浙江农业学报 ›› 2022, Vol. 34 ›› Issue (11): 2340-2347.DOI: 10.3969/j.issn.1004-1524.2022.11.03
袁崇渊(), 祝愿飞, 陈霞, 朱婵, 王毅, 陶海燕, 余娇娇()
收稿日期:
2022-05-06
出版日期:
2022-11-25
发布日期:
2022-11-29
通讯作者:
余娇娇
作者简介:
*余娇娇,E-mail: jiaojiaoyu@yxnu.edu.cn基金资助:
YUAN Chongyuan(), ZHU Yuanfei, CHEN Xia, ZHU Chan, WANG Yi, TAO Haiyan, YU Jiaojiao()
Received:
2022-05-06
Online:
2022-11-25
Published:
2022-11-29
Contact:
YU Jiaojiao
摘要:
氮(N)是控制玉米产量的主要限制性因素,玉米对氮素的利用效率可以通过增加碳(C)的有效性得以改善。玉米转运蛋白ZmSTP1和ZmAAP2在植物C/N产物的运输和卸载过程中起着重要作用,且两个基因的启动子区域均含有一个硝酸盐响应顺式元件(nitrate responsive cis element,NRE)。NIN-like protein(NLP)是一类保守的植物特异性转录因子,已在多种植物被证实在调控N响应中发挥关键作用,其中玉米ZmNLP5是介导氮信号转导和代谢分子网络的中枢基因之一。为了明确ZmNLP5是否能与ZmSTP1和ZmAAP2基因启动子区域的NRE结合,以玉米B73为实验材料,首次利用酵母单杂交技术检测ZmNLP5与ZmSTP1、ZmAAP2基因启动子区域的相互作用。结果表明,将pGADT7-ZmNLP5-1/2分别转化Y1H (pAbAi-ZmSTP1)和Y1H(pAbAi-ZmAAP2)菌株后,在SD/-Leu培养基上均有菌落生长,在含AbA抗生素浓度为200 ng·mL-1的SD/-Leu培养基中只有Y1H(pAbAi-ZmAAP2/pGADT7-ZmNLP5-1 )菌株能正常生长。结果说明,ZmNLP5只与ZmAAP2基因启动子区域相互作用,ZmNLP5是能与ZmAAP2基因启动子NRE结合的转录因子。本研究结果不仅有助于进一步了解玉米硝酸盐信号转导的调控途径,也为今后其他植物硝酸盐信号转导的研究提供理论依据。
中图分类号:
袁崇渊, 祝愿飞, 陈霞, 朱婵, 王毅, 陶海燕, 余娇娇. 玉米ZmNLP5与ZmSTP1、ZmAAP2基因启动子区域相互作用的鉴定[J]. 浙江农业学报, 2022, 34(11): 2340-2347.
YUAN Chongyuan, ZHU Yuanfei, CHEN Xia, ZHU Chan, WANG Yi, TAO Haiyan, YU Jiaojiao. Identification of the interaction between ZmNLP5 and promoters of ZmSTP1, ZmAAP2 gene in maize[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2340-2347.
基因 Gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|
ZmSTP1 | CTGTAGAGCGTAAAACTAATATATCA | AAAATGACTAGCATTTTGGGATGG |
ZmAAP2 | TTGTTTGATCTTGATTGATGAAGTAATAA | ATAGAAAATAGCATAAGATATTCCAAGTAC |
ZmNLP5-1 | CTGAACGGTCATGGAGGAGAC | CTTGGCGAGCTTGCGGAAC |
ZmNLP5-2 | AGAGTGGCCTCCTCCCAAG | CTCCTGGAAGTCGGCGTC |
表1 克隆引物序列
Table 1 The primer sequences for clone
基因 Gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|
ZmSTP1 | CTGTAGAGCGTAAAACTAATATATCA | AAAATGACTAGCATTTTGGGATGG |
ZmAAP2 | TTGTTTGATCTTGATTGATGAAGTAATAA | ATAGAAAATAGCATAAGATATTCCAAGTAC |
ZmNLP5-1 | CTGAACGGTCATGGAGGAGAC | CTTGGCGAGCTTGCGGAAC |
ZmNLP5-2 | AGAGTGGCCTCCTCCCAAG | CTCCTGGAAGTCGGCGTC |
图2 诱饵载体线性化产物琼脂糖凝胶电泳图 M, 10 000 plus DNA marker; 1,未经酶切的pAbAi-ZmAAP2质粒;2,单酶切后的pAbAi-ZmAAP2质粒;3,未经酶切的pAbAi-ZmSTP1质粒;4,单酶切后的pAbAi-ZmSTP1质粒。
Fig.2 Agarose gel electrophoresis image of the linearized products of bait M, 10 000 plus DNA marker;1, pAbAi-ZmAAP2 plasmid without enzyme digestion; 2, pAbAi-ZmAAP2 plasmid after single enzyme digestion; 3, pAbAi-ZmSTP1 plasmid without enzyme digestion; 4, pAbAi-ZmSTP1 plasmid after single enzyme digestion.
