浙江农业学报 ›› 2026, Vol. 38 ›› Issue (1): 160-169.DOI: 10.3969/j.issn.1004-1524.20250058
收稿日期:2025-01-15
出版日期:2026-01-25
发布日期:2026-02-11
作者简介:张雪艳,E-mail: zhangxueyan123@sina.com通讯作者:
张雪艳
基金资助:
WANG Xulu(
), LU Ming, ZHANG Xueyan(
)
Received:2025-01-15
Online:2026-01-25
Published:2026-02-11
Contact:
ZHANG Xueyan
摘要:
为实现宁夏六盘山区农机农艺融合的萝卜高效生产,该研究以春冠清脆2号为供试材料,以不同粉垄深度(20、30、40 cm)、播种方式(传统人工播种、种绳式播种和气吸式播种)、播种深度(1.5、2.0、2.5 cm)为试验因素,设计3因素3水平二次回归正交试验,分析不同因素对土壤综合环境指数、萝卜发芽率和产量的影响。 结果显示,各因素中,播种深度对土壤环境综合指数、产量均有极显著(p<0.01)影响,播种方式对土壤环境综合指数、产量、发芽率均有极显著影响,粉垄深度仅对发芽率有极显著影响。粉垄深度与播种深度交互作用、粉垄深度与播种方式交互作用对土壤环境综合指数、产量、发芽率均有显著(p<0.05)影响,但播种深度和播种方式交互作用对土壤环境综合指数、产量、发芽率无显著影响。经综合分析,确定如下最佳参数组合: 粉垄深度30 cm、种绳式播种、播种深度2.0 cm。此时土壤环境综合指数为14.91,发芽率为92.13%,产量为81.15 t·hm-2。研究结果可为提高当地萝卜产量、促进萝卜产业标准化和机械高效化发展提供参考。
中图分类号:
王旭陆, 陆铭, 张雪艳. 宁夏六盘山区萝卜高效生产的播种和粉垄机械参数研究[J]. 浙江农业学报, 2026, 38(1): 160-169.
WANG Xulu, LU Ming, ZHANG Xueyan. Study on sowing and powder ridge mechanical parameters for efficient radish production in Liupan Mountain area, Ningxia of China[J]. Acta Agriculturae Zhejiangensis, 2026, 38(1): 160-169.
| 编号No. | A | B | C |
|---|---|---|---|
| 1 | -1 | -1 | 0 |
| 2 | 1 | -1 | 0 |
| 3 | -1 | 1 | 0 |
| 4 | 1 | 1 | 0 |
| 5 | -1 | 0 | -1 |
| 6 | 1 | 0 | -1 |
| 7 | -1 | 0 | 1 |
| 8 | 1 | 0 | 1 |
| 9 | 0 | -1 | -1 |
| 10 | 0 | 1 | -1 |
| 11 | 0 | -1 | 1 |
| 12 | 0 | 1 | 1 |
| 13 | 0 | 0 | 0 |
| 14 | 0 | 0 | 0 |
| 15 | 0 | 0 | 0 |
| 16 | 0 | 0 | 0 |
| 17 | 0 | 0 | 0 |
表1 试验设计
Table 1 Experiment design
| 编号No. | A | B | C |
|---|---|---|---|
| 1 | -1 | -1 | 0 |
| 2 | 1 | -1 | 0 |
| 3 | -1 | 1 | 0 |
| 4 | 1 | 1 | 0 |
| 5 | -1 | 0 | -1 |
| 6 | 1 | 0 | -1 |
| 7 | -1 | 0 | 1 |
| 8 | 1 | 0 | 1 |
| 9 | 0 | -1 | -1 |
| 10 | 0 | 1 | -1 |
| 11 | 0 | -1 | 1 |
| 12 | 0 | 1 | 1 |
| 13 | 0 | 0 | 0 |
| 14 | 0 | 0 | 0 |
| 15 | 0 | 0 | 0 |
| 16 | 0 | 0 | 0 |
| 17 | 0 | 0 | 0 |
| 试验编号 Test No. | X1/℃ | X2/% | X3/ (g· cm-3) | X4/% | X5/% | X6/% | X7/ (mS· cm-1) | X8 | X9/ (g· kg-1) | X10/ (mg· kg-1) | X11/ (g· kg-1) | X12/ (mg· kg-1) | X13/ (mg· kg-1) | X14/ (g· kg-1) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 19.8 | 0.16 | 1.35 | 0.26 | 0.16 | 0.48 | 0.35 | 8.65 | 0.16 | 19.5 | 0.98 | 77.0 | 285 | 2.45 |
| 2 | 19.8 | 0.15 | 1.39 | 0.26 | 0.14 | 0.46 | 0.33 | 8.49 | 0.14 | 17.5 | 0.89 | 73.0 | 270 | 2.30 |
| 3 | 19.6 | 0.13 | 1.39 | 0.25 | 0.16 | 0.46 | 0.32 | 8.37 | 0.13 | 16.5 | 0.84 | 70.0 | 248 | 2.12 |
