›› 2020, Vol. 32 ›› Issue (6): 1133-1140.DOI: 10.3969/j.issn.1004-1524.2020.06.21
• Review • Previous Articles
YUAN Xilei, WANG Zhenshan, JIA Xiaoping*, SANG Luman, LI Jianfeng, ZHANG Bo
Received:2019-05-31
Online:2020-06-25
Published:2020-06-24
CLC Number:
YUAN Xilei, WANG Zhenshan, JIA Xiaoping, SANG Luman, LI Jianfeng, ZHANG Bo. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family[J]. , 2020, 32(6): 1133-1140.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2020.06.21
| [1] 周琴, 张思思, 包满珠, 等. 高等植物成花诱导的分子机理研究进展[J]. 分子植物育种, 2018, 16(11): 3681-3692. ZHOU Q, ZHANG S S, BAO M Z, et al.Advances on molecular mechanism of floral initiation in higher plants[J]. [2] 彭凌涛. 控制拟南芥和水稻开花时间光周期途径的分子机制[J]. 植物生理学通讯, 2006, 42(6): 1021-1031. PENG L T.Molecular mechanism of flowering time controlling photoperiod pathway in [3] PAJORO A, BIEWERS S, DOUGALI E, et al.The (r)evolution of gene regulatory networks controlling [4] D'ALOIA M, BONHOMME D, BOUCHÉ F, et al. Cytokinin promotes flowering of [5] DOMAGALSKA M A, SCHOMBURG F M, AMASINO R M, et al.Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering[J]. [6] LEE J H, YOO S J, PARK S H, et al.Role of SVP in the control of flowering time by ambient temperature in [7] LEE Y S, JEONG D H, LEE D Y, et al. [8] CASTRO MARÍN I, LOEF I, BARTETZKO L, et al. Nitrate regulates floral induction in [9] WAHL V, PONNU J, SCHLERETH A, et al.Regulation of flowering by trehalose-6-phosphate signaling in [10] WU G, PARK M Y, CONWAY S R, et al.The sequential action of miR156 and miR172 regulates developmental timing in [11] 李计红. 拟南芥内源油菜素内酯对开花时间的影响及机理研究[D]. 兰州: 兰州大学, 2011. LI J H.Studies on influence of endogenous brassinosteroid on the flowering-time and the mechanism in [12] ALABADÍ D, YANOVSKY M J, MÁS P, et al. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in [13] ABE M.FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. [14] KARDAILSKY I.Activation tagging of the floral inducer FT[J]. [15] NAGY F, KIRCHER S, SCHÄFER E. Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes[J]. [16] 付建新, 王翊, 戴思兰. 高等植物CO基因研究进展[J]. 分子植物育种, 2010, 8(5): 1008-1016. FU J X, WANG Y, DAI S L.Advanced research on CO genes in higher plants[J]. [17] 樊丽娜, 邓海华, 齐永文. 植物CO基因研究进展[J]. 西北植物学报, 2008, 28(6): 1281-1287. FAN L N, DENG H H, QI Y W.Research advances in CO genes of plants[J]. [18] YANOVSKY M J, KAY S A.Molecular basis of seasonal time measurement in [19] KHANNA R, KRONMILLER B, MASZLE D R, et al.The [20] FORNARA F, PANIGRAHI K C S, GISSOT L, et al. [21] KIM S K, PARK H Y, JANG Y H, et al. The sequence variation responsible for the functional difference between the CONSTANS protein,the CONSTANS-like (COL) 1 and COL2 proteins, resides mostly in the region encoded by their first exons[J]. [22] TSUJI H, TAMAKI S, KOMIYA R, et al.Florigen and the photoperiodic control of flowering in rice[J]. [23] YANO M, KATAYOSE Y, ASHIKARI M, et al.Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the [24] LEE Y S, AN G.OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short day in rice[J]. [25] XUE W Y, XING Y Z, WENG X Y, et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. [26] 徐铨, 奥本裕, 王晓雪. 水稻开花期调控分子机理研究进展[J]. 植物遗传资源学报, 2014, 15(1): 129-136. XU Q, AO B Y, WANG X X.Research progress on regulatory molecular mechanisms of flowering time in rice[J]. [27] DOI K.Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. [28] SONG, WANG G F, HU Y, et al. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes[J]. [29] 宋远丽, 高志超, 栾维江. 