Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (12): 2689-2699.DOI: 10.3969/j.issn.1004-1524.2022.12.12
• Environmental Science • Previous Articles Next Articles
LIN Zhiwen1,2(
), ZHANG Peng1,2, WU Tianhao2,3, SHAN Ying2, ZOU Ganghua2, ZHAO Fengliang2,*(
), ZHENG Guiping1,*(
)
Received:2022-01-12
Online:2022-12-25
Published:2022-12-26
Contact:
ZHAO Fengliang,ZHENG Guiping
CLC Number:
LIN Zhiwen, ZHANG Peng, WU Tianhao, SHAN Ying, ZOU Ganghua, ZHAO Fengliang, ZHENG Guiping. Effects of straw and straw-derived biochar returning on ammonia volatilization in tropical soil-rice system[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2689-2699.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.12.12
Fig.1 Dynamic change of pH values of surface water under different treatments at different growth periods The arrow indicates the fertilization period. The same as below.
| 处理 Treatment | 分蘖期 Tillering stage | 穗分化期 Panicle differentiation stage | 成熟期 Mature stage |
|---|---|---|---|
| 0N | 6.60±0.02 c | 6.54±0.05 bc | 6.92±0.07 a |
| ST | 6.47±0.03 d | 6.49±0.05 c | 6.58±0.03 bc |
| BI | 6.71±0.03 ab | 6.55±0.02 bc | 6.83±0.06 a |
| CF | 6.72±0.02 ab | 6.64±0.03 ab | 6.39±0.03 c |
| NST | 6.66±0.01 bc | 6.62±0.03 ab | 6.52±0.10 bc |
| NBI | 6.75±0.02 a | 6.72±0.03 a | 6.72±0.07 ab |
Table 1 Soil pH value under different treatments at different growth stages
| 处理 Treatment | 分蘖期 Tillering stage | 穗分化期 Panicle differentiation stage | 成熟期 Mature stage |
|---|---|---|---|
| 0N | 6.60±0.02 c | 6.54±0.05 bc | 6.92±0.07 a |
| ST | 6.47±0.03 d | 6.49±0.05 c | 6.58±0.03 bc |
| BI | 6.71±0.03 ab | 6.55±0.02 bc | 6.83±0.06 a |
| CF | 6.72±0.02 ab | 6.64±0.03 ab | 6.39±0.03 c |
| NST | 6.66±0.01 bc | 6.62±0.03 ab | 6.52±0.10 bc |
| NBI | 6.75±0.02 a | 6.72±0.03 a | 6.72±0.07 ab |
Fig.3 Dynamic changes of soil NH4+-N content under different treatments at different growth stages Bars marked without the same letters indicated significant difference at P<0.05 within treatments at the same growth period. The same as below.
| 指标 Index | 氨挥发排放通量 Ammonia volatilization emission flux | 田面水pH值 pH value of surface water | 田面水NH4+-N 含量 NO3--N content of surface water | 田面水NO3--N 含量 NO3--N content of surface water | 土壤pH值 pH value of soil | 土壤NH4+-N 含量 NH4+-N content of soil |
|---|---|---|---|---|---|---|
| 田面水pH | -0.035 | |||||
| pH value of surface water | ||||||
| 田面水NH4+-N含量 | 0.198* | -0.193* | ||||
| NH4+-N content of surface water | ||||||
| 田面水NO3--N含量 | 0.168 | 0.331** | -0.050 | |||
| NO3--N content of surface water | ||||||
| 土壤pH值 pH value of soil | -0.163 | 0.159 | 0.016 | -0.030 | ||
| 土壤NH4+-N含量 | 0.233 | -0.189 | 0.284* | 0.193 | 0.072 | |
| NH4+-N content of soil | ||||||
| 土壤NO3--N含量含量 | -0.256 | 0.275* | -0.146 | -0.035 | -0.419** | -0.468** |
| NO3--N content of soil |
Table 2 Correlation within ammonia volatilization flux and environmental factors
| 指标 Index | 氨挥发排放通量 Ammonia volatilization emission flux | 田面水pH值 pH value of surface water | 田面水NH4+-N 含量 NO3--N content of surface water | 田面水NO3--N 含量 NO3--N content of surface water | 土壤pH值 pH value of soil | 土壤NH4+-N 含量 NH4+-N content of soil |
|---|---|---|---|---|---|---|
| 田面水pH | -0.035 | |||||
| pH value of surface water | ||||||
| 田面水NH4+-N含量 | 0.198* | -0.193* | ||||
| NH4+-N content of surface water | ||||||
| 田面水NO3--N含量 | 0.168 | 0.331** | -0.050 | |||
| NO3--N content of surface water | ||||||
| 土壤pH值 pH value of soil | -0.163 | 0.159 | 0.016 | -0.030 | ||
| 土壤NH4+-N含量 | 0.233 | -0.189 | 0.284* | 0.193 | 0.072 | |
| NH4+-N content of soil | ||||||
