浙江农业学报 ›› 2022, Vol. 34 ›› Issue (11): 2340-2347.DOI: 10.3969/j.issn.1004-1524.2022.11.03
袁崇渊(
), 祝愿飞, 陈霞, 朱婵, 王毅, 陶海燕, 余娇娇(
)
收稿日期:2022-05-06
出版日期:2022-11-25
发布日期:2022-11-29
作者简介:*余娇娇,E-mail: jiaojiaoyu@yxnu.edu.cn通讯作者:
余娇娇
基金资助:
YUAN Chongyuan(
), ZHU Yuanfei, CHEN Xia, ZHU Chan, WANG Yi, TAO Haiyan, YU Jiaojiao(
)
Received:2022-05-06
Online:2022-11-25
Published:2022-11-29
Contact:
YU Jiaojiao
摘要:
氮(N)是控制玉米产量的主要限制性因素,玉米对氮素的利用效率可以通过增加碳(C)的有效性得以改善。玉米转运蛋白ZmSTP1和ZmAAP2在植物C/N产物的运输和卸载过程中起着重要作用,且两个基因的启动子区域均含有一个硝酸盐响应顺式元件(nitrate responsive cis element,NRE)。NIN-like protein(NLP)是一类保守的植物特异性转录因子,已在多种植物被证实在调控N响应中发挥关键作用,其中玉米ZmNLP5是介导氮信号转导和代谢分子网络的中枢基因之一。为了明确ZmNLP5是否能与ZmSTP1和ZmAAP2基因启动子区域的NRE结合,以玉米B73为实验材料,首次利用酵母单杂交技术检测ZmNLP5与ZmSTP1、ZmAAP2基因启动子区域的相互作用。结果表明,将pGADT7-ZmNLP5-1/2分别转化Y1H (pAbAi-ZmSTP1)和Y1H(pAbAi-ZmAAP2)菌株后,在SD/-Leu培养基上均有菌落生长,在含AbA抗生素浓度为200 ng·mL-1的SD/-Leu培养基中只有Y1H(pAbAi-ZmAAP2/pGADT7-ZmNLP5-1 )菌株能正常生长。结果说明,ZmNLP5只与ZmAAP2基因启动子区域相互作用,ZmNLP5是能与ZmAAP2基因启动子NRE结合的转录因子。本研究结果不仅有助于进一步了解玉米硝酸盐信号转导的调控途径,也为今后其他植物硝酸盐信号转导的研究提供理论依据。
中图分类号:
袁崇渊, 祝愿飞, 陈霞, 朱婵, 王毅, 陶海燕, 余娇娇. 玉米ZmNLP5与ZmSTP1、ZmAAP2基因启动子区域相互作用的鉴定[J]. 浙江农业学报, 2022, 34(11): 2340-2347.
YUAN Chongyuan, ZHU Yuanfei, CHEN Xia, ZHU Chan, WANG Yi, TAO Haiyan, YU Jiaojiao. Identification of the interaction between ZmNLP5 and promoters of ZmSTP1, ZmAAP2 gene in maize[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2340-2347.
| 基因 Gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
|---|---|---|
| ZmSTP1 | CTGTAGAGCGTAAAACTAATATATCA | AAAATGACTAGCATTTTGGGATGG |
| ZmAAP2 | TTGTTTGATCTTGATTGATGAAGTAATAA | ATAGAAAATAGCATAAGATATTCCAAGTAC |
| ZmNLP5-1 | CTGAACGGTCATGGAGGAGAC | CTTGGCGAGCTTGCGGAAC |
| ZmNLP5-2 | AGAGTGGCCTCCTCCCAAG | CTCCTGGAAGTCGGCGTC |
表1 克隆引物序列
Table 1 The primer sequences for clone
| 基因 Gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
|---|---|---|
| ZmSTP1 | CTGTAGAGCGTAAAACTAATATATCA | AAAATGACTAGCATTTTGGGATGG |
| ZmAAP2 | TTGTTTGATCTTGATTGATGAAGTAATAA | ATAGAAAATAGCATAAGATATTCCAAGTAC |
| ZmNLP5-1 | CTGAACGGTCATGGAGGAGAC | CTTGGCGAGCTTGCGGAAC |
| ZmNLP5-2 | AGAGTGGCCTCCTCCCAAG | CTCCTGGAAGTCGGCGTC |
图2 诱饵载体线性化产物琼脂糖凝胶电泳图 M, 10 000 plus DNA marker; 1,未经酶切的pAbAi-ZmAAP2质粒;2,单酶切后的pAbAi-ZmAAP2质粒;3,未经酶切的pAbAi-ZmSTP1质粒;4,单酶切后的pAbAi-ZmSTP1质粒。
Fig.2 Agarose gel electrophoresis image of the linearized products of bait M, 10 000 plus DNA marker;1, pAbAi-ZmAAP2 plasmid without enzyme digestion; 2, pAbAi-ZmAAP2 plasmid after single enzyme digestion; 3, pAbAi-ZmSTP1 plasmid without enzyme digestion; 4, pAbAi-ZmSTP1 plasmid after single enzyme digestion.
