Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (9): 2202-2211.DOI: 10.3969/j.issn.1004-1524.20220998
• Environmental Science • Previous Articles Next Articles
HAN Jing(
), ZHU Yiting, ZHENG Chi, MA Lihong, ZHANG Yanan, ZENG Qiuyan, LIU Shuliang, CHEN Shujuan(
)
Received:2022-07-05
Online:2023-09-25
Published:2023-10-09
CLC Number:
HAN Jing, ZHU Yiting, ZHENG Chi, MA Lihong, ZHANG Yanan, ZENG Qiuyan, LIU Shuliang, CHEN Shujuan. Activation of soybean shell biochar and its adsorption performance for carbaryl[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2202-2211.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20220998
Fig.1 Effect of biochars on carbary adsorption S-500, S-600, S-700 represent soybean shell biochars produced at 500, 600, 700 ℃, respectively. A-SBC represents the activated biochar from S-700, namely, the activated soybeam shell biochar. Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
Fig.4 Infrared spectra of soybean shell biochar before and after activation A-SBC* represents the activated soybeam shell biochar produced under the optimized activation conditions.
Fig.5 Adsorption capacity (Q) and adsorption rate (R) of carbaryl by A-SBC under different system conditions Absorption capacity columns (dots) marked without the same letter indicate significant difference at P<0.05.
| 吸附剂 Adsorbent | 准一级动力学模型Quasi first-order dynamic model | 准二级动力学模型Quasi second-order dynamic model | ||||
|---|---|---|---|---|---|---|
| K1/min-1 | qe/(mg·g-1) | R2 | K2/(g·mg-1·min-1) | qe/(mg·g-1) | R2 | |
| A-SBC | 0.123 5 | 115.10 | 0.904 | 2.5×10-3 | 118.18 | 0.974 |
Table 1 Adsorption kinetics parameters of carbaryl by A-SBC
| 吸附剂 Adsorbent | 准一级动力学模型Quasi first-order dynamic model | 准二级动力学模型Quasi second-order dynamic model | ||||
|---|---|---|---|---|---|---|
| K1/min-1 | qe/(mg·g-1) | R2 | K2/(g·mg-1·min-1) | qe/(mg·g-1) | R2 | |
| A-SBC | 0.123 5 | 115.10 | 0.904 | 2.5×10-3 | 118.18 | 0.974 |
| θ/℃ | 朗缪尔方程Langmuir equation | 弗罗因德利希方程Freundlich equation | ||||
|---|---|---|---|---|---|---|
| qm/(mg·g-1) | KL/(L·mg-1) | R2 | KF/[mg·g-1·(L·mg-1)1/n] | 1/n | R2 | |
| 25 | 246.61 | 0.563 | 0.951 | 83.61 | 0.524 | 0.947 |
| 35 | 255.86 | 0.701 | 0.968 | 96.65 | 0.520 | 0.952 |
| 45 | 279.16 | 1.028 | 0.940 | 128.84 | 0.475 | 0.834 |
Table 2 Adsorption equilibrium isothermal parameters of carbaryl by A-SBC
| θ/℃ | 朗缪尔方程Langmuir equation | 弗罗因德利希方程Freundlich equation | ||||
|---|---|---|---|---|---|---|
| qm/(mg·g-1) | KL/(L·mg-1) | R2 | KF/[mg·g-1·(L·mg-1)1/n] | 1/n | R2 | |
| 25 | 246.61 | 0.563 | 0.951 | 83.61 | 0.524 | 0.947 |
| 35 | 255.86 | 0.701 | 0.968 | 96.65 | 0.520 | 0.952 |
| 45 | 279.16 | 1.028 | 0.940 | 128.84 | 0.475 | 0.834 |
| θ/℃ | ΔG0/(kJ· mol-1) | ΔH0/(kJ· mol-1) | ΔS0/(J· mol-1·K-1) |
|---|---|---|---|
| 25 | -23.671 | 27.471 | 172.695 |
| 35 | -25.386 | 27.471 | 172.695 |
| 45 | -27.445 | 27.471 | 172.695 |
Table 3 Thermodynamic parameters of adsorption of carbaryl by A-SBC
| θ/℃ | ΔG0/(kJ· mol-1) | ΔH0/(kJ· mol-1) | ΔS0/(J· mol-1·K-1) |
|---|---|---|---|
| 25 | -23.671 | 27.471 | 172.695 |
| 35 | -25.386 | 27.471 | 172.695 |
| 45 | -27.445 | 27.471 | 172.695 |
| [1] | 郭雪琰, 付大友, 袁东, 等. 西维因荧光分子印迹聚合物的制备及性能表征[J]. 分析试验室, 2017, 36(12): 1439-1443. |
| GUO X Y, FU D Y, YUAN D, et al. Study on preparation and characterization of carbaryl fluorescent molecularly imprintied polymers[J]. Chinese Journal of Analysis Laboratory, 2017, 36(12): 1439-1443. (in Chinese with English abstract) | |
| [2] | 帅丽芳, 赵勇, 银涛, 等. 西维因人工抗原的合成与鉴定[J]. 山西农业大学学报(自然科学版), 2017, 37(10): 749-753. |
| SHUAI L F, ZHAO Y, YIN T, et al. Synthesis and identification of artificial antigen for carbary[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2017, 37(10): 749-753. (in Chinese with English abstract) | |
| [3] | SAXENA P N, GUPTA S K, MURTHY R C. Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida: a possible mechanism[J]. Ecotoxicology and Environmental Safety, 2014, 100: 218-225. |