| 4 | 19.6 | 0.14 | 1.41 | 0.25 | 0.15 | 0.47 | 0.33 | 8.54 | 0.14 | 17.8 | 0.90 | 74.0 | 272 | 2.32 |
| 5 | 19.6 | 0.13 | 1.40 | 0.24 | 0.13 | 0.48 | 0.31 | 8.32 | 0.12 | 16.0 | 0.85 | 69.0 | 249 | 2.08 |
| 6 | 19.8 | 0.15 | 1.39 | 0.26 | 0.14 | 0.46 | 0.33 | 8.49 | 0.14 | 17.5 | 0.89 | 73.0 | 270 | 2.30 |
| 7 | 19.8 | 0.16 | 1.35 | 0.26 | 0.16 | 0.48 | 0.35 | 8.65 | 0.16 | 19.5 | 0.98 | 77.0 | 285 | 2.45 |
| 8 | 19.7 | 0.13 | 1.37 | 0.26 | 0.13 | 0.47 | 0.32 | 8.41 | 0.13 | 16.8 | 0.85 | 71.0 | 258 | 2.18 |
| 9 | 19.6 | 0.13 | 1.38 | 0.24 | 0.13 | 0.47 | 0.32 | 8.38 | 0.13 | 16.4 | 0.84 | 70.0 | 252 | 2.15 |
| 10 | 19.4 | 0.12 | 1.38 | 0.23 | 0.12 | 0.45 | 0.31 | 8.28 | 0.12 | 15.8 | 0.79 | 68.0 | 243 | 2.05 |
| 11 | 19.6 | 0.15 | 1.38 | 0.25 | 0.15 | 0.47 | 0.34 | 8.55 | 0.15 | 18.0 | 0.92 | 74.5 | 274 | 2.34 |
| 12 | 19.9 | 0.14 | 0.37 | 0.25 | 0.14 | 0.47 | 0.33 | 8.45 | 0.14 | 17.2 | 0.87 | 72.5 | 266 | 2.25 |
| 13 | 19.8 | 0.17 | 1.37 | 0.26 | 0.17 | 0.49 | 0.35 | 8.70 | 0.16 | 19.0 | 0.99 | 78.0 | 286 | 2.45 |
| 14 | 19.9 | 0.16 | 1.38 | 0.26 | 0.16 | 0.47 | 0.35 | 8.68 | 0.16 | 18.8 | 0.98 | 77.5 | 283 | 2.42 |
| 15 | 19.7 | 0.18 | 1.36 | 0.25 | 0.18 | 0.49 | 0.35 | 8.72 | 0.16 | 19.2 | 0.99 | 78.5 | 288 | 2.48 |
| 16 | 19.8 | 0.17 | 1.37 | 0.25 | 0.17 | 0.48 | 0.35 | 8.69 | 0.16 | 18.9 | 0.98 | 78.0 | 284 | 2.45 |
| 17 | 19.8 | 0.17 | 1.37 | 0.26 | 0.17 | 0.48 | 0.35 | 8.70 | 0.16 | 19.0 | 0.99 | 78.0 | 286 | 2.45 |
表2 不同处理下的土壤环境因子
Table 2 Soil environmental factors under different treatments
| 试验编号 Test No. | X1/℃ | X2/% | X3/ (g· cm-3) | X4/% | X5/% | X6/% | X7/ (mS· cm-1) | X8 | X9/ (g· kg-1) | X10/ (mg· kg-1) | X11/ (g· kg-1) | X12/ (mg· kg-1) | X13/ (mg· kg-1) | X14/ (g· kg-1) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 19.8 | 0.16 | 1.35 | 0.26 | 0.16 | 0.48 | 0.35 | 8.65 | 0.16 | 19.5 | 0.98 | 77.0 | 285 | 2.45 |
| 2 | 19.8 | 0.15 | 1.39 | 0.26 | 0.14 | 0.46 | 0.33 | 8.49 | 0.14 | 17.5 | 0.89 | 73.0 | 270 | 2.30 |
| 3 | 19.6 | 0.13 | 1.39 | 0.25 | 0.16 | 0.46 | 0.32 | 8.37 | 0.13 | 16.5 | 0.84 | 70.0 | 248 | 2.12 |
| 4 | 19.6 | 0.14 | 1.41 | 0.25 | 0.15 | 0.47 | 0.33 | 8.54 | 0.14 | 17.8 | 0.90 | 74.0 | 272 | 2.32 |
| 5 | 19.6 | 0.13 | 1.40 | 0.24 | 0.13 | 0.48 | 0.31 | 8.32 | 0.12 | 16.0 | 0.85 | 69.0 | 249 | 2.08 |
| 6 | 19.8 | 0.15 | 1.39 | 0.26 | 0.14 | 0.46 | 0.33 | 8.49 | 0.14 | 17.5 | 0.89 | 73.0 | 270 | 2.30 |