图3 诱饵酵母AbAr背景表达水平检测 A,诱饵菌株Y1H(pAbAi-ZmSTP1);B,诱饵菌株Y1H(pAbAi-ZmAAP2)。
Fig.3 Detection of AbAr expression level in bait yeast strain A, Bait strain of Y1H(pAbAi-ZmSTP1); B, Bait strain of Y1H(pAbAi-ZmAAP2).
图4 酵母单杂检测诱饵DNA和猎物蛋白的相互作用 A,阴性对照Y1H(AbAi-P53/pGADT7);B,阳性对照Y1H(AbAi-P53/pGADT7-P53);C,Y1H(pAbAi-ZmSTP1/pGADT7-ZmNLP5-1)相互作用图;D,Y1H(pAbAi-ZmSTP1/pGADT7-ZmNLP5-2)相互作用图;E,Y1H(pAbAi-ZmAAP2/pGADT7-ZmNLP5-1)相互作用图;F,Y1H(pAbAi-ZmAAP2/pGADT7-ZmNLP5-2)相互作用图。
Fig.4 Interaction between bait DNA and prey protein was detected by yeast one-hybrid system A, Negative control of Y1H(AbAi-P53/pGADT7); B, Positive control of Y1H(AbAi-P53/pGADT7-P53); C, The interaction of pGADT7-ZmNLP5-1and Y1H(pAbAi-ZmSTP1); D, The interaction of pGADT7-ZmNLP5-2 and Y1H(pAbAi-ZmSTP1); E, The interaction of pGADT7-ZmNLP5-1 and Y1H(pAbAi-ZmAAP2); F, The interaction of pGADT7-ZmNLP5-2 and Y1H(pAbAi-ZmAAP2).
| [1] |
ZHANG L, TAN Q, LEE R, et al. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis[J]. The Plant Cell, 2010, 22(11): 3603-3620.
DOI URL |
| [2] |
PERCHLIK M, TEGEDER M. Leaf amino acid supply affects photosynthetic and plant nitrogen use efficiency under nitrogen stress[J]. Plant Physiology, 2018, 178(1): 174-188.
DOI PMID |
| [3] | TEGEDER M, RENTSCH D, PATRICK J W. Organic carbon and nitrogen transporters[M]// The plant plasma membrane. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 331-352. |
| [4] |
BÜTTNER M. The monosaccharide transporter (-like) gene family in Arabidopsis[J]. FEBS Letters, 2007, 581(12): 2318-2324.
DOI URL |
| [5] |
BOORER K J, LOO D D, WRIGHT E M. Steady-state and presteady-state kinetics of the H+/hexose cotransporter (STP1) from Arabidopsis thaliana expressed in Xenopus oocytes[J]. Journal of Biological Chemistry, 1994, 269(32): 20417-20424.
DOI URL |
| [6] | SHERSON S M, HEMMANN G, WALLACE G, et al. Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars[J]. The Plant Journal, 2000, 24(6): 849-857. |
| [7] | BÜTTNER M. The Arabidopsis sugar transporter (AtSTP) family: an update[J]. Plant Biology (Stuttgart, Germany), 2010, 12(Suppl 1): 35-41. |
| [8] |
STADLER R, BÜTTNER M, ACHE P, et al. Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis[J]. Plant Physiology, 2003, 133(2): 528-537.
DOI URL |
| [9] |
SLEWINSKI T L. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective[J]. Molecular Plant, 2011, 4(4): 641-662.
DOI PMID |
| [10] |
SHERSON S M, ALFORD H L, FORBES S M, et al. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis[J]. Journal of Experimental Botany, 2003, 54(382): 525-531.
