Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (7): 1648-1661.DOI: 10.3969/j.issn.1004-1524.20230143
• Horticultural Science • Previous Articles Next Articles
XU Hongxia1(), LI Xiaoying1, GE Hang1, ZHU Qixuan1,2, CHEN Junwei1,*(
)
Received:
2023-02-14
Online:
2023-07-25
Published:
2023-08-17
Contact:
CHEN Junwei
CLC Number:
XU Hongxia, LI Xiaoying, GE Hang, ZHU Qixuan, CHEN Junwei. Transcriptome-based analysis of the role of endogenous hormones in regulating flower development in loquat (Eriobotrya japonica Lindl.)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1648-1661.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230143
基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5’→3’) | 反向引物 Reverse primer(5’→3’) |
---|---|---|---|
Ejactin | c255911_g1 | GGATTTGCTGGTGATGATGC | CCGTGCTCAATGGGATACTT |
SOC1 | c131331_g2 | TTGGGAAATGGTTTGGAT | CTGCTTTGCACGACACTC |
SOC1 | c123324_g2 | GGTTCATGCCATTGTCTG | TTCTCCAACTGGTGCTCT |
LEAFY | c125200_g1 | AAGGGAGCACCCGTTCAT | CGCATCTTTGGCTTGTTGA |
FT | c132831_g2 | GGACGAGTGGTAGGTGAT | TTGGTGGACAACTTGAGAAG |
AGL24 | c118626_g2 | ACCAGCTAAAGCAGAGGA | GGAGCAGGCGGTGACATT |
AP1 | c125934_g2 | GCAAATCCTTGAACGCTAT | GAATCCAGGTCTTCTCCC |
AP2 | c129345_g1 | GAGGACGGATCAGACGAAG | TCACGGAGAACCCGAATAT |
SEP | c126115_g3 | TTTCTCCTCCTTTCTTCTTTAGC | AAGTTCCTTTGCAGGTATGTTG |
TFL | c113629_g1 | ATTGGCATCCACAGGTTT | AAGTAGACGGCAGCGACA |
CAL | c128672_g1 | GAGCATGATCAGGTGCAGGT | GTGTGTGTTTGTAGCAGCGG |
FLC | c128866_g4 | CGGGCTGATGAAGAAGGC | GCGGTGGAAGGAAGAAGAAA |
SVP | c132152_g5 | GAGCAAAGGCAGAGGATA | ACAAGATGTCGGAGCAGT |
Table 1 Differentially expressed genes and their primer sequences in qRT-PCR
基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5’→3’) | 反向引物 Reverse primer(5’→3’) |
---|---|---|---|
Ejactin | c255911_g1 | GGATTTGCTGGTGATGATGC | CCGTGCTCAATGGGATACTT |
SOC1 | c131331_g2 | TTGGGAAATGGTTTGGAT | CTGCTTTGCACGACACTC |
SOC1 | c123324_g2 | GGTTCATGCCATTGTCTG | TTCTCCAACTGGTGCTCT |
LEAFY | c125200_g1 | AAGGGAGCACCCGTTCAT | CGCATCTTTGGCTTGTTGA |
FT | c132831_g2 | GGACGAGTGGTAGGTGAT | TTGGTGGACAACTTGAGAAG |
AGL24 | c118626_g2 | ACCAGCTAAAGCAGAGGA | GGAGCAGGCGGTGACATT |
AP1 | c125934_g2 | GCAAATCCTTGAACGCTAT | GAATCCAGGTCTTCTCCC |
AP2 | c129345_g1 | GAGGACGGATCAGACGAAG | TCACGGAGAACCCGAATAT |
SEP | c126115_g3 | TTTCTCCTCCTTTCTTCTTTAGC | AAGTTCCTTTGCAGGTATGTTG |
TFL | c113629_g1 | ATTGGCATCCACAGGTTT | AAGTAGACGGCAGCGACA |
CAL | c128672_g1 | GAGCATGATCAGGTGCAGGT | GTGTGTGTTTGTAGCAGCGG |
FLC | c128866_g4 | CGGGCTGATGAAGAAGGC | GCGGTGGAAGGAAGAAGAAA |
SVP | c132152_g5 | GAGCAAAGGCAGAGGATA | ACAAGATGTCGGAGCAGT |
Fig.1 Paraffin section and phenotype of loquat flower at different development stages EjS1, Physiological differentiation stage; EjS2, Morphological differentiation stage; EjS3, Inflorescence emergence and expansion stage; EjS4, Single flower development stage; EjS5, Blossoming stage. The same as below. Bar=200 μm.
