Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (6): 1124-1132.DOI: 10.3969/j.issn.1004-1524.2022.06.03
• Crop Science • Previous Articles Next Articles
LI Wenchen(
), LIU Xin, QI Zezheng, YU Lu, WANG Fang(
)
Received:2021-08-21
Online:2022-06-25
Published:2022-06-30
Contact:
WANG Fang
CLC Number:
LI Wenchen, LIU Xin, QI Zezheng, YU Lu, WANG Fang. Bioinformatics of Huipizhi Black soybean GmPUB24 and expression under Heterodera glycines infection[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1124-1132.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.06.03
Fig. 4 Hydrophilicity and hydrophobicity of GmPUB24 protein Taking 0 as the limit, positive values represented hydrophobic amino acids and negative values represented hydrophilic amino acids.
Fig. 5 Homologous alignment of U-box domains of Huipizhi black bean GmPUB24 with other plant associated proteins Black shading meant amino acids with 100% identity, pink meant more than 75% identity, blue meant 50%-75% identity, and white means less than 50% identity. KAG4974237, Glycine soja; XP_003539150, Glycine max; XP_027911296, Vigna unguiculata; XP_014523587, Vigna radiata var. Radiata; XP_027348689, Abrus precatorius; KYP39063, Cajanus cajan; XP_004506267, Cicer arietinum; OAP04810, Arabidopsis thaliana; XP_004229574, Solanum lycopersicum; XP_015635733, Oryza sativa; PWZ26684, Zea mays. The same as below.
Fig. 6 Phylogenetic tree of GmPUB24 protein from Huipizhi black bean and other plant homologous proteinsNeighbor Joining method with 1 000 bootstrap replicates. The scale bar represented the genetic distance.
| 名称 Name | 数量 Number | 序列 Sequence | 功能 Function |
|---|---|---|---|
| ABRE | 3 | ACGTG | 参与脱落酸反应 Involved in the abscisic acid reaction |
| Box 4 | 7 | ATTAAT | 参与光反应有关的保守DNA Conserved DNA elements involved in photo reaction |
| Box II | 2 | CCACGTGGC | 参与光响应Components involved in light response |
| CAAT-box | 20 | CCAAT | 启动子和增强子区常见的顺式作用元件 Involved in promoter and enhancer regions |
| CAT-box | 1 | GCCACT | 参与分生组织相关表达 Involved in the expression of meristems |
| CGTCA-motif | 3 | CGTCA | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
| TATA-box | 35 | ATATAT | 参与核心启动子30位点转录 Transcription element involved in the 30 position of the core promoter |
| TGACG-motif | 3 | TGACG | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
| Unnamed-1 | 4 | GAATTTAATTAA | 60s蛋白质活性位点 Involved in 60s protein active site |
| WUN-motif | 1 | AAATTTCCT | 参与植物伤口反应 Elements involved in plant wound response |
| ARE | 1 | AAACCA | 无氧诱导 Necessary for anaerobic induction |
| AT-rich element | 1 | ATAGAAATCAA | 结合蛋白(ATBP-1)的结合位点 Binding site element of binding protein (ATBP-1) |
| G-box | 3 | GCCACGTGGA | 参与光响应Involved in light response |
| O2-site | 1 | GATGATGTGG | 参与玉米醇溶蛋白代谢调节 Involved in the regulation of zein metabolism |
Table 1 Analysis of cis element of GmPUB24 promoter
| 名称 Name | 数量 Number | 序列 Sequence | 功能 Function |
|---|---|---|---|
| ABRE | 3 | ACGTG | 参与脱落酸反应 Involved in the abscisic acid reaction |
| Box 4 | 7 | ATTAAT | 参与光反应有关的保守DNA Conserved DNA elements involved in photo reaction |
| Box II | 2 | CCACGTGGC | 参与光响应Components involved in light response |
| CAAT-box | 20 | CCAAT | 启动子和增强子区常见的顺式作用元件 Involved in promoter and enhancer regions |
| CAT-box | 1 | GCCACT | 参与分生组织相关表达 Involved in the expression of meristems |
| CGTCA-motif | 3 | CGTCA | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
| TATA-box | 35 | ATATAT | 参与核心启动子30位点转录 Transcription element involved in the 30 position of the core promoter |
| TGACG-motif | 3 | TGACG | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
| Unnamed-1 | 4 | GAATTTAATTAA | 60s蛋白质活性位点 Involved in 60s protein active site |
| WUN-motif | 1 | AAATTTCCT | 参与植物伤口反应 Elements involved in plant wound response |
| ARE | 1 | AAACCA | 无氧诱导 Necessary for anaerobic induction |
| AT-rich element | 1 | ATAGAAATCAA | 结合蛋白(ATBP-1)的结合位点 Binding site element of binding protein (ATBP-1) |
| G-box | 3 | GCCACGTGGA | 参与光响应Involved in light response |
| O2-site | 1 | GATGATGTGG | 参与玉米醇溶蛋白代谢调节 Involved in the regulation of zein metabolism |
Fig. 8 Expression of soybean GmPUB24 gene at different time of soybean cyst nematode infection ** represented P ≤ 0.01, *** represented P ≤ 0.001, ns represented the difference was not significant.