| 土壤NO3--N含量含量 | -0.256 | 0.275* | -0.146 | -0.035 | -0.419** | -0.468** |
| NO3--N content of soil |
| [1] | 赵凌, 赵春芳, 周丽慧, 等. 中国水稻生产现状与发展趋势[J]. 江苏农业科学, 2015, 43(10): 105-107. |
| ZHAO L, ZHAO C F, ZHOU L H, et al. Current situation and development trend of rice production in China[J]. Jiangsu Agricultural Sciences, 2015, 43(10): 105-107. (in Chinese) | |
| [2] | 朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5): 778-783. |
| ZHU Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778-783. (in Chinese with English abstract) | |
| [3] | 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000, 9(1): 1-6. |
| ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000, 9(1): 1-6. (in Chinese with English abstract) | |
| [4] | 肖其亮, 朱坚, 彭华, 等. 稻田氨挥发损失及减排技术研究进展[J]. 农业环境科学学报, 2021, 40(1): 16-25. |
| XIAO Q L, ZHU J, PENG H, et al. Ammonia volatilization loss and emission reduction measures in paddy fields[J]. Journal of Agro-Environment Science, 2021, 40(1): 16-25. (in Chinese with English abstract) | |
| [5] | 张国, 逯非, 赵红, 等. 我国农作物秸秆资源化利用现状及农户对秸秆还田的认知态度[J]. 农业环境科学学报, 2017, 36(5): 981-988. |
| ZHANG G, LU F, ZHAO H, et al. Residue usage and farmers' recognition and attitude toward residue retention in China's croplands[J]. Journal of Agro-Environment Science, 2017, 36(5): 981-988. (in Chinese with English abstract) | |
| [6] | 朱捍华, 黄道友, 刘守龙, 等. 稻草易地还土对丘陵红壤有机质和主要物理性质的影响[J]. 应用生态学报, 2007, 18(11): 2497-2502. |
| ZHU H H, HUANG D Y, LIU S L, et al. Effects of ex situ rice straw incorporation on organic matter content and main physical properties of hilly red soil[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2497-2502. (in Chinese with English abstract) | |
| [7] | 汪军, 王德建, 张刚, 等. 麦秸全量还田下太湖地区两种典型水稻土稻季氨挥发特性比较[J]. 环境科学, 2013, 34(1): 27-33. |
|
WANG J, WANG D J, ZHANG G, et al. Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region[J]. Environmental Science, 2013, 34(1): 27-33. (in Chinese with English abstract)
DOI URL |
|
| [8] | 张刚, 王德建, 俞元春, 等. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响[J]. 植物营养与肥料学报, 2016, 22(4): 877-885. |
| ZHANG G, WANG D J, YU Y C, et al. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 877-885. (in Chinese with English abstract) | |
| [9] |
SUN L Y, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China[J]. Atmospheric Environment, 2018, 181: 97-105.
DOI URL |
| [10] |
LIU S M, LI Y W, XU J Z, et al. Biochar partially offset the increased ammonia volatilization from salt-affected soil[J]. Archives of Agronomy and Soil Science, 2021, 67(9): 1202-1216.
DOI URL |
| [11] |
SUN X, ZHONG T, ZHANG L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. Science of the Total Environment, 2019, 660: 512-518.
DOI URL |
| [12] |
SUN H J, ZHANG Y, YANG Y T, et al. Effect of biofertilizer and wheat straw biochar application on nitrous oxide emission and ammonia volatilization from paddy soil[J]. Environmental Pollution, 2021, 275: 116640.
DOI URL |
| [13] |
DONG Y B, WU Z, ZHANG X, et al. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system[J]. Field Crops Research, 2019, 241: 107568.
DOI URL |
| [14] |
许云翔, 何莉莉, 陈金媛, 等. 生物炭对农田土壤氨挥发的影响机制研究进展[J]. 应用生态学报, 2020, 31(12): 4312-4320.
DOI |
| XU Y X, HE L L, CHEN J Y, et al. Effects of biochar on ammonia volatilization from farmland soil: a review[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4312-4320. (in Chinese with English abstract) | |
| [15] |
WANG S W, SHAN J, XIA Y Q, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons[J]. Science of the Total Environment, 2017, 593/594: 347-356.