DOI URL |
| [11] | SCHOFIELD R A, BI Y M, KANT S, et al. Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings[J]. Plant, Cell & Environment, 2009, 32(3): 271-285. |
| [12] |
OKUMOTO S, KOCH W, TEGEDER M, et al. Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3[J]. Journal of Experimental Botany, 2004, 55(406): 2155-2168.
PMID |
| [13] |
FISCHER W N, ANDRÉ B, RENTSCH D, et al. Amino acid transport in plants[J]. Trends in Plant Science, 1998, 3(5): 188-195.
DOI URL |
| [14] |
FISCHER W N, KWART M, HUMMEL S, et al. Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis[J]. Journal of Biological Chemistry, 1995, 270(27): 16315-16320.
DOI URL |
| [15] |
FORSUM O, SVENNERSTAM H, GANETEG U, et al. Capacities and constraints of amino acid utilization in Arabidopsis[J]. The New Phytologist, 2008, 179(4): 1058-1069.
DOI URL |
| [16] |
HIRNER B, FISCHER W N, RENTSCH D, et al. Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis[J]. The Plant Journal, 1998, 14(5): 535-544.
DOI URL |
| [17] | ORTIZ-LOPEZ A, CHANG H C, BUSH D R. Amino acid transporters in plants[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2000, 1465(1/2): 275-280. |
| [18] |
WAN Y F, KING R, MITCHELL R A C, et al. Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress[J]. Scientific Reports, 2017, 7: 5461.
DOI PMID |
| [19] |
KONISHI M, YANAGISAWA S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling[J]. Nature Communications, 2013, 4: 1617.
DOI URL |
| [20] |
KONISHI M, YANAGISAWA S. Identification of a nitrate-responsive Cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response[J]. The Plant Journal, 2010, 63(2): 269-282.
DOI URL |
| [21] |
GE M, LIU Y H, JIANG L, et al. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response[J]. Plant Growth Regulation, 2018, 84(1): 95-105.
DOI URL |
| [22] |
GE M, WANG Y, LIU Y, et al. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize[J]. The Plant Journal, 2020, 102(2): 353-368.
DOI PMID |
| [23] | SUMIMOTO H, KAMAKURA S, ITO T. Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants[J]. Science's STKE, 2007, 2007(401): re6. |
| [24] |
CHARDIN C, GIRIN T, ROUDIER F, et al. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development[J]. Journal of Experimental Botany, 2014, 65(19): 5577-5587.
DOI PMID |
| [25] |
CASTAINGS L, CAMARGO A, POCHOLLE D, et al. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis[J]. The Plant Journal, 2009, 57(3): 426-435.
DOI URL |
| [26] |
KONISHI M, YANAGISAWA S. The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis[J]. Plant and Cell Physiology, 2011, 52(5): 824-836.
DOI URL |
| [27] |
YAN D W, EASWARAN V, CHAU V, et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis[J]. Nature Communications, 2016, 7: 13179.
DOI URL |
| [28] |
MARCHIVE C, ROUDIER F, CASTAINGS L, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4: 1713.
DOI PMID |
| [29] |
JIAN W, ZHANG D W, ZHU F, et al. Nitrate reductase-dependent nitric oxide production is required for regulation alternative oxidase pathway involved in the resistance to Cucumber mosaic virus infection in Arabidopsis[J]. Plant Growth Regulation, 2015, 77(1): 99-107.
DOI URL |
| [30] |
ALVAREZ J M, SCHINKE A L, BROOKS M D, et al. Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade[J]. Nature Communications, 2020, 11: 1157.
DOI PMID |
| [31] |
GUAN P, RIPOLL J J, WANG R, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2419-2424.
DOI PMID |
| [32] |
LIU K H, NIU Y J, KONISHI M, et al. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316.
DOI URL |
| [33] |
BI Y M, MEYER A, DOWNS G S, et al. High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation[J]. BMC Genomics, 2014, 15: 77.
DOI URL |
| [34] | ZHANG H, FORDE B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Microbiology Spectrum, 1998, 279(5349): 407-409. |
| [35] |
GOJON A, NACRY P, DAVIDIAN J C. Root uptake regulation: a central process for NPS homeostasis in plants[J]. Current Opinion in Plant Biology, 2009, 12(3): 328-338.
DOI PMID |
| [36] | CRAWFORD N M. Nitrate: nutrient and signal for plant growth[J]. The Plant Cell, 1995, 7(7): 859-868. |
| [37] |
PRICE J, LAXMI A, ST MARTIN S K, et al. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis[J]. The Plant Cell, 2004, 16(8): 2128-2150.