温度和光周期对水稻抽穗期调控的交互作用[J]. 中国科学:生命科学, 2012, 42(4): 316-325. SONG Y L, GAO Z C, LUAN W J.Interaction between temperature and photoperiod in regulation of flowering time in rice[J]. [30] OLSON S N, RITTER K, ROONEY W, et al.High biomass yield energy [31] MURPHY R L, KLEIN R R, MORISHIGE D T, et al.Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in [32] KLEIN R R, MILLER F R, DUGAS D V, et al.Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum[J]. [33] YANG S S, MURPHY R L, MORISHIGE D T, et al.Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12[J]. [34] BENNETZEN J L, SCHMUTZ J, WANG H, et al.Reference genome sequence of the model plant [35] ZHANG G Y, LIU X, QUAN Z W, et al.Genome sequence of foxtail millet ( [36] 贾小平, 袁玺垒, 李剑峰, 等. 不同光温条件谷子资源主要农艺性状的综合评价[J]. 中国农业科学, 2018, 51(13): 2429-2441. JIA X P, YUAN X L, LI J F, et al.Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions[J]. [37] 谢丽莉. 谷子光周期敏感相关性状的QTL定位与分析[D]. 郑州: 河南农业大学, 2012. XIE L L.OTL mapping and analysis for the related traits of photoperiod sensitivity in [38] MAURO-HERRERA M, WANG X W, BARBIER H, et al.Genetic control and comparative genomic analysis of flowering time in [39] LIU H H, LIU H Q, ZHOU L N, et al.Parallel domestication of the [40] ROBSON F, COSTA M M R, HEPWORTH S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants[J]. [41] STRAYER C.Cloning of the [42] COCKRAM J, JONES H, LEIGH F J, et al.Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity[J]. [43] COCKRAM J, THIEL T, STEUERNAGEL B, et al.Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae[J]. [44] SALOMÉ P A, MCCLUNG C R.PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the [45] 陈华夏, 申国境, 王磊, 等. 4个物种CCT结构域基因家族的序列进化分析[J]. 华中农业大学学报, 2010, 29(6): 669-676. CHEN H X, SHEN G J, WANG L, et al.Sequence evolution analysis of CCT domain gene family in rice, [46] YOO S K, CHUNG K S, KIM J, et al.CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in [47] CHENG X F, WANG Z Y.Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in [48] LEDGER S, STRAYER C, ASHTON F, et al.Analysis of the function of two circadian-regulated CONSTANS-LIKE genes[J]. [49] HAYAMA R, YOKOI S, TAMAKI S, et al.Adaptation of photoperiodic control pathways produces short-day flowering in rice[J]. [50] WU W, ZHENG X M, LU G, et al.Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia[J]. [51] 薛为亚. 水稻产量相关基因Ghd7的分离与鉴定[D]. 武汉: 华中农业大学, 2008. XUE W Y.Isolation and characterization of a pleiotropic gene, [52] LIU J H, SHEN J Q, XU Y, et al.Ghd2, aCONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice[J]. [53] 刘海洋. 水稻多效性基因Ghd7.1的克隆与功能分析[D]. 武汉: 华中农业大学, 2016. LIU H Y.Cloning and functional analysis of rice pleiotropic gene [54] 谭俊杰. 水稻CONSTANS-like基因OsCOL10作用于光周期开花途径的分子遗传与生化分析[D]. 长沙: 湖南大学, 2015. TAN J J.The molecular genetic and biochemical study of CONSTANS-like gene [55] CAMPOLI C, DROSSE B, SEARLE I, et al.Functional characterisation of HvCO1, the barley ( [56] HUANG C, SUN H Y, XU D Y, et al.ZmCCT9 enhances maize adaptation to higher latitudes[J]. [57] LI Y P, TONG L X, DENG L L, et al.Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids[J]. [58] YANG S S, WEERS B D, MORISHIGE D T, et al.CONSTANS is a photoperiod regulated activator of flowering in [59] MURPHY R L, MORISHIGE D T, BRADY J A, et al. Ghd7 (Ma 6) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production[J]. [60] BRUTNELL T P, WANG L, SWARTWOOD K, et al. |