图3 诱饵酵母AbAr背景表达水平检测 A,诱饵菌株Y1H(pAbAi-ZmSTP1);B,诱饵菌株Y1H(pAbAi-ZmAAP2)。
Fig.3 Detection of AbAr expression level in bait yeast strain A, Bait strain of Y1H(pAbAi-ZmSTP1); B, Bait strain of Y1H(pAbAi-ZmAAP2).
图4 酵母单杂检测诱饵DNA和猎物蛋白的相互作用 A,阴性对照Y1H(AbAi-P53/pGADT7);B,阳性对照Y1H(AbAi-P53/pGADT7-P53);C,Y1H(pAbAi-ZmSTP1/pGADT7-ZmNLP5-1)相互作用图;D,Y1H(pAbAi-ZmSTP1/pGADT7-ZmNLP5-2)相互作用图;E,Y1H(pAbAi-ZmAAP2/pGADT7-ZmNLP5-1)相互作用图;F,Y1H(pAbAi-ZmAAP2/pGADT7-ZmNLP5-2)相互作用图。
Fig.4 Interaction between bait DNA and prey protein was detected by yeast one-hybrid system A, Negative control of Y1H(AbAi-P53/pGADT7); B, Positive control of Y1H(AbAi-P53/pGADT7-P53); C, The interaction of pGADT7-ZmNLP5-1and Y1H(pAbAi-ZmSTP1); D, The interaction of pGADT7-ZmNLP5-2 and Y1H(pAbAi-ZmSTP1); E, The interaction of pGADT7-ZmNLP5-1 and Y1H(pAbAi-ZmAAP2); F, The interaction of pGADT7-ZmNLP5-2 and Y1H(pAbAi-ZmAAP2).
[1] |
ZHANG L, TAN Q, LEE R, et al. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis[J]. The Plant Cell, 2010, 22(11): 3603-3620.
DOI URL |
[2] |
PERCHLIK M, TEGEDER M. Leaf amino acid supply affects photosynthetic and plant nitrogen use efficiency under nitrogen stress[J]. Plant Physiology, 2018, 178(1): 174-188.
DOI PMID |
[3] | TEGEDER M, RENTSCH D, PATRICK J W. Organic carbon and nitrogen transporters[M]// The plant plasma membrane. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 331-352. |
[4] |
BÜTTNER M. The monosaccharide transporter (-like) gene family in Arabidopsis[J]. FEBS Letters, 2007, 581(12): 2318-2324.
DOI URL |
[5] |
BOORER K J, LOO D D, WRIGHT E M. Steady-state and presteady-state kinetics of the H+/hexose cotransporter (STP1) from Arabidopsis thaliana expressed in Xenopus oocytes[J]. Journal of Biological Chemistry, 1994, 269(32): 20417-20424.
DOI URL |
[6] | SHERSON S M, HEMMANN G, WALLACE G, et al. Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars[J]. The Plant Journal, 2000, 24(6): 849-857. |
[7] | BÜTTNER M. The Arabidopsis sugar transporter (AtSTP) family: an update[J]. Plant Biology (Stuttgart, Germany), 2010, 12(Suppl 1): 35-41. |
[8] |
STADLER R, BÜTTNER M, ACHE P, et al. Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis[J]. Plant Physiology, 2003, 133(2): 528-537.
DOI URL |
[9] |
SLEWINSKI T L. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective[J]. Molecular Plant, 2011, 4(4): 641-662.
DOI PMID |
[10] |
SHERSON S M, ALFORD H L, FORBES S M, et al. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis[J]. Journal of Experimental Botany, 2003, 54(382): 525-531.
DOI URL |
[11] | SCHOFIELD R A, BI Y M, KANT S, et al. Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings[J]. Plant, Cell & Environment, 2009, 32(3): 271-285. |
[12] |
OKUMOTO S, KOCH W, TEGEDER M, et al. Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3[J]. Journal of Experimental Botany, 2004, 55(406): 2155-2168.
PMID |
[13] |
FISCHER W N, ANDRÉ B, RENTSCH D, et al. Amino acid transport in plants[J]. Trends in Plant Science, 1998, 3(5): 188-195.