DOI URL |
| [38] |
GÁLVEZ J H, TAI H H, LAGÜE M, et al. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs[J]. Scientific Reports, 2016, 6: 26090.
DOI URL |
| [39] |
LUO Z P, LIN J S, ZHU Y L, et al. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in Medicago truncatula[J]. Plant Communications, 2021, 2(3): 100183.
DOI URL |
| [40] |
GAO Y Y, QUAN S X, LYU B, et al. Barley transcription factor HvNLP2 mediates nitrate signaling and affects nitrogen use efficiency[J]. Journal of Experimental Botany, 2021, 73(3): 770-783.
DOI PMID |
| [41] | ZHAO L, LIU F, CRAWFORD N M, et al. Molecular regulation of nitrate responses in plants[J]. International Journal of Molecular Sciences, 2018, 19(7): E2039. |
| [42] |
LIU F, XU Y, CHANG K, et al. The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis[J]. The New Phytologist, 2019, 224(1): 117-131.
DOI URL |
| [43] |
ZHANG T T, KANG H, FU L L, et al. Nin-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of tryptophan aminotransferase related 2[J]. Plant Science, 2021, 303: 110771.
DOI URL |
| [44] |
MENG X, YU X, WU Y, et al. Chromatin remodeling protein ZmCHB101 regulates nitrate-responsive gene expression in maize[J]. Frontiers in Plant Science, 2020, 11: 52.
DOI PMID |
| [45] |
CAO H, QI S, SUN M, et al. Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation[J]. Frontiers in Plant Science, 2017, 8: 1703.
DOI URL |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 许卫猛, 徐妍, 陈国立. 基于多种分析方法的糯玉米品质综合评价[J]. 浙江农业学报, 2025, 37(9): 1840-1848. |
| [3] | 闫沛中, 陈亮, 张生银, 刘斌. 水肥耦合对景电灌区膜下滴灌玉米产量及水肥利用效率的影响[J]. 浙江农业学报, 2025, 37(9): 1849-1859. |
| [4] | 关秀生, 刘铁山, 王娟, 张茂林, 刘春晓, 董瑞, 关海英, 刘强, 徐扬, 何春梅. 玉米NF-YA家族基因的生物信息学分析与克隆[J]. 浙江农业学报, 2025, 37(8): 1605-1614. |
| [5] | 咸若彤, 缪青梅, 彭城, 陈笑芸, 杨蕾, 徐晓丽, 魏巍, 徐俊锋, 李玥莹, 汪小福. 转基因玉米WYN17132转化体特异性实时荧光PCR检测方法的建立与应用[J]. 浙江农业学报, 2025, 37(7): 1397-1406. |
| [6] | 缪百灵, 陈娟娟, 李亮杰, 楚宗丽, 董向向. 浙江红花油茶CchABCG5基因的功能[J]. 浙江农业学报, 2025, 37(7): 1407-1416. |
| [7] | 王闻琦, 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲. 玉米生物钟基因ZmPRR1-2互作蛋白质的筛选[J]. 浙江农业学报, 2025, 37(5): 977-986. |
| [8] | 廖小龙, 王兴胜, 陈勇, 李斌, 洪思丹, 梅利那, 国颖. 杨属植物HKT基因家族成员鉴定与盐胁迫下的表达模式分析[J]. 浙江农业学报, 2025, 37(10): 2104-2115. |
| [9] | 王晓阳, 李强, 赵武云, 戴飞, 严兆荣, 王久鑫. 铲式青贮玉米起茬及残膜回收联合作业机设计与试验[J]. 浙江农业学报, 2024, 36(9): 2132-2145. |
| [10] | 李清超, 杨珊, 张登峰, 刘建新, 孙开利, 吴迅. 四百八十七份玉米地方种质资源穗部性状的表型多样性[J]. 浙江农业学报, 2024, 36(7): 1481-1491. |
| [11] | 周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31. |
| [12] | 冷益丰, 罗樊, 陈从顺, 丁鑫, 蔡光泽. 基于GBS测序的全基因组SNP揭示大凉山玉米地方品种资源的亲缘关系与遗传分化[J]. 浙江农业学报, 2024, 36(1): 32-47. |
| [13] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
| [14] | 娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032. |
| [15] | 马启良, 杨小明, 胡水星, 黄子鸿, 祁亨年. 基于Mask RCNN和视觉技术的玉米种子发芽自动检测方法[J]. 浙江农业学报, 2023, 35(8): 1927-1936. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||