Fig.2 Changes of phytohormone content in loquat flower development process Data on the bars marked without the same letter indicated significant differences at P<0.05.
注释数据库 Annotation database | Unigene注释数量 Number of annotated unigenes | 占比 Percentage/% |
---|---|---|
NR | 115 604 | 35.80 |
NT | 92 121 | 28.53 |
KEGG | 52 186 | 16.16 |
Swissprot | 118 766 | 36.78 |
Pfam | 118 886 | 36.82 |
GO | 120 666 | 37.37 |
KOG | 79 750 | 24.70 |
Table 2 Annotation of assembled unigenes in 7 public databases
注释数据库 Annotation database | Unigene注释数量 Number of annotated unigenes | 占比 Percentage/% |
---|---|---|
NR | 115 604 | 35.80 |
NT | 92 121 | 28.53 |
KEGG | 52 186 | 16.16 |
Swissprot | 118 766 | 36.78 |
Pfam | 118 886 | 36.82 |
GO | 120 666 | 37.37 |
KOG | 79 750 | 24.70 |
Fig.3 Analysis of the differentially expressed genes during flower development process in loquat A, Hierarchical clustering of the differentially expressed genes in different flower development process; B, Up-and down-regulated DEGs at stages EjS2, EjS3, EjS4, and EjS5 compared with stage EjS1; C, Venn diagram showed the number of DEGs bewteen EjS2 vs EjS1, EjS3 vs EjS1, EjS4 vs EjS1, and EjS5 vs EjS1.
[1] | LIU Y X, SONG H W, LIU Z L, et al. Molecular characterization of loquat EjAP1 gene in relation to flowering[J]. Plant Growth Regulation, 2013, 70(3): 287-296. |
[2] | ZHANG L, YU H, LIN S Q, et al. Molecular characterization of FT and FD homologs from Eriobotrya deflexa Nakai forma koshunensis[J]. Frontiers in Plant Science, 2016, 7: 8. |
[3] | REIG C, GIL-MUÑOZ F, VERA-SIRERA F, et al. Bud sprouting and floral induction and expression of FT in loquat [Eriobotrya japonica (Thunb.) Lindl.][J]. Planta, 2017, 246(5): 915-925. |
[4] | JIANG Y Y, PENG J R, ZHU Y M, et al. The role of EjSOC1 s in flower initiation in Eriobotrya japonica[J]. Frontiers in Plant Science, 2019, 10: 253. |
[5] | XIA Y, XUE B G, SHI M, et al. Comparative transcriptome analysis of flower bud transition and functional characterization of EjAGL17 involved in regulating floral initiation in loquat[J]. PLoS One, 2020, 15(10): e0239382. |
[6] | JIANG Y Y, PENG J R, WANG M, et al. The role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in regulating flowering in loquat (Eriobotrya japonica Lindl.)[J]. International Journal of Molecular Sciences, 2019, 21(1): 248. |
[7] | JIANG Y Y, ZHU Y M, ZHANG L, et al. EjTFL1 genes promote growth but inhibit flower bud differentiation in loquat[J]. Frontiers in Plant Science, 2020, 11: 576. |
[8] | CHEN W W, WANG P, WANG D, et al. EjFRI, FRIGIDA(FRI) ortholog from Eriobotrya japonica, delays flowering in Arabidopsis[J]. International Journal of Molecular Sciences, 2020, 21(3): 1087. |
[9] | PENG J R, LI W K, YUAN Y, et al. Removal of the main inflorescence to induce reflowering of loquat[J]. Horticultural Plant Journal, 2022, 8(1): 35-43. |
[10] | 徐红霞, 李晓颖, 陈俊伟. 枇杷花发育进程中氨基酸和碳水化合物代谢的变化[J]. 园艺学报, 2020, 47(2): 233-241. |
XU H X, LI X Y, CHEN J W. Studies on the amino acid metabolism and carbohydrate metabolism variation during flower development in Eriobotrya japonica[J]. Acta Horticulturae Sinica, 2020, 47(2): 233-241. (in Chinese with English abstract) | |
[11] | LIU K D, FENG S X, PAN Y L, et al. Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple (Annona squamosa L.)[J]. Frontiers in Plant Science, 2016, 7: 1695. |
[12] | FAN Z Q, LI J Y, LI X L, et al. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea[J]. Scientific Reports, 2015, 5: 9729. |