DOI URL |
| [16] | 王大鹏, 杜玉赫, 罗雪华, 等. 橡胶林下砖红壤不同氮肥处理氨挥发特征[J]. 生态环境学报, 2018, 27(4): 685-691. |
| WANG D P, DU Y H, LUO X H, et al. Characteristics of ammonia volatilization under different nitrogen managements in red latosol of rubber plantation[J]. Ecology and Environmental Sciences, 2018, 27(4): 685-691. (in Chinese with English abstract) | |
| [17] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| [18] | 黄思怡, 田昌, 谢桂先, 等. 控释尿素减少双季稻田氨挥发的主要机理和适宜用量[J]. 植物营养与肥料学报, 2019, 25(12): 2102-2112. |
| HUANG S Y, TIAN C, XIE G X, et al. Mechanism and suitable application dosage of controlled-release urea effectively reducing ammonia volatilization in double-cropping paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2102-2112. (in Chinese with English abstract) | |
| [19] | 张文学, 孙刚, 何萍, 等. 脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1411-1419. |
| ZHANG W X, SUN G, HE P, et al. Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1411-1419. (in Chinese with English abstract) | |
| [20] | 李菊梅, 徐明岗, 秦道珠, 等. 有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J]. 植物营养与肥料学报, 2005, 11(1): 51-56. |
| LI J M, XU M G, QIN D Z, et al. Effects of chemical fertilizers application combined with manure on ammonia volatilization and rice yield in red paddy soil[J]. Plant Nutrition and Fertilizing Science, 2005, 11(1): 51-56. (in Chinese with English abstract) | |
| [21] |
JOSEPH S D, CAMPS-ARBESTAIN M, LIN Y, et al. An investigation into the reactions of biochar in soil[J]. Soil Research, 2010, 48(7): 501.
DOI URL |
| [22] | 董文旭, 胡春胜, 张玉铭. 不同施肥土壤对尿素NH3挥发的影响[J]. 干旱地区农业研究, 2005, 23(2): 76-79. |
| DONG W X, HU C S, ZHANG Y M. Effects of different soil fertilizations on NH3 volatilization of urea[J]. Agricultural Research in the Arid Areas, 2005, 23(2): 76-79. (in Chinese with English abstract) | |
| [23] |
XU S S, HOU P F, XUE L H, et al. Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation[J]. Atmospheric Environment, 2017, 169: 1-10.
DOI URL |
| [24] |
ANG H I, LOU K Y, RAJAPAKSHA A U, et al. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars[J]. Environmental Science and Pollution Research International, 2018, 25(26): 25638-25647.
DOI PMID |
| [25] | 赵洁, 贺宇宏, 张晓明, 等. 酸碱改性对生物炭吸附Cr(VI)性能的影响[J]. 环境工程, 2020, 38(6):28-34. |
| ZHAO J, HE Y H, ZHANG X M, et al. Effect on Cr(VI) adsorption performance of acid-base modified biochar[J]. Environmental Engineering, 2020, 38(6):28-34. (in Chinese with English abstract) | |
| [26] | DING Y, LIU Y X, WU W X, et al. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns[J]. Water, Air, & Soil Pollution, 2010, 213(1/2/3/4): 47-55. |
| [27] |
BENGTSSON G, BENGTSON P, MÅNSSON K F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(1): 143-154.
DOI URL |
| [28] | TAMMEORG P, SIMOJOKI A, MÄKELÄ P, et al. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand[J]. Agriculture, Ecosystems & Environment, 2014, 191: 108-116. |
| [29] | 张丰, 刘畅, 王喆, 等. 不同吸附特性的稻草生物炭对稻田氨挥发和水稻产量的影响[J]. 农业工程学报, 2021, 37(9): 100-109. |
| ZHANG F, LIU C, WANG Z, et al. Effects of rice straw biochar with different adsorption characteristics on ammonia volatilization from paddy field and rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 100-109. (in Chinese with English abstract) | |
| [30] |
SUN Y D, XIA G M, HE Z L, et al. Zeolite amendment coupled with alternate wetting and drying to reduce nitrogen loss and enhance rice production[J]. Field Crops Research, 2019, 235: 95-103.
DOI URL |
| [31] |
MANDAL S, THANGARAJAN R, BOLAN N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016, 142: 120-127.
DOI PMID |
| [32] |
吴佩聪, 张鹏, 单颖, 等. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687.