| [1] |
PENG D L, JIANG R, PENG H, et al. Soybean cyst Nematodes: a destructive threat to soybean production in China[J]. Phytopathology Research, 2021, 3: 19.
DOI URL |
| [2] |
CALDWELL B E, BRIM C A, ROSS J P. Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines[J]. Agronomy Journal, 1960, 52(11): 635-636.
DOI URL |
| [3] |
MATSON A L, WILLIAMS L F. Evidence of a fourth gene for resistance to the soybean cyst nematode[J]. Crop Science, 1965, 5: 477.
DOI URL |
| [4] |
RAO-ARELLI A P, ANAND S C, WRATHER A J. Soybean resistance to soybean cyst nematode race 3 is conditioned by an additional dominant gene[J]. Crop Science, 1992, 32(4): 862-864.
DOI URL |
| [5] |
GUO B, SLEPER D A, NGUYEN H T, et al. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A[J]. Crop Science, 2006, 46(1): 224-233.
DOI URL |
| [6] | LIU X H, LIU S M, JAMAI A, et al. Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene[J]. Functional & Integrative Genomics, 2011, 11(4): 539-549. |
| [7] |
COOK D E, LEE T G, GUO X L, et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean[J]. Science, 2012, 338(6111): 1206-1209.
DOI URL |
| [8] |
LIU S, KANDOTH P K, LAKHSSASSI N, et al. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode[J]. Nature Communications, 2017, 8: 14822.
DOI URL |
| [9] |
LIU S, KANDOTH P K, WARREN S D, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492(7428): 256-260.
DOI URL |
| [10] |
PRUITT R N, GUST A A, NURNBERGER T. Plant immunity unified[J]. Nature Plants, 2021, 7(4): 382-383.
DOI URL |
| [11] |
NAVEED Z A, WEI X Y, CHEN J J, et al. The PTI to ETI continuum in Phytophthora-plant interactions[J]. Frontiers in Plant Science, 2020, 11: 593905.
DOI URL |
| [12] |
PRUNEDA J N, LITTLEFIELD P J, SOSS S E, et al. Structure of an E3: E2-Ub complex reveals an allosteric mechanism shared among RING/U-box ligases[J]. Molecular Cell, 2012, 47(6): 933-942.
DOI URL |
| [13] |
VIERSTRA R D. The ubiquitin-26S proteasome system at the Nexus of plant biology[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6): 385-397.
DOI URL |
| [14] |
HE Q, MCLELLAN H, BOEVINK P C, et al. U-box E 3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans[J]. Journal of Experimental Botany, 2015, 66(11): 3189-3199.
DOI URL |
| [15] |
TRUJILLO M, ICHIMURA K, CASAIS C, et al. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis[J]. Current Biology, 2008, 18(18): 1396-1401.