[13] | WANG H X, YANG Y H, ZHANG Y Y, et al. Transcriptome analysis of flower development and mining of genes related to flowering time in tomato (Solanum lycopersicum)[J]. International Journal of Molecular Sciences, 2021, 22(15): 8128. |
[14] | 朱倩, 董美芳, 袁王俊, 等. ‘天香台阁’桂花花芽分化及其台阁形成过程的观察[J]. 园艺学报, 2012, 39(2): 315-322. |
ZHU Q, DONG M F, YUAN W J, et al. Studies on flower bud differentiation and leaflike proliferate-flower bud of Osmanthus fragrans ‘Tianxiang Taige’[J]. Acta Horticulturae Sinica, 2012, 39(2): 315-322. (in Chinese with English abstract) | |
[15] | YANG Y M, XU C N, WANG B M, et al. Effects of plant growth regulators on secondary wall thickening of cotton fibres[J]. Plant Growth Regulation, 2001, 35:233-237. |
[16] | ZHAO J, LI G, YI G X, et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules[J]. Analytica Chimica Acta, 2006, 571(1): 79-85. |
[17] | TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5): 511-515. |
[18] | ANDERS S, HUBER W. Differential expression analysis for sequence count data[J]. Genome Biology, 2010, 11(10): 1-12. |
[19] | XU H X, YANG Y, XIE L, et al. Involvement of multiple types of dehydrins in the freezing response in loquat (Eriobotrya japonica)[J]. PLoS One, 2014, 9(1): e87575. |
[20] | 王忠. 植物生理学[M]. 2版. 北京: 中国农业出版社, 2009: 303-304. |
[21] | BLÁZQUEZ M A, FERRÁNDIZ C, MADUEÑO F, et al. How floral meristems are built[J]. Plant Molecular Biology, 2006, 60(6): 855-870. |
[22] | HEISLER M G, OHNO C, DAS P, et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem[J]. Current Biology, 2005, 15(21): 1899-1911. |
[23] | ALABADI D, BLAZQUEZ M A, CARBONELL J, et al. Instructive roles for hormones in plant development[J]. The International Journal of Developmental Biology, 2009, 53(8/9/10): 1597-1608. |
[24] | 牛辉陵, 张洪武, 边媛, 等. 枣花分化发育过程及其内源激素动态研究[J]. 园艺学报, 2015, 42(4): 655-664. |
NIU H L, ZHANG H W, BIAN Y, et al. Flower formation and endogenous hormones dynamic in Chinese jujube[J]. Acta Horticulturae Sinica, 2015, 42(4): 655-664. (in Chinese with English abstract) | |
[25] | 王玉华, 范崇辉, 沈向, 等. 大樱桃花芽分化期内源激素含量的变化[J]. 西北农业学报, 2002, 11(1): 64-67. |
WANG Y H, FAN C H, SHEN X, et al. Changes in endogenous hormones during the flower bud differentiation of sweet cherry[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2002, 11(1): 64-67. (in Chinese with English abstract) | |
[26] | ZHANG H N, WEI Y Z, SHEN J Y, et al. Transcriptomic analysis of floral initiation in Litchi(Litchi chinensis Sonn.) based on de novo RNA sequencing[J]. Plant Cell Reports, 2014, 33(10): 1723-1735. |
[27] | 曾骧. 果树生理学[M]. 北京: 中国农业大学出版社, 1992: 176-177. |
[28] | SHAN H, CHEN S M, JIANG J F, et al. Heterologous expression of the Chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana[J]. Molecular Biotechnology, 2012, 51(2): 160-173. |
[29] | 李秉真, 孙庆林, 张建华, 等. 苹果梨花芽分化期内源激素含量的变化(简报)[J]. 植物生理学通讯, 2000, 36(1): 27-29. |
LI B Z, SUN Q L, ZHANG J H, et al. Changes of endogenous hormone content during flower bud differentiation of Pingguo pear (brief report)[J]. Plant Physiology Communications, 2000, 36(1): 27-29. (in Chinese) | |
[30] | MUTASA-GÖTTGENS E, HEDDEN P. Gibberellin as a factor in floral regulatory networks[J]. Journal of Experimental Botany, 2009, 60(7): 1979-1989. |
[31] | WILKIE J D, SEDGLEY M, OLESEN T. Regulation of floral initiation in horticultural trees[J]. Journal of Experimental Botany, 2008, 59(12): 3215-3228. |
[32] | NAKAGAWA M, HONSHO C, KANZAKI S, et al. Isolation and expression analysis of FLOWERING LOCUS T-like and gibberellin metabolism genes in biennial-bearing mango trees[J]. Scientia Horticulturae, 2012, 139: 108-117. |
[33] | 吴志祥, 周兆德, 陶忠良, 等. 妃子笑与鹅蛋荔枝花芽分化期间内源激素的变化[J]. 热带作物学报, 2005, 26(4): 42-45. |