DOI |
|
WU P C, ZHANG P, SHAN Y, et al. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. (in Chinese with English abstract)
DOI |
|
| [33] | 余姗, 薛利红, 花昀, 等. 水热炭减少稻田氨挥发损失的效果与机制[J]. 环境科学, 2020, 41(2): 922-931. |
|
YU S, XUE L H, HUA Y, et al. Effect of applying hydrochar for reduction of ammonia volatilization and mechanisms in paddy soil[J]. Environmental Science, 2020, 41(2): 922-931. (in Chinese with English abstract)
DOI URL |
|
| [34] |
SUN H J, ZHANG H L, XIAO H D, et al. Wheat straw biochar application increases ammonia volatilization from an urban compacted soil giving a short-term reduction in fertilizer nitrogen use efficiency[J]. Journal of Soils and Sediments, 2019, 19(4): 1624-1631.
DOI URL |
| [35] | 邹娟, 胡学玉, 张阳阳, 等. 不同地表条件下生物炭对土壤氨挥发的影响[J]. 环境科学, 2018, 39(1): 348-354. |
| ZOU J, HU X Y, ZHANG Y Y, et al. Effect of biochar on ammonia volatilization from soils of different surface conditions[J]. Environmental Science, 2018, 39(1): 348-354. (in Chinese with English abstract) | |
| [36] | 周玉玲, 侯朋福, 李刚华, 等. 两种土壤增效剂对稻田氨挥发排放的影响[J]. 环境科学, 2019, 40(8): 3746-3752. |
| ZHOU Y L, HOU P F, LI G H, et al. Effect of two soil synergists on ammonia volatilization in paddy fields[J]. Environmental Science, 2019, 40(8): 3746-3752. (in Chinese with English abstract) | |
| [37] |
MANDAL S, DONNER E, SMITH E, et al. Biochar with near-neutral pH reduces ammonia volatilization and improves plant growth in a soil-plant system: a closed chamber experiment[J]. Science of the Total Environment, 2019, 697: 134114.
DOI URL |
| [1] | WEI Qingcui, JIANG Naying, SHEN Junyang, ZHANG Huanchao, ZHANG Hengfeng. Effects of reduced chemical fertilization and biochar application on nitrogen and phosphorus leaching and soil properties of sandy soil [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1943-1950. |
| [2] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
| [3] | WU Jialong, CHI Ming, GAO Yan, WANG Xiang, SHEN Haiou. Effects of biochar application on soil physiochemical indicators at sloping farmland in black soil region [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2060-2069. |
| [4] | FU Zhiqiang, LIU Zhen, MA Chunhua, WEN Mengling, XI Ruchun. Effects of biochar and biochar-based fertilizers on soil quality and plant growth [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1634-1645. |
| [5] | YU Chao, WANG Yinyu, LIU Qizhen, WANG Yun, SHEN Hong, FENG Ying. Effects of application of biochar from different raw materials combined with inorganic amendments on cadmium accumulation in pakchoi shoots and soil cadmium inactivation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 613-621. |
| [6] | MA Ling, ZHANG Zhenwu, FANG Yingzi, WU Huixin, XING Chenghua. Effects of nitrogen reduction and biochar application on growth and development of Citurs reticulata Blanco cv. ‘Ponkan’ and soil properties [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2739-2747. |
| [7] | WU Yuke, WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin. Parameters optimization for vermicomposting of cow dung and changes of properties of composting residues [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2308-2315. |
| [8] | HAN Jing, ZHU Yiting, ZHENG Chi, MA Lihong, ZHANG Yanan, ZENG Qiuyan, LIU Shuliang, CHEN Shujuan. Activation of soybean shell biochar and its adsorption performance for carbaryl [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2202-2211. |
| [9] | WANG Xintong, WAN Zuliang, YANG Zhenzhong, WANG Guojiao. Effects of rice straw returning to fields by wet harrow in autumn on leaf-soil ecological stoichiometry of rice at different growth stages [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1243-1252. |
| [10] | XU Yang, REN Yilin, WANG Haojie, HUANG Qiuhang, XING Boyuan, CAO Hongliang. Comprehensive evaluation of rape straw biochar as slow-release carrier under different preparation conditions [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 893-902. |
| [11] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
| [12] | RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402. |
| [13] | WANG Weiwei, MEI Yi, WU Yongcheng, WAN Hongjian, CHEN Changjun, ZHENG Qingsong, ZHENG Jiaqiu. Effects of corncob biochar application on soil characteristics and pepper growth under continuous cropping [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 156-163. |
| [14] | CUI Wenfang, CHEN Jing, LU Fukuan, QIN Li, QIN Dezhi, WANG Liping, GAO Julin. Effects of biochar application combined with nitrogen reduction on yield and nitrogen use efficiency of maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 248-254. |
| [15] | XIA Sujing, QIAO Yue, ZHU Jianqiang. Reducing nitrogen loss from paddy filed and ensuring yield of direct seeding rice by adjusting nitrogen base-topdressing ratio [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2482-2490. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||