| 7 | 19.8 | 0.16 | 1.35 | 0.26 | 0.16 | 0.48 | 0.35 | 8.65 | 0.16 | 19.5 | 0.98 | 77.0 | 285 | 2.45 |
| 8 | 19.7 | 0.13 | 1.37 | 0.26 | 0.13 | 0.47 | 0.32 | 8.41 | 0.13 | 16.8 | 0.85 | 71.0 | 258 | 2.18 |
| 9 | 19.6 | 0.13 | 1.38 | 0.24 | 0.13 | 0.47 | 0.32 | 8.38 | 0.13 | 16.4 | 0.84 | 70.0 | 252 | 2.15 |
| 10 | 19.4 | 0.12 | 1.38 | 0.23 | 0.12 | 0.45 | 0.31 | 8.28 | 0.12 | 15.8 | 0.79 | 68.0 | 243 | 2.05 |
| 11 | 19.6 | 0.15 | 1.38 | 0.25 | 0.15 | 0.47 | 0.34 | 8.55 | 0.15 | 18.0 | 0.92 | 74.5 | 274 | 2.34 |
| 12 | 19.9 | 0.14 | 0.37 | 0.25 | 0.14 | 0.47 | 0.33 | 8.45 | 0.14 | 17.2 | 0.87 | 72.5 | 266 | 2.25 |
| 13 | 19.8 | 0.17 | 1.37 | 0.26 | 0.17 | 0.49 | 0.35 | 8.70 | 0.16 | 19.0 | 0.99 | 78.0 | 286 | 2.45 |
| 14 | 19.9 | 0.16 | 1.38 | 0.26 | 0.16 | 0.47 | 0.35 | 8.68 | 0.16 | 18.8 | 0.98 | 77.5 | 283 | 2.42 |
| 15 | 19.7 | 0.18 | 1.36 | 0.25 | 0.18 | 0.49 | 0.35 | 8.72 | 0.16 | 19.2 | 0.99 | 78.5 | 288 | 2.48 |
| 16 | 19.8 | 0.17 | 1.37 | 0.25 | 0.17 | 0.48 | 0.35 | 8.69 | 0.16 | 18.9 | 0.98 | 78.0 | 284 | 2.45 |
| 17 | 19.8 | 0.17 | 1.37 | 0.26 | 0.17 | 0.48 | 0.35 | 8.70 | 0.16 | 19.0 | 0.99 | 78.0 | 286 | 2.45 |
| 试验编号 Test No. | S | Y/(t·hm-2) | G/% |
|---|---|---|---|
| 1 | 14.76 | 68.25 | 84.80 |
| 2 | 13.94 | 71.25 | 85.60 |
| 3 | 13.47 | 66.00 | 83.43 |
| 4 | 13.99 | 63.30 | 86.57 |
| 5 | 13.12 | 62.25 | 82.03 |
| 6 | 13.94 | 63.75 | 85.83 |
| 7 | 14.76 | 76.05 | 88.63 |
| 8 | 13.43 | 71.55 | 89.77 |
| 9 | 13.26 | 62.25 | 82.03 |
| 10 | 12.73 | 56.25 | 82.03 |
| 11 | 14.19 | 71.10 | 87.07 |
| 12 | 13.00 | 67.50 | 86.13 |
| 13 | 14.94 | 80.25 | 91.10 |
| 14 | 14.72 | 78.30 | 91.10 |
| 15 | 15.06 | 78.30 | 91.10 |
| 16 | 14.85 | 78.30 | 91.90 |
| 17 | 14.92 | 78.30 | 91.10 |
表3 不同处理下的土壤环境综合指数与萝卜产量、发芽率
Table 3 Comprehensive index of soil environment, and yield and germination rate of radish
| 试验编号 Test No. | S | Y/(t·hm-2) | G/% |
|---|---|---|---|
| 1 | 14.76 | 68.25 | 84.80 |
| 2 | 13.94 | 71.25 | 85.60 |
| 3 | 13.47 | 66.00 | 83.43 |
| 4 | 13.99 | 63.30 | 86.57 |
| 5 | 13.12 | 62.25 | 82.03 |
| 6 | 13.94 | 63.75 | 85.83 |
| 7 | 14.76 | 76.05 | 88.63 |
| 8 | 13.43 | 71.55 | 89.77 |
| 9 | 13.26 | 62.25 | 82.03 |
| 10 | 12.73 | 56.25 | 82.03 |
| 11 | 14.19 | 71.10 | 87.07 |
| 12 | 13.00 | 67.50 | 86.13 |
| 13 | 14.94 | 80.25 | 91.10 |
| 14 | 14.72 | 78.30 | 91.10 |
| 15 | 15.06 | 78.30 | 91.10 |
| 16 | 14.85 | 78.30 | 91.90 |