DOI URL |
| [16] | 雷苏炜. 拟南芥磷脂结合蛋白PUIP4调控抗病性与发育的功能研究[D]. 长沙: 湖南农业大学, 2017. |
| LEI S W. Functions of copine protein PUIP4 regulated disease resistance and development[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese with English abstract) | |
| [17] | 倪雪梅. 晚疫病菌诱导的两个马铃薯泛素连接酶基因的克隆与功能分析[D]. 武汉: 华中农业大学, 2009. |
| NI X M. dentification and cloning of two ubiquitin ligase genes induced by Phytophthora infestans in potato[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese with English abstract) | |
| [18] |
DURNER J, SHAH J, KLESSIG D F. Salicylic acid and disease resistance in plants[J]. Trends in Plant Science, 1997, 2(7): 266-274.
DOI URL |
| [19] |
ZHANG C Y, SONG L, CHOUDHARY M K, et al. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode[J]. BMC Plant Biology, 2018, 18(1): 149.
DOI URL |
| [20] | 王芳. 小粒黑豆抗胞囊线虫SSH-cDNA文库构建及重要基因表达分析[D]. 沈阳: 沈阳农业大学, 2012. |
| WANG F. Construction of SSH-cDNA library against cyst nematode in small black bean and analysis of important gene expression[D]. Shenyang: Shenyang Agricultural University, 2012. (in Chinese with English abstract) | |
| [21] |
KALWA U, LEGNER C, WLEZIEN E, et al. New methods of removing debris and high-throughput counting of cyst nematode eggs extracted from field soil[J]. PLoS One, 2019, 14(10): e0223386.
DOI URL |
| [22] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4): 402-408.
DOI URL |
| [23] |
YEE D, GORING D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates[J]. Journal of Experimental Botany, 2009, 60(4): 1109-1121.
DOI URL |
| [24] |
PONTIER D, BALAGUE C, BEZOMBES-MARION I, et al. Identification of a novel pathogen-responsive element in the promoter of the tobacco gene HSR203J, a molecular marker of the hypersensitive response[J]. The Plant Journal, 2001, 26(5): 495-507.
DOI URL |
| [25] |
BARCALA M, GARCIA A, CABRERA J, et al. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells[J]. The Plant Journal, 2010, 61(4): 698-712.
DOI URL |
| [26] | 张海文, 谢丙炎, 卢向阳, 等. 拟南芥防卫基因PDF1.2启动子中GCC盒是应答茉莉素反应必要的顺式作用元件[J]. 科学通报, 2004, 49(23): 2444-2448. |
| ZHANG H W, XIE B Y, LU X Y, et al. The GCC box in the Arabidopsis defense gene PDF1.2 promoter is an essential cis-acting element in response to the jasmin response[J]. Chinese Science Bulletin, 2004, 49(23): 2444-2448. (in Chinese) | |
| [27] |
JIN X F, XIONG A S, PENG R H, et al. OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis[J]. BMB Reports, 2010, 43(1): 34-39.
DOI URL |
| [28] |
LIU J, XIA W R, HU Y P, et al. Cloning and analysis of MeCWINV6 promoter from biofuel plant cassava (Manihot esculenta Crantz)[J]. Advanced Materials Research, 2014, 986/987: 25-29.
DOI URL |
| [29] |
KLINK V P, OVERALL C C, ALKHAROUF N W, et al. A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection[J]. Planta, 2007, 226(6): 1423-1447.
