & Technology, 2020, 53(5): 1-9. (in Chinese with English abstract) | |
| [27] |
DIN I, ULLAH I, WANG W, et al. Genome-wide analysis, evolutionary history and response of ALMT family to phosphate starvation in Brassica napus[J]. International Journal of Molecular Sciences, 2021, 22(9): 4625.
DOI URL |
| [28] | ZHANG X H, YUE Z, MEI S Y, et al. A de novo genome of a Chinese radish cultivar[J]. Horticultural Plant Journal, 2015, 1(3): 155-164. |
| [29] |
HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2014, 31(8): 1296-1297.
DOI URL |
| [30] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
DOI URL |
| [31] |
WANG J, QIU Y, WANG X, et al. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis[J]. Scientific Reports, 2017, 7: 16040.
DOI URL |
| [32] | 刘同金, 张晓雪, 张晓辉, 等. 萝卜全基因组中LBD基因家族成员的鉴定与分析[J]. 植物遗传资源学报, 2019, 20(1): 168-178. |
| LIU T J, ZHANG X X, ZHANG X H, et al. Genome-wide characterization of the LBD gene family in radish[J]. Journal of Plant Genetic Resources, 2019, 20(1): 168-178. (in Chinese with English abstract) | |
| [33] |
LI Y Y, HAN M, WANG R H, et al. Comparative transcriptome analysis identifies genes associated with chlorophyll levels and reveals photosynthesis in green flesh of radish taproot[J]. PLoS One, 2021, 16(5): e0252031.
DOI URL |
| [34] |
TKACHENKO A A, GANCHEVA M S, TVOROGOVA V E, et al. Transcriptome analysis of crown gall in radish (Raphanus sativus L.) inbred lines[J]. Annals of Applied Biology, 2021, 178(3): 527-548.
DOI URL |
| [35] |
XU L, WANG Y, LIU W, et al. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.)[J]. Plant Science, 2015, 236: 313-323.
DOI URL |
| [36] | XIE Y, YE S, WANG Y, et al. Transcriptome-based gene profiling provides novel insights into the characteristics of radish root response to Cr stress with next-generation sequencing[J]. Frontiers in Plant Science, 2015, 6: 202. |
| [37] |
WANG Y, XU L, CHEN Y L, et al. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing[J]. PLoS One, 2013, 8(6): e66539.
DOI URL |
| [38] |
LIGABA A, KOCHIAN L, PIÑEROS M. Phosphorylation at S 384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat[J]. The Plant Journal, 2009, 60(3): 411-423.
DOI URL |
| [1] | ZHANG Jun, ZHANG Bo, HU Bibo, LIU Jingliang, ZHANG Xiaoyu, LI Chunyang, XIONG Shengting, GUO Binbin, WANG Xiucun, MA Chao. Identification and expression analysis of members of the SWEET and SUT families in wheat (Triticum aestivum L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1825-1839. |
| [2] | HE Changxi, ZHENG Jianbo, MA Jianbo, JIA Yongyi, LIU Shili, JIANG Wenping, CHI Meili, CHENG Shun, LI Fei. Cloning and expression analysis of Runx2b in Culter alburnus [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1024-1031. |
| [3] | LI Yadong, LUO Xiaobo, PENG Xiao, YANG Guangqian, JIN Yueyue, ZU Guidong, TIAN Huan, ZHANG Wanping. Development of SNP and InDel markers in radish and their association with phenotypic characters [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1055-1066. |
| [4] | LI Yaping, JIN Fulai, HUANG Zonggui, ZHANG Tao, DUAN Xiaojing, JIANG Wu, TAO Zhengming, CHEN Jiadong. Identification and expression pattern analysis of glycoside hydrolase GH3 gene family in Dendrobium officinale [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 790-799. |
| [5] | PENG Jiacheng, WU Yue, XU Jiehao, XIA Meiwen, QI Tianpeng, XU Haisheng. Cloning of paxillin gene from Macrobrachium nipponense and effect of cadmium stress on its expression [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 247-253. |
| [6] | LIU Xiaolin, SUN Tingting, YANG Jie, HE Hengbin. Cloning and expression analysis of FLS gene of flavonol synthetase in Lilium auratum and L.speciosum var. gloriosoides [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 344-357. |
| [7] | ZHAO Lingji, LIAO Xiangjiao, LIU Dechun, HU Wei, KUANG Liuqing, SONG Jie, YI Mingliang, LIU Yong, YANG Li. Changes of organic acid content in Taoxi pomelo fruits during the storage period and citric acid related gene expression analysis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2510-2520. |
| [8] | WU Jiao, GONG Chengyu, CHEN Chaoqun, CHEN Hongxu, LIU Junhong, TANG Wenjing, CHU Yuanqi, YANG Wenlong, ZHANG Yao, GONG Ronggao. Ecological response of organic acid metabolism of Huangguogan fruits at different altitudes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 853-861. |
| [9] | LI Hongyi, ZHOU Runsheng, LIANG Xiaoling, ZHANG Chuyue, LYU Qixin, YANG Changhua, ZHANG Mao. Effect of dietary calcium and phosphorus level on Magang geese growth performance and liver gene expression [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2533-2542. |
| [10] | KONG Fanwang, ZHANG Zhigang, LI Wei, CHEN Yufeng, WANG Changjiang, ZHENG Yaqin, XU Meng. Identification of 4CL gene family in peach and its expression analysis in fruit coloration during development stage and chilling injury during post-harvest low temperature storage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2600-2610. |
| [11] | LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620. |
| [12] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
| [13] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
| [14] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
| [15] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||