| 17 | 14.92 | 78.30 | 91.10 |
图1 交互作用对土壤环境综合指数影响的等高线图(上)与响应面图(下) 播种方式的0、1、2分别代表传统人工、种绳式、气吸式。下同。
Fig.1 Contour plot (top) and response surface diagram (bottom) of the interaction effects on comprehensive index of soil environment 0, 1, and 2 for sowing methods represent traditional manual sowing, seed rope sowing, and air suction sowing, respectively. The same as below.
| [1] | 施正侃, 周梅仙, 包崇来. 10个耐抽薹萝卜在龙泉的引种比较试验[J]. 浙江农业科学, 2023, 64(5): 1207-1209. |
| SHI Z K, ZHOU M X, BAO C L. Comparative experiment on introduction of 10 bolting resistant radishes in Longquan[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(5): 1207-1209. | |
| [2] | 张斌. 萝卜气吸式精量播种机的研究[D]. 保定: 河北农业大学, 2013. |
| ZHANG B. Study on radish pneumatic precise seeder[D]. Baoding: Hebei Agricultural University, 2013. | |
| [3] | 崔志超, 杨雅婷, 刘先才, 等. 我国萝卜机械化生产现状及发展建议[J]. 中国蔬菜, 2020(8): 1-8. |
| CUI Z C, YANG Y T, LIU X C, et al. Present situation and development suggestions of mechanized radish production in China[J]. China Vegetables, 2020(8): 1-8. | |
| [4] | 刘普幸. 六盘山山地对固原地区气候与农业发展的影响[J]. 西北师范大学学报(自然科学版), 1997, 33(1): 54-57. |
| LIU P X. Influence of Mountain Liupan to the climate and agriculture of Guyuan area[J]. Journal of Northwest Normal University(Natural Science Edition), 1997, 33(1): 54-57. | |
| [5] | 张艳军, 刘佳, 张钟, 等. 不同品种、密度、施氮量、播种方式对糯高粱生物性状及产量的影响[J]. 中国农学通报, 2023, 39(2): 1-7. |
| ZHANG Y J, LIU J, ZHANG Z, et al. Effects of varieties, planting densities, nitrogen application rates and sowing modes on biological characters and yield of waxy sorghum[J]. Chinese Agricultural Science Bulletin, 2023, 39(2): 1-7. | |
| [6] | 董丽茹. 机械播种对作物养分吸收利用方式的影响[J]. 农机使用与维修, 2023(10): 95-98. |
| DONG L R. Analysis of the effect of sowing method on nutrient uptake and utilization patterns of crops[J]. Agricultural Machinery Using & Maintenance, 2023(10): 95-98. | |
| [7] | 何进宇, 石伟业, 刘飞杨, 等. 粉垄耕作深度对旱区土壤关键物理性质的影响[J]. 干旱地区农业研究, 2023, 41(3): 195-201. |
| HE J Y, SHI W Y, LIU F Y, et al. Effects of Fenlong cultivation on soil key physical properties in arid areas[J]. Agricultural Research in the Arid Areas, 2023, 41(3): 195-201. | |
| [8] | 董新玉, 张亚春, 杨银珍, 等. 播种深度对红七星大蒜独蒜率、产量、产值的影响[J]. 长江蔬菜, 2022(24): 43-45. |
| DONG X Y, ZHANG Y C, YANG Y Z, et al. Effects of sowing depths on single garlic rate, yield and output value of hongqixing garlic[J]. Journal of Changjiang Vegetables, 2022(24): 43-45. | |