| [4] | 孙航. 生物炭对西北黄土中农药敌草隆和西维因吸附行为影响的研究[D]. 兰州: 兰州交通大学, 2017. |
| SUN H. Effect of biochar on the adsorption behavior of diuron and carbaryl onto loess soil[D]. Lanzhou: Lanzhou Jiatong University, 2017. (in Chinese with English abstract) | |
| [5] | 董顺玲, 胡家炽, 何志强, 等. 中药材中氨基甲酸酯类农药残留量的反相高效液相色谱法[J]. 药物分析杂志, 2002, 22(3): 178-182. |
| DONG S L, HU J C, HE Z Q, et al. RP-HPLC determination of residual amount of aldicarb, carbofuran and carbaryl in Chinese crude drugs[J]. Chinese Journal of Pharmaceutical Analysis, 2002, 22(3): 178-182. (in Chinese with English abstract) | |
| [6] | XIE T, REDDY K R, WANG C W, et al. Characteristics and applications of biochar for environmental remediation: a review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(9): 939-969. |
| [7] | LUO Z R, YAO B, YANG X, et al. Novel insights into the adsorption of organic contaminants by biochar: a review[J]. Chemosphere, 2022, 287(Pt 2): 132113. |
| [8] | TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85. |
| [9] | FERNANDES J O, BERNARDINO C A R, MAHLER C F, et al. Biochar generated from agro-industry sugarcane residue by low temperature pyrolysis utilized as an adsorption agent for the removal of thiamethoxam pesticide in wastewater[J]. Water, Air, & Soil Pollution, 2021, 232(2): 67. |
| [10] | VIJETHA P, SUBBAIAH T, VINEET A, et al. Torrefied and unmodified capsicum annuam biochar for the removal of synthetic hazardous pesticide (carbofuran) from watershed[J]. Biointerface Research in Applied Chemistry, 2019, 9(5): 4384-4393. |
| [11] | BAHARUM N A, NASIR H M, ISHAK M Y, et al. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar[J]. Arabian Journal of Chemistry, 2020, 13(7): 6106-6121. |
| [12] | AZARGOHAR R, DALAI A K. Steam and KOH activation of biochar: experimental and modeling studies[J]. Microporous and Mesoporous Materials, 2008, 110(2/3): 413-421. |
| [13] | TAN G C, SUN W L, XU Y R, et al. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution[J]. Bioresource Technology, 2016, 211: 727-735. |
| [14] | 李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报, 2012, 31(11): 2277-2283. |
| LI L, LU Y C, LIU Y, et al. Adsorption mechanisms of cadmium(Ⅱ)on biochars derived from corn straw[J]. Journal of Agro-Environment Science, 2012, 31(11): 2277-2283. (in Chinese with English abstract) | |
| [15] | 李霞, 陈思莉, 卓琼芳, 等. 热改性活性炭吸附甲萘威的性能[J]. 安全与环境学报, 2017, 17(5): 1915-1921. |
| LI X, CHEN S L, ZHUO Q F, et al. On the adsorptive performance of carbaryl onto the activated carbons with the thermal treatment[J]. Journal of Safety and Environment, 2017, 17(5): 1915-1921. (in Chinese with English abstract) | |
| [16] | 黄玉芬, 魏岚, 李翔, 等. 不同裂解温度稻壳生物炭对阿特拉津的吸附行为及机制[J]. 环境科学研究, 2020, 33(8): 1919-1928. |
| HUANG Y F, WEI L, LI X, et al. Adsorption of atrazine by biochar obtained from pyrolysis of rice husk at different temperatures[J]. Research of Environmental Sciences, 2020, 33(8): 1919-1928. (in Chinese with English abstract) | |
| [17] | WANG L L, WANG X F, ZOU B, et al. Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis[J]. Bioresource Technology, 2011, 102(17): 8220-8224. |
| [18] | HAN X Y, CHU L, LIU S M, et al. Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar[J]. BioResources, 2015, 10(2): 2836-2849. |
| [19] | QIU Z P, WANG Y S, BI X, et al. Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors[J]. Journal of Power Sources, 2018, 376: 82-90. |
| [20] | 刘慧冉, 谢昶琰, 康亚龙, 等. 不同裂解温度对梨树枝条生物炭理化性质的影响[J]. 南京农业大学学报, 2019, 42(5): 895-902. |
| LIU H R, XIE C Y, KANG Y L, et al. Influence of different pyrolysis temperatures on physical and chemical properties of biochar derived from pear branches[J]. Journal of Nanjing Agricultural University, 2019, 42(5): 895-902. (in Chinese with English abstract) | |
| [21] | VEKSHA A, ZAMAN W, LAYZELL D B, et al. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis[J]. Bioresource Technology, 2014, 171: 88-94. |