WU Z X, ZHOU Z D, TAO Z L, et al. Changes of endogenous hormones in Feizixiao and Edan Litchi during flower bud differentiation[J]. Chinese Journal of Tropical Crops, 2005, 26(4): 42-45. (in Chinese with English abstract) | |
[34] | MCARTNEY S J, LI S H. Selective inhibition of flowering on ‘Braeburn’ apple trees with gibberellins[J]. HortScience, 1998, 33(4): 699-700. |
[35] | YAMAGUCHI N, WINTER C M, WU M F, et al. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis[J]. Science, 2014, 344(6184): 638-641. |
[36] | PEARCE S, HUTTLY A K, PROSSER I M, et al. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family[J]. BMC Plant Biology, 2015, 15(1): 1-19. |
[37] | MITCHUM M G, YAMAGUCHI S, HANADA A, et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development[J]. The Plant Journal, 2006, 45(5): 804-818. |
[38] | REGNAULT T, DAVIÈRE J M, HEINTZ D, et al. The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development[J]. The Plant Journal, 2014, 80(3): 462-474. |
[39] | D’ALOIA M, BONHOMME D, BOUCHÉ F, et al. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF[J]. The Plant Journal, 2011, 65(6): 972-979. |
[40] | 罗羽洧, 解卫华, 马凯. 无花果花芽分化与内源激素含量的关系[J]. 西北植物学报, 2007, 27(7): 1399-1404. |
LUO Y W, XIE W H, MA K. Correlation between endogenous hormones contents and flower bud differentiation stage of Ficus carica L[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(7): 1399-1404. (in Chinese with English abstract) | |
[41] | 曹尚银, 张俊昌, 魏立华. 苹果花芽孕育过程中内源激素的变化[J]. 果树科学, 2000, 17(4): 244-248. |
CAO S Y, ZHANG J C, WEI L H. Studies on the changes of endogenous hormones in the differentiation period of flower bud in apple trees[J]. Journal of Fruit Science, 2000, 17(4): 244-248. (in Chinese with English abstract) | |
[42] | NISHIMURA C, OHASHI Y, SATO S, et al. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis[J]. The Plant Cell, 2004, 16(6): 1365-1377. |
[43] | 王莹, 穆艳霞, 王锦. MADS-box基因家族调控植物花器官发育研究进展[J]. 浙江农业学报, 2021, 33(6): 1149-1158. |
WANG Y, MU Y X, WANG J. Research progress of floral development regulation by MADS-box gene family[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1149-1158. (in Chinese with English abstract) | |
[44] | SHARMA N, GEUTEN K, GIRI B S, et al. The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs[J]. Physiologia Plantarum, 2020, 170(3): 373-383. |
[45] | LI Z C, JIANG D H, HE Y H. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production[J]. Nature Plants, 2018, 4(10): 836-846. |
[46] | HONG J K, PARK S R, SUH E J, et al. Effects of overexpression of Brassica rapa SHORT VEGETATIVE PHASE gene on flowering time[J]. Korean Journal of Breeding Science, 2020, 52(3): 244-251. |
[47] | TORTI S, FORNARA F. AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition[J]. Plant Signaling & Behavior, 2012, 7(10): 1251-1254. |
[48] | GOSLIN K, ZHENG B B, SERRANO-MISLATA A, et al. Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation[J]. Plant Physiology, 2017, 174(2): 1097-1109. |
[49] | PABÓN-MORA N, AMBROSE B A, LITT A. PoppyAPETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development[J]. Plant Physiology, 2012, 158(4): 1685-1704. |
[50] | THEIßEN G. Development of floral organ identity: stories from the MADS house[J]. Current Opinion in Plant Biology, 2001, 4(1): 75-85. |
[51] | LIU X G, DINH T T, LI D M, et al. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy[J]. The Plant Journal: for Cell and Molecular Biology, 2014, 80(4): 629-641. |