| [9] | 朱卫红, 铁双贵, 孙建军, 等. 不同土壤质地及播种深度对甜玉米出苗潜势的影响[J]. 河南农业科学, 2005, 34(11): 35-36. |
| ZHU W H, TIE S G, SUN J J, et al. Effect of different soil texture and depth of sowing seed on the seedling emergence potential of sweet corn hybrids[J]. Journal of Henan Agricultural Sciences, 2005, 34(11): 35-36. | |
| [10] | 彭鸿嘉. 六种牧草种子大小和播种深度对出苗的影响[J]. 草业科学, 2001, 18(6): 30-35. |
| PENG H J. Effects of seed size and seedling depth on emergence of six perennial grasses[J]. Pratacultural Science, 2001, 18(6): 30-35. | |
| [11] | 祁泽伟, 张慧芋, 李娜娜, 等. 不同秋耕措施对黄土高原春玉米田土壤物理质量的影响[J]. 土壤, 2021, 53(4): 826-832. |
| QI Z W, ZHANG H Y, LI N N, et al. Effects of different autumn tillage practices on soil physical quality of maize field on Loess Plateau of China[J]. Soils, 2021, 53(4): 826-832. | |
| [12] | 周志华, 王崇铭, 张水平, 等. 不同油菜种植模式的经济效益评价[J]. 现代农业科技, 2023(20): 14-15. |
| ZHOU Z H, WANG C M, ZHANG S P, et al. Economic benefit evaluation of different rape planting patterns[J]. Modern Agricultural Science and Technology, 2023(20): 14-15. | |
| [13] | 王磊, 姬强, 王亚麟, 等. 不同农艺措施对土壤理化性质的影响[J]. 安徽农业科学, 2024, 52(5): 63-67. |
| WANG L, JI Q, WANG Y L, et al. Effects of different agronomic measures on soil physicochemical properties[J]. Journal of Anhui Agricultural Sciences, 2024, 52(5): 63-67. | |
| [14] | 关劼兮, 陈素英, 邵立威, 等. 华北典型区域土壤耕作方式对土壤特性和作物产量的影响[J]. 中国生态农业学报(中英文), 2019, 27(11): 1663-1672. |
| GUAN J X, CHEN S Y, SHAO L W, et al. Soil tillage practices affecting the soil characteristics and yield of winter wheat and summer maize in North China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1663-1672. | |
| [15] | 李小飞, 孙永明, 叶川, 等. 不同耕作深度对茶园土壤理化性状的影响[J]. 南方农业学报, 2018, 49(5): 877-883. |
| LI X F, SUN Y M, YE C, et al. Effects of various tillage depths on soil physical and chemical properties of tea plantation[J]. Journal of Southern Agriculture, 2018, 49(5): 877-883. | |
| [16] | ZHU S W, GAO T P, LIU Z, et al. Rotary and subsoiling tillage rotations influence soil carbon and nitrogen sequestration and crop yield[J]. Plant Soil and Environment, 2022, 68(2): 89-97. |
| [17] | 盛勇创, 王释苇, 张硕, 等. 不同粉垄深度对甘蔗地土壤孔隙结构的影响[J]. 中国土壤与肥料, 2023(9): 12-19. |
| SHENG Y C, WANG S W, ZHANG S, et al. Effects of different depths of Fenlong tillage on the soil pore structure in sugarcane field[J]. Soil and Fertilizer Sciences in China, 2023(9): 12-19. | |