| [22] | ZHANG Y, XU J, LI B, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by KOH-modified peanut shell-derived biochar[J]. Biomass Conversion and Biorefinery, 2021: 1-15. |
| [23] | 杨雅芃, 张超兰, 陈俊先, 等. KOH活化制备蚕沙基生物炭及其对镉的吸附特性[J]. 环境工程学报, 2021, 15(11): 3504-3514. |
| YANG Y P, ZHANG C L, CHEN J X, et al. Study on adsorption and removal of cadmium by KOH activated silkworm excrement-based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(11): 3504-3514. (in Chinese with English abstract) | |
| [24] | ZHANG X F, ELSAYED I, SONG X Z, et al. Microporous carbon nanoflakes derived from biomass cork waste for CO2 capture[J]. Science of the Total Environment, 2020, 748: 142465. |
| [25] | WANG J, LIU T L, HUANG Q X, et al. Production and characterization of high quality activated carbon from oily sludge[J]. Fuel Processing Technology, 2017, 162: 13-19. |
| [26] | ZHANG B H, REN J W, GU X, et al. A method for the preparation of activated carbon based carbon/carbonaceous composites with controllable surface functionality[J]. Journal of Porous Materials, 2011, 18(6): 743-750. |
| [27] | 韩磊, 杨儒, 刘国强, 等. 汉麻杆基活性炭表面织构与储氢性能的研究[J]. 无机化学学报, 2009, 25(12): 2097-2104. |
| HAN L, YANG R, LIU G Q, et al. Texture and hydrogen adsorption of activated carbons based on hemp stems[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(12): 2097-2104. (in Chinese with English abstract) | |
| [28] | SUN L, CHEN D M, WAN S G, et al. Adsorption studies of dimetridazole and metronidazole onto biochar derived from sugarcane bagasse: kinetic, equilibrium, and mechanisms[J]. Journal of Polymers and the Environment, 2018, 26(2): 765-777. |
| [29] | XI X G, YAN J L, QUAN G X, et al. Removal of the pesticide pymetrozine from aqueous solution by biochar produced from brewer’s spent grain at different pyrolytic temperatures[J]. BioResources, 2014, 9(4): 7696-7709. |
| [30] | 张晓明, 周志强, 徐彦军, 等. 甲萘威在水环境中的水解及其影响因素[J]. 环境化学, 2006, 25(5): 580-583. |
| ZHANG X M, ZHOU Z Q, XU Y J, et al. Hydrolysis and the influencing factors of carbaryl in water[J]. Environmental Chemistry, 2006, 25(5): 580-583. (in Chinese with English abstract) | |
| [31] | MA Y F, QI Y, LU T M, et al. Highly efficient removal of imidacloprid using potassium hydroxide activated magnetic microporous loofah sponge biochar[J]. Science of the Total Environment, 2021, 765: 144253. |
| [32] | BATOOL S, ALI SHAH A, ABU BAKAR A F, et al. Removal of organochlorine pesticides using zerovalent iron supported on biochar nanocomposite from Nephelium lappaceum(Rambutan) fruit peel waste[J]. Chemosphere, 2022, 289: 133011. |
| [33] | YANG J J, SUN H W, LIU Y C, et al. The sorption of tebuconazole and linuron from an aqueous environment with a modified sludge-based biochar: effect, mechanisms, and its persistent free radicals study[J]. Journal of Chemistry, 2021, 2021: 1-15. |
| [34] | ZHAO Y N, DU D D, LI Q N, et al. Dummy-surface molecularly imprinted polymers based on magnetic graphene oxide for selective extraction and quantification of pyrethroids pesticides in fruit juices[J]. Microchemical Journal, 2020, 159: 105411. |
| [35] | 张良静. 生物炭对典型三嗪类和氨基甲酸酯类农药的吸附特征研究[D]. 北京: 中国地质大学(北京), 2019. |
| ZHANG L J. Study on sorption characterristics of typical S-triazine and carbamate pesticides to biochars[D]. Beijing: China University of Geosciences, 2019. (in Chinese with English abstract) | |
| [36] | ZHU Q Y, MOGGRIDGE G D, D’AGOSTINO C. Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500: part 2: kinetics and diffusion analysis[J]. Chemical Engineering Journal, 2016, 306: 1223-1233. |
| [37] | ARAMI M, LIMAEE N Y, MAHMOODI N M, et al. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull[J]. Journal of Hazardous Materials, 2006, 135(1/2/3): 171-179. |
| [38] | ZHU S, LIU Y G, LIU S B, et al. Adsorption of emerging contaminant metformin using graphene oxide[J]. Chemosphere, 2017, 179: 20-28. |
| [39] | GUO Q W, QI Q, XUE Z H, et al. Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk (Maydis stigma)[J]. Carbohydrate Polymers, 2018, 198: 581-588. |