DOI URL |
| [30] | 王晗, 金贺, 王旭东, 等. 大豆胞囊线虫侵染后GmC4H、GmLac55和GmLac85的表达模式分析[J]. 沈阳农业大学学报, 2021, 52(3): 336-342. |
| WANG H, JIN H, WANG X D, et al. Expression patterns of GmC4H, GmLac55 and GmLac85 after soybean cyst nematode infection[J]. Journal of Shenyang Agricultural University, 2021, 52(3): 336-342. (in Chinese with English abstract) |
| [1] | ZHANG Jun, ZHANG Bo, HU Bibo, LIU Jingliang, ZHANG Xiaoyu, LI Chunyang, XIONG Shengting, GUO Binbin, WANG Xiucun, MA Chao. Identification and expression analysis of members of the SWEET and SUT families in wheat (Triticum aestivum L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1825-1839. |
| [2] | JIANG Ming, ZHANG Sheng, CHEN Xiaoshang, ZHANG Huijuan. Cloning and functional verification of the gray mold disease responsive gene BoWRKY15 in broccoli(Brassica oleracea var. italica) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1723-1732. |
| [3] | MIAO Bailing, CHEN Juanjuan, LI Liangjie, CHU Zongli, DONG Xiangxiang. The function of CchABCG5 gene in Camellia chekiangoleosa Hu [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1407-1416. |
| [4] | REN Jindong, CHEN Honglin, NIU Baolong, XU Xiaojun, LOU Bao. Mining new housekeeping genes of Macrobrachium rosenbergii based on transcriptome analysis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1424-1429. |
| [5] | ZHANG Yueyu, HUANG Meiqi, ZHANG Lin, QI Ying, LI Qiuling. Effects of bta-miR-146b on the signaling pathway of milk protein synthesis in heat-stressed bovine mammary epithelial cells [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1212-1220. |
| [6] | HE Guoxin, LI Sujuan, WANG Jian, TAO Xiaoyuan, YE Zihong, CHEN Guang, XU Shengchun. Screening and identification of soybean germplasm for low nitrogen tolerance during seedling stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 965-976. |
| [7] | XU Zhuwei, LEI Jun, SHAO Xiaowei, CHEN Runxing, JIANG Huan, WANG Shougen, YU Wenhui. Evaluation of Quzhou fresh soybean oligosaccharide germplasm resources based on analytic hierarchy process and fuzzy comprehensive evaluation method [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 754-766. |
| [8] | DI Yancui, JI Zelin, WANG Yuanyuan, LOU Shihao, ZHANG Tao, GUO Zhixin, SHEN Shunshan, PIAO Fengzhi, DU Nanshan, DONG Xiaoxing, DONG Han. Identification, subcellular localization and expression analysis of tomato SlMYB52 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 808-819. |
| [9] | LU Lina, ZHU Qing, GAO Meijing, XIE Yajing, LIU Xianjin, ZHANG Zhiyong. Expression abundance analysis of the V-ATPase subunit A gene in Plutella xylostella [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 839-846. |
| [10] | ZHENG Ting, XIANG Jiang, WEI Lingzhu, WU Jiang, CHENG Jianhui. Analysis on the effects of CPPU and TDZ on the aroma of Tiangong Moyu grape using WGCNA and the exploration of the key genes [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 311-320. |
| [11] | ZHANG Meiying, MO Qian, QI Xiushuang, TONG Ningning, KONG Fan, LIU Zheng’an, LYU Changping, PENG Liping. Cloning and expression analysis of peony PoLPAT2 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 321-328. |
| [12] | TANG Aoran, JIN Xiu, WANG Tan, RAO Yuan, LI Jiajia, ZHANG Wu. Physiological plant height measurement method based on the reconstruction of the main stem skeleton for curved soybean plants [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 466-479. |
| [13] | JIN Xin, LIN Rui, LIU Yan, XU Jiasheng, CHEN Qionglin, YUAN Lu, XUE Dawei, ZHENG Peng, XU Shengchun. Promoter cloning and expression analysis of the ARF-GEF gene NtGNL2a from Nicotiana tabacum [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2032-2041. |
| [14] | CUI Bowen, ZHANG Siyi, WANG Jialing, WANG Jinghong, LIN Jixiang, YANG Qingjie. Bioinformatics analysis and drought-tolerant gene mining of WRKY family members in Carex siderosticta [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2087-2103. |
| [15] | LIAO Xiaolong, WANG Xingsheng, CHEN Yong, LI Bin, HONG Sidan, MEI Lina, GUO Ying. Identification of the HKT gene family members in Populus species and analysis of their expression patterns under salt stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2104-2115. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||