DOI URL |
[14] |
FISCHER W N, KWART M, HUMMEL S, et al. Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis[J]. Journal of Biological Chemistry, 1995, 270(27): 16315-16320.
DOI URL |
[15] |
FORSUM O, SVENNERSTAM H, GANETEG U, et al. Capacities and constraints of amino acid utilization in Arabidopsis[J]. The New Phytologist, 2008, 179(4): 1058-1069.
DOI URL |
[16] |
HIRNER B, FISCHER W N, RENTSCH D, et al. Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis[J]. The Plant Journal, 1998, 14(5): 535-544.
DOI URL |
[17] | ORTIZ-LOPEZ A, CHANG H C, BUSH D R. Amino acid transporters in plants[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2000, 1465(1/2): 275-280. |
[18] |
WAN Y F, KING R, MITCHELL R A C, et al. Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress[J]. Scientific Reports, 2017, 7: 5461.
DOI PMID |
[19] |
KONISHI M, YANAGISAWA S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling[J]. Nature Communications, 2013, 4: 1617.
DOI URL |
[20] |
KONISHI M, YANAGISAWA S. Identification of a nitrate-responsive Cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response[J]. The Plant Journal, 2010, 63(2): 269-282.
DOI URL |
[21] |
GE M, LIU Y H, JIANG L, et al. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response[J]. Plant Growth Regulation, 2018, 84(1): 95-105.
DOI URL |
[22] |
GE M, WANG Y, LIU Y, et al. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize[J]. The Plant Journal, 2020, 102(2): 353-368.
DOI PMID |
[23] | SUMIMOTO H, KAMAKURA S, ITO T. Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants[J]. Science's STKE, 2007, 2007(401): re6. |
[24] |
CHARDIN C, GIRIN T, ROUDIER F, et al. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development[J]. Journal of Experimental Botany, 2014, 65(19): 5577-5587.
DOI PMID |
[25] |
CASTAINGS L, CAMARGO A, POCHOLLE D, et al. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis[J]. The Plant Journal, 2009, 57(3): 426-435.
DOI URL |
[26] |
KONISHI M, YANAGISAWA S. The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis[J]. Plant and Cell Physiology, 2011, 52(5): 824-836.
DOI URL |
[27] |
YAN D W, EASWARAN V, CHAU V, et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis[J]. Nature Communications, 2016, 7: 13179.
DOI URL |
[28] |
MARCHIVE C, ROUDIER F, CASTAINGS L, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4: 1713.
DOI PMID |
[29] |
JIAN W, ZHANG D W, ZHU F, et al. Nitrate reductase-dependent nitric oxide production is required for regulation alternative oxidase pathway involved in the resistance to Cucumber mosaic virus infection in Arabidopsis[J]. Plant Growth Regulation, 2015, 77(1): 99-107.
DOI URL |
[30] |
ALVAREZ J M, SCHINKE A L, BROOKS M D, et al. Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade[J]. Nature Communications, 2020, 11: 1157.
DOI PMID |
[31] |
GUAN P, RIPOLL J J, WANG R, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2419-2424.
DOI PMID |
[32] |
LIU K H, NIU Y J, KONISHI M, et al. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316.
DOI URL |
[33] |
BI Y M, MEYER A, DOWNS G S, et al. High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation[J]. BMC Genomics, 2014, 15: 77.
DOI URL |
[34] | ZHANG H, FORDE B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Microbiology Spectrum, 1998, 279(5349): 407-409. |
[35] |
GOJON A, NACRY P, DAVIDIAN J C. Root uptake regulation: a central process for NPS homeostasis in plants[J]. Current Opinion in Plant Biology, 2009, 12(3): 328-338.
DOI PMID |
[36] | CRAWFORD N M. Nitrate: nutrient and signal for plant growth[J]. The Plant Cell, 1995, 7(7): 859-868. |
[37] |
PRICE J, LAXMI A, ST MARTIN S K, et al. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis[J]. The Plant Cell, 2004, 16(8): 2128-2150.
DOI URL |
[38] |
GÁLVEZ J H, TAI H H, LAGÜE M, et al. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs[J]. Scientific Reports, 2016, 6: 26090.
DOI URL |
[39] |
LUO Z P, LIN J S, ZHU Y L, et al. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in Medicago truncatula[J]. Plant Communications, 2021, 2(3): 100183.