| [18] | 王旭陆, 田伟, 李昭轩, 等. 宁夏六盘山区机艺融合下不同种植模式对鲜食萝卜生长影响研究[J]. 农业技术与装备, 2024(10): 199-204. |
| WANG X L, TIAN W, LI Z X, et al. Study on the effect of different planting patterns on the growth of fresh Raphanus sativus under mechanical integration in Liupan Mountain district[J]. Agricultural Technology & Equipment, 2024(10): 199-204. | |
| [19] | 摆福红. 宁夏六盘山区不同播期耐寒耐旱耐抽薹耐贮藏萝卜品种比较[D]. 银川: 宁夏大学, 2023. |
| BAI F H. Comparison of radish varieties with cold, drought, bolting and storage tolerance during different sowing periods in Liupanshan district of Ningxia[D]. Yinchuan: Ningxia University, 2023. | |
| [20] | 张佳梅, 王晓卓, 张雪艳. 不同磷钾缓释肥配比对萝卜生长、产量及品质的影响[J]. 现代园艺, 2024(19): 47-50. |
| ZHANG J M, WANG X Z, ZHANG X Y. Effects of different proportions of phosphorus and potassium slow-release fertilizer on growth, yield and quality of radish[J]. Contemporary Horticulture, 2024(19): 47-50. | |
| [21] | 岳丽杰, 文涛, 杨勤, 等. 不同播种深度对玉米出苗的影响[J]. 玉米科学, 2012, 20(5): 88-93. |
| YUE L J, WEN T, YANG Q, et al. Effects of different sowing depths on seeding emergence of maize[J]. Journal of Maize Sciences, 2012, 20(5): 88-93. | |
| [22] | 叶钦良, 董辉, 钟智明, 等. 广东省紫金县野生种子植物区系研究[J]. 安徽农业科学, 2019, 47(12): 127-131. |
| YE Q L, DONG H, ZHONG Z M, et al. Study on the flora of wild seed plants in Zijin County[J]. Journal of Anhui Agricultural Sciences, 2019, 47(12): 127-131. | |
| [23] | 黄启华. 广东紫金白溪省级自然保护区蕨类植物资源调查及区系分析[J]. 湖南林业科技, 2021, 48(2): 80-83. |
| HUANG Q H. Floristic analysis of pteridophyte in Baixi Nature Reserve of Zijin County in Guangdong Province[J]. Hunan Forestry Science & Technology, 2021, 48(2): 80-83. | |
| [24] | 沈德才, 冯英杰, 刘婷, 等. 东莞市国营大岭山林场典型桉树过熟林土壤有机碳与养分特征[J]. 林业与环境科学. 2022, 38(4): 99-107. |
| SHEN D C, FENG Y J, LIU T, et al. Characteristics of soil organic carbon and nutrient storage in a typical overmature Eucalyptus forest in the state-owned Dalingshan Forest Farm in Dongguan City[J]. Forestry and Environmental Science, 2022, 38(4): 99-107. | |
| [25] | 张芳, 熊黑钢, 张兆永. 新疆尾闾盐湖滨岸盐碱土中碳酸盐的固碳效应及影响因素[J]. 农业工程学报, 2019, 35(2): 122-127. |
| ZHANG F, XIONG H G, ZHANG Z Y. Carbon sequestration effect and influential factors in pedogenic carbonates of saline-alkaline soils from shore of rump salt lake in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 122-127. | |
| [26] | 孔龙, 谭向平, 和文祥, 等. 外源Cd对中国不同类型土壤酶活性的影响[J]. 中国农业科学, 2013, 46(24): 5150-5162. |