[52] | LIU N, WU S, VAN HOUTEN J, et al. Down-regulation of auxin response factors 6 and 8 by microrna 167 leads to floral development defects and female sterility in tomato[J]. Journal of Experimental Botany, 2014, 65(9): 2507-2520. |
[53] | ACHARD P, CHENG H, DE GRAUWE L, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757): 91-94. |
[54] | PORRI A, TORTI S, ROMERA-BRANCHAT M, et al. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods[J]. Development, 2012, 139(12): 2198-2209. |
[55] | BONHOMME F, KURZ B, MELZER S, et al. Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba[J]. The Plant Journal, 2000, 24(1): 103-111. |
[1] | WANG Zhihao, XI Xinyan, WANG Li, YANG Shuna, GAO Zhiyuan, YIN Yiming, ZOU Hui, JIA Huijuan. Flower bud formation and physiological biochemistry characteristics of Hongmeiren citrus hybrid in northern Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1571-1581. |
[2] | ZHANG Shuhong, ZHANG Yunfeng, WU Qiuying, GAO Fengju, LI Yazi, JI Jingxin, XU Ke, FAN Yongshan. Identification and bioinformatics analysis of alcohol dehydrogenase gene family of Setosphaeria turcica [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1108-1115. |
[3] | CHEN Qianqian, TAO Wenyang, ZHENG Meiyu, MA Zijia, WANG Lu, LU Shengmin. Optimization of ethanol extraction and purification process of loquat flowers based on in vitro tyrosinase inhibitory activity and preliminary identification of active components [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1144-1153. |
[4] | LI Xiaojuan, ZHAO Wenju, ZHAO Mengliang, SHAO Dengkui, MA Yidong, REN Yanjing. Development and application of SSR markers based on transcriptome sequencing of turnip (Brassica rapa ssp. rapa) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 319-328. |
[5] | YE Meirong, HUANG Shoucheng, WANG Xiaopeng, LIU Airong, CUI Feng, KANG Jian. Transcriptome analysis of leaves of wild Portulaca oleracea L. based on Iso-Seq technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 67-78. |
[6] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[7] | GU Xianbin, LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin. Regulation effect of melatonin pretreatment on waterlogging tolerance in peach seedling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1911-1924. |
[8] | WANG Siliang, SHAO Yue, YAN Chengjin. Transcriptome analysis of Spodoptera furgiperda during corn-wheat host alternation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1236-1247. |
[9] | LIU Chen, XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 870-878. |
[10] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[11] | LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516. |
[12] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[13] | LIANG Qianrong, ZHENG Tianlun, CHEN Xiaoming, ZHU Ningyu, ZHENG Xiaoye, HE Runzhen, CAO Feifei, XUE Huili, DING Xueyan. Effects of feeding with maggot protein added dietaries on immune and metabolic responses in liver and serum of soft-shelled turtles Pelodiscus sinensis [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2172-2181. |
[14] | YIN Minghua, BAI Li, CHEN Shumin, CHENG Jiahui, FENG Liwen. Transcriptome analysis of virus-free microtubers of Dioscorea polystachya Turczaninow. cv. Guangfeng Qianjin and Dioscorea polystachya Turczaninow. cv. Tiegun [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2209-2219. |
[15] | LI Hongmei, LU Shengmin, ZHENG Meiyu, CAO Feng, ZHANG Wenjuan, DONG Mingsheng. Comparison on qualitative characters of fruit paste processed using two main loquat varieties cultivated in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2277-2285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||