| [1] | CAO Yongqing, YAO Xiaohua, WANG Kailiang, REN Huadong. Interannual stability of main traits for Camellia oleifera Abel. [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1624-1633. |
| [2] | LI Xing, LIU Yan, GAO Jianzhou. Cloning and expression analysis of homologous FLOWERING LOCUS T(FT) genes from three species of Paeonia spp. [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 90-102. |
| [3] | DENG Lijun, WANG Tie, HU Juan, YAO Yuan, SUN Guochao, XIONG Bo, LIAO Ling, WANG Zhihui. Biological characterization of flowering and pollination of Prunus salicina Lindl.cv. ‘Fengtangli’ [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1320-1328. |
| [4] | ZHANG Siyi, CUI Bowen, WANG Jialing, LIN Jixiang, YANG Qingjie. Research progress on physiological and molecular responses of plant roots under abiotic stress [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2391-2401. |
| [5] | CHEN Guohu, LI Guang, WEN Hongwei, YIN Qian, WU Siwen, WANG Ying, LIU Xueqing, ZHAO Longlong, KHAN Afrasyab, GUI Shangzhi, TANG Xiaoyan, WANG Chenggang. Genome-wide identification and expression analysis of key genes response to vernalization in radish (Raphanus sativus) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1626-1637. |
| [6] | XIN Xiaoyue, LIU Peng. Research progress on molecular mechanisms of seed dormancy and germination regulated by plant hormones [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1485-1496. |
| [7] | ZHANG Yuhan, ZHANG Jitang, MA Kaifeng, ZHANG Ruoxi, WEI Linxin, LI Qingwei. Chilling and heat requirements of different Prunus mume cultivars [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1080-1087. |
| [8] | LIU Xiaofen, LING Xiaoqi, XIANG Lili, YU Lu, SHEN Hong, LI Fang. Effect of temperature and gibberellin on flowering regulation of Cymbidium goeringii [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 355-363. |
| [9] | JIN Baoxia, WANG Weijie, ZHU Xiaolin, WANG Xian, WEI Xiaohong. Effects of different hormone combinations on tomato in vitro regeneration and related gene expression [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1889-1900. |
| [10] | LI Chunmei, WAN Xiaorong, GUAN Ziying, LAI Xiaofeng, LUO Kaiqing, LIU Kai. Progress of long non-coding RNA regulating growth, development and response to stress in plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2066-2076. |
| [11] | ZHANG Zhiguo, CONG Lin, ZHANG Shijie, LI Rongguang, ZOU Weina, CHI Fa'an, ZHANG Bao, JIANG Yuping. Effects of root-zone temperature on growth, development and flowering of Hemerocallis fulva [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1005-1014. |
| [12] | ZHAO Longlong, WEI Jie, XIE Yingping, LI Jie. Preliminary research on wing dimorphism of pear psylla (Cacopsylla chinensis) and its influence factor [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 120-127. |
| [13] | TAO Peng, ZHAO Yanting, YUE Zhichen, LEI Juanli, LI Biyuan. Analysis of mRNA transport of BcSVP of Chinese flowering cabbage in heterograft [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1192-1198. |
| [14] | WANG Ying, MU Yanxia, WANG Jin. Research progress of floral development regulation by MADS-box gene family [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1149-1158. |
| [15] | DU Junli, WU Degong, ZHAN Qiuwen, HUANG Baohong, NI He. Effects of different photoperiod conditions on the nutritional contents and related enzyme activities of sorghum leaves and Melanaphis sacchari [J]. , 2019, 31(7): 1119-1127. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||