| KONG L, TAN X P, HE W X, et al. Response of soil enzyme activity in different type of soils to cadmium exposure in China[J]. Scientia Agricultura Sinica, 2013, 46(24): 5150-5162. | |
| [27] | 卫功庆, 刘少华, 范宁, 等. 响应曲面法优化鹿角盘胶原蛋白酶解提取工艺研究[J]. 西北农林科技大学学报(自然科学版), 2015, 43(6): 205-214. |
| WEI G Q, LIU S H, FAN N, et al. Optimization of extracting technology for enzymatic hydrolysis of collagen from antler base of Cervus elaphus using response surface methodology[J]. Journal of Northwest A & F University(Natural Science Edition), 2015, 43(6): 205-214. | |
| [28] | 孟庆阳. 耕种方式与秸秆还田对砂姜黑土理化特性及冬小麦产量形成的影响[D]. 郑州: 河南农业大学, 2016. |
| MENG Q Y. Effects of tillage and sowing and straw returning methods on soil physical and chemical properties and yield formation of winter wheat in lime concretionblack soil[D]. Zhengzhou: Henan Agricultural University, 2016. | |
| [29] | 张艺桐, 张淑艳, 杨若琪, 等. 水分和播种方式对土壤速效氮及酶活性的影响[J]. 安徽农业科学, 2024, 52(8): 145-148. |
| ZHANG Y T, ZHANG S Y, YANG R Q, et al. Effect of moisture and sowing methods on soil available nitrogen and enzyme activity[J]. Journal of Anhui Agricultural Sciences, 2024, 52(8): 145-148. | |
| [30] | 徐莹莹, 靳晓燕, 庞爱国, 等. 土壤性状和玉米生长对不同耕作方式的响应[J]. 农机化研究, 2022, 44(11): 11-18. |
| XU Y Y, JIN X Y, PANG A G, et al. Response of soil properties and maize growth to different tillage methods[J]. Journal of Agricultural Mechanization Research, 2022, 44(11): 11-18. | |
| [31] | 张琪. 基于温度驱动的设施黄瓜灌溉量和施肥频率方案研究[D]. 杨凌: 西北农林科技大学, 2022. |
| ZHANG Q. Study on irrigation amount and fertilization frequency scheme of cucumber based on temperature[D]. Yangling: Northwest A & F University, 2022. | |
| [32] | 高虎, 穆晓国, 李海俊, 等. 粉垄耕作对坝地土壤特性及甘蓝产量的影响[J]. 浙江农业学报, 2024, 36(5): 1113-1123. |
| GAO H, MU X G, LI H J, et al. Effect of Fenlong tillage on soil characteristics and cabbage yield in dam land[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1113-1123. | |
| [33] | 田如梦. 盐渍化棉田粉垄深度与灌水量对棉花生长的研究[D]. 石河子: 石河子大学, 2023. |
| TIAN R M. Study on the effect of the depth of smashing ridge tillage and irrigation amount on cotton growth in salinized cotton field[D]. Shihezi: Shihezi University, 2023. | |
| [34] | 王瑞珺, 吴兵, 高玉红, 等. 施硅量和播种方式对胡麻养分积累及分配规律的影响[J]. 中国油料作物学报, 2025, 47(2): 478-487. |
| WANG R J, WU B, GAO Y H, et al. Effects of silicon application rate and sowing patterns on the nutrient accumulation and distribution pattern of oilseed flax[J]. Chinese Journal of Oil Crop Sciences, 2025, 47(2): 478-487. | |