DOI URL |
[40] |
GAO Y Y, QUAN S X, LYU B, et al. Barley transcription factor HvNLP2 mediates nitrate signaling and affects nitrogen use efficiency[J]. Journal of Experimental Botany, 2021, 73(3): 770-783.
DOI PMID |
[41] | ZHAO L, LIU F, CRAWFORD N M, et al. Molecular regulation of nitrate responses in plants[J]. International Journal of Molecular Sciences, 2018, 19(7): E2039. |
[42] |
LIU F, XU Y, CHANG K, et al. The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis[J]. The New Phytologist, 2019, 224(1): 117-131.
DOI URL |
[43] |
ZHANG T T, KANG H, FU L L, et al. Nin-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of tryptophan aminotransferase related 2[J]. Plant Science, 2021, 303: 110771.
DOI URL |
[44] |
MENG X, YU X, WU Y, et al. Chromatin remodeling protein ZmCHB101 regulates nitrate-responsive gene expression in maize[J]. Frontiers in Plant Science, 2020, 11: 52.
DOI PMID |
[45] |
CAO H, QI S, SUN M, et al. Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation[J]. Frontiers in Plant Science, 2017, 8: 1703.
DOI URL |
[1] | 孟繁昊, 杨恒山, 张瑞富, 张玉芹, 李维敏, 张雨珊, 张明伟. 灌溉方式对西辽河平原玉米产量和水氮利用效率的影响[J]. 浙江农业学报, 2022, 34(9): 1826-1836. |
[2] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
[3] | 任梦云, 杜龙岗, 王美兴, 黄益峰. 糯玉米可溶性糖组分特征与采后品质特性[J]. 浙江农业学报, 2022, 34(6): 1133-1140. |
[4] | 胡开博, 杨清夏, 李扬, 吴开贤, 赵平, 龙光强. 化肥减氮配施氨基酸肥料对春玉米生产的影响[J]. 浙江农业学报, 2022, 34(4): 661-670. |
[5] | 贾利强, 赵秋芳, 陈曙, 丁波. 玉米转录因子bZIP G亚家族基因的表达模式[J]. 浙江农业学报, 2022, 34(2): 221-231. |
[6] | 崔文芳, 陈静, 鲁富宽, 秦丽, 秦德志, 王利平, 高聚林. 生物炭结合氮肥减量对玉米产量和氮效率的影响[J]. 浙江农业学报, 2022, 34(2): 248-254. |
[7] | 王继纯, 李瑞莉, 王姣玲, 邵俊雯, 赵红玉. 水稻质体磷酸盐转运体OsPPT家族成员的功能分析[J]. 浙江农业学报, 2022, 34(11): 2329-2339. |
[8] | 高鑫, 杨恒山, 张瑞富, 张玉芹, 李锐, 张明伟. 浅埋滴灌水肥优化高产模式下春玉米产量与根冠特征差异性[J]. 浙江农业学报, 2022, 34(1): 1-9. |
[9] | 蔡方阳, 赵懿琛, 李义, 赵德刚. 杜仲ABC转运蛋白基因家族成员鉴定与分析[J]. 浙江农业学报, 2021, 33(9): 1581-1591. |
[10] | 单长林, 周圆, 任琰, 季文彬, 李孝军. 玉米内州萎蔫病菌荧光重组酶介导等温扩增检测方法的建立[J]. 浙江农业学报, 2021, 33(9): 1676-1685. |
[11] | 王佳, 慕瑞瑞, 杨乔乔, 刘伟, 张月荷, 康建宏. 滴灌水肥一体化下施钾量对宁夏春玉米叶绿素荧光特性与产量的影响[J]. 浙江农业学报, 2021, 33(8): 1347-1357. |
[12] | 江宇航, 辛维岗, 张棋麟, 邓先余, 王峰, 林连兵. 霉变饲用玉米真菌的分离、鉴定与乳酸菌素对其的防霉抑菌效果[J]. 浙江农业学报, 2021, 33(7): 1283-1291. |
[13] | 张矞勋, 王磊, 璩向宁, 曹媛, 吴梦瑶, 于瑞鑫, 孙源. GF-1/WFV在玉米叶面积指数估算中的应用研究[J]. 浙江农业学报, 2021, 33(5): 861-872. |
[14] | 杨梅, 胡小兰, 申涛, 谭康, 刘代铃, 邱红波. 玉米第8染色体单片段代换系的构建与灰斑病抗性材料筛选[J]. 浙江农业学报, 2021, 33(3): 383-389. |
[15] | 瞿展, 杨立桃. 转基因玉米TC1507质粒DNA标准物质的研制[J]. 浙江农业学报, 2021, 33(3): 390-395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||