| [40] | 赵璐璐. 改性生物炭对水中阿特拉津的吸附行为及应用研究[D]. 哈尔滨: 东北农业大学, 2017. |
| ZHAO L L. Adsorption behavior and applied research of atrazine on modified biochars[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese with English abstract) | |
| [41] | LLADÓ J, LAO-LUQUE C, RUIZ B, et al. Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics[J]. Process Safety and Environmental Protection, 2015, 95: 51-59. |
| [42] | PENG X M, HU F P, HUANG J L, et al. Preparation of a graphitic ordered mesoporous carbon and its application in sorption of ciprofloxacin: kinetics, isotherm, adsorption mechanisms studies[J]. Microporous and Mesoporous Materials, 2016, 228: 196-206. |
| [1] | WEI Qingcui, JIANG Naying, SHEN Junyang, ZHANG Huanchao, ZHANG Hengfeng. Effects of reduced chemical fertilization and biochar application on nitrogen and phosphorus leaching and soil properties of sandy soil [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1943-1950. |
| [2] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
| [3] | WU Jialong, CHI Ming, GAO Yan, WANG Xiang, SHEN Haiou. Effects of biochar application on soil physiochemical indicators at sloping farmland in black soil region [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2060-2069. |
| [4] | FU Zhiqiang, LIU Zhen, MA Chunhua, WEN Mengling, XI Ruchun. Effects of biochar and biochar-based fertilizers on soil quality and plant growth [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1634-1645. |
| [5] | YU Chao, WANG Yinyu, LIU Qizhen, WANG Yun, SHEN Hong, FENG Ying. Effects of application of biochar from different raw materials combined with inorganic amendments on cadmium accumulation in pakchoi shoots and soil cadmium inactivation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 613-621. |
| [6] | MA Ling, ZHANG Zhenwu, FANG Yingzi, WU Huixin, XING Chenghua. Effects of nitrogen reduction and biochar application on growth and development of Citurs reticulata Blanco cv. ‘Ponkan’ and soil properties [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2739-2747. |
| [7] | LI Qiuru, CAI Jingjing, LI Hua, YU Haiping, QIU Gaoyang, LIU Junli, GUO Bin. Comparison of adsorption and passivation effects of inorganic and organic materials on cadmium [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2774-2783. |
| [8] | WU Yuke, WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin. Parameters optimization for vermicomposting of cow dung and changes of properties of composting residues [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2308-2315. |
| [9] | XU Yang, REN Yilin, WANG Haojie, HUANG Qiuhang, XING Boyuan, CAO Hongliang. Comprehensive evaluation of rape straw biochar as slow-release carrier under different preparation conditions [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 893-902. |
| [10] | RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402. |
| [11] | YUAN Taiyan, YAN Zhengjuan, HUANG Chengdong, ZHANG Zhiye, WANG Xinlong. Adsorption-desorption characteristics of ammonium polyphosphate in purple soils [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 403-416. |
| [12] | WANG Weiwei, MEI Yi, WU Yongcheng, WAN Hongjian, CHEN Changjun, ZHENG Qingsong, ZHENG Jiaqiu. Effects of corncob biochar application on soil characteristics and pepper growth under continuous cropping [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 156-163. |
| [13] | CUI Wenfang, CHEN Jing, LU Fukuan, QIN Li, QIN Dezhi, WANG Liping, GAO Julin. Effects of biochar application combined with nitrogen reduction on yield and nitrogen use efficiency of maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 248-254. |
| [14] | LIN Zhiwen, ZHANG Peng, WU Tianhao, SHAN Ying, ZOU Ganghua, ZHAO Fengliang, ZHENG Guiping. Effects of straw and straw-derived biochar returning on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2689-2699. |
| [15] | WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||