| [35] | 王晓乐. 播种方式和施肥量对西农979生长特性、产量及相关因素的影响[D]. 杨凌: 西北农林科技大学, 2014. |
| WANG X L. The effects of sowing methods and fertilizer rate on growth characteristics, yield and correlative factors of wheat Xinong-979[D]. Yangling: Northwest A & F University, 2014. | |
| [36] | 朱荣昱, 赵蒙杰, 姚云凤, 等. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121. |
| ZHU R Y, ZHAO M J, YAO Y F, et al. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut[J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121. | |
| [37] | 官建法. 玉米生产全程机械化农机选型及技术应用手段[J]. 河北农机, 2024(12): 42-44. |
| GUAN J F. Mechanized agricultural machinery selection and technical application means in the whole process of corn production[J]. Hebei Agricultural Machinery, 2024(12): 42-44. | |
| [38] | 马尧, 庄云, 李永海. 不同处理和播种方式对黄芪种子发芽率的影响[J]. 种子, 2007, 26(9): 58-59. |
| MA Y, ZHUANG Y, LI Y H. Influence of different treatments and sowing pattern on germination percentage of Astragalus membranaceus seeds[J]. Seed, 2007, 26(9): 58-59. |
| [1] | 李传哲, 董青君, 纪力, 汪吉东, 陈川, 章安康, 张永春, 邵文奇. 新型肥料对典型黄河故道区土壤养分、微生物群落及稻麦产量的影响[J]. 浙江农业学报, 2026, 38(1): 136-147. |
| [2] | 吴菊, 杨飞, 吴国泉, 傅贤, 徐晨光. 砂培和土壤栽培对黄瓜生长、产量与品质的影响[J]. 浙江农业学报, 2025, 37(9): 1905-1913. |
| [3] | 朱为静, 吴佳, 洪春来, 朱凤香, 洪磊东, 张涛, 张硕, 诸惠芬. 秸秆覆盖对土壤水热肥及蟠桃产量和品质的影响[J]. 浙江农业学报, 2025, 37(9): 1924-1932. |
| [4] | 张智颖, 邱琴, 侯立娟, 徐平, 蒋宁, 林金盛, 李辉平, 曲绍轩, 马林, 王伟霞, 李福后. 杀虫剂施用对秀珍菇和毛木耳的安全性评价[J]. 浙江农业学报, 2025, 37(8): 1733-1742. |
| [5] | 严福林, 郎云虎, 简应权, 陈雄飞, 魏巍, 王志威, 安江勇, 任得强, 丁宁, 魏升华. 八爪金龙药材产量与品质对土壤理化性状的响应[J]. 浙江农业学报, 2025, 37(8): 1766-1775. |
| [6] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [7] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [8] | 董智超, 岳宁燕, 吕魏, 余晓燚, 郑凯文, 宋海星, 陈海飞. 高、低含油量油菜品种的产量、品质和氮利用效率对施氮量的响应差异[J]. 浙江农业学报, 2025, 37(5): 998-1008. |
| [9] | 李艳翠, 李福强, 周波. 不同生育期亏缺灌溉对蒙古黄芪光合特性、产量与品质的影响[J]. 浙江农业学报, 2025, 37(4): 779-789. |
| [10] | 秦宇坤, 陈俊英, 王玉萍, 张丽娟. 减氮增碳对长江流域棉花生产和氮素吸收利用的影响[J]. 浙江农业学报, 2025, 37(4): 869-879. |
| [11] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. |
| [12] | 万绍媛, 刘现波, 才硕, 时红, 程婕. 灌溉方式和种植方式对双季稻产量和稻米品质的影响[J]. 浙江农业学报, 2025, 37(2): 257-268. |
| [13] | 李灿, 杨婷, 孙乙铭, 陈洪梁, 崔琦, 沈晓霞. 华东覆盆子优势种质资源的筛选与评价[J]. 浙江农业学报, 2025, 37(2): 349-364. |
| [14] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
| [15] | 闫沛玉, 张生银, 陈亮, 刘斌. 不同水肥耦合对设施栽培番茄生长、产量和品质的影响[J]. 浙江农业学报, 2025, 37(12): 2516-2524. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||