浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 1911-1924.DOI: 10.3969/j.issn.1004-1524.2022.09.10
收稿日期:
2021-11-24
出版日期:
2022-09-25
发布日期:
2022-09-30
通讯作者:
张慧琴
作者简介:
*张慧琴,E-mail: zhqzaas@163.com基金资助:
GU Xianbin(), LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin(
)
Received:
2021-11-24
Online:
2022-09-25
Published:
2022-09-30
Contact:
ZHANG Huiqin
摘要:
为探究褪黑素对桃耐涝性的调控效应,用200 μmol·L-1褪黑素对桃苗进行预处理,再经涝害处理,通过生理指标与转录组分析褪黑素和涝害对桃的影响。结果表明,涝害胁迫下外源褪黑素能保护细胞膜和根系。褪黑素能激活微管形态建成、氧化还原酶活性和蛋白结合相关的基因,巩固根系骨架,激活抗氧化酶活性,提高抗逆性。涝害诱导ERF转录因子家族成员大量表达,通过HRPE和GCC-box顺式作用元件激活下游ADH、ALD、GAPD等糖酵解途径关键酶基因的表达,为低氧胁迫下的植株供能。ERF Ⅶ成员Prupe.8G264900可能是桃响应涝害的关键基因。
中图分类号:
古咸彬, 陆玲鸿, 宋根华, 肖金平, 张慧琴. 褪黑素预处理对桃耐涝性的调控效应[J]. 浙江农业学报, 2022, 34(9): 1911-1924.
GU Xianbin, LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin. Regulation effect of melatonin pretreatment on waterlogging tolerance in peach seedling[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1911-1924.
基因序列号 Gene ID | 基因名称 Gene name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 产物长度 Products lenth/bp |
---|---|---|---|---|
Prupe.1G234000 | PpGAPDH | CTGCTTCCTTCAACATCAT | TGCCTTCTTCTCAATCCT | 158 |
Prupe.1G305900 | PpRAV | TTCAGATGGTTCGGCTATT | TCCTTGGCTTCTTGCTAA | 183 |
Prupe.2G258200 | PpERD15 | GAGGAAGAGGAGAAGGATT | CGGACTCACTTTCATCAC | 138 |
Prupe.2G272300 | PpERF1 | CGGATGCTTCAACAACAA | TACTGGTCTTCTGCCTTG | 111 |
Prupe.3G236200 | PpLBD41 | GGATGAGTTGTAATGGATG | CCTCGTATAGCAATGATC | 213 |
Prupe.6G230600 | PpWRKY7 | CAGGTGTCTTCAGTTGGA | AGAGTAATCATCAGGTGGAA | 207 |
Prupe.8G018100 | PpADH1 | GGAGTGATGCTGAGTGAT | CAGACCTGTGGAGATACC | 183 |
Prupe.8G264900 | PpERF071 | CCTCCAATTCCAATTCCAA | GCAATCGCATCCTTATTCA | 226 |
Prupe.6G163400 | PpACTIN | TCTTCCAACCATCACTCAT | GCCACAACCTTAATCTTCAT | 211 |
表1 荧光定量PCR引物
Table 1 Primers for qRT-PCR
基因序列号 Gene ID | 基因名称 Gene name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 产物长度 Products lenth/bp |
---|---|---|---|---|
Prupe.1G234000 | PpGAPDH | CTGCTTCCTTCAACATCAT | TGCCTTCTTCTCAATCCT | 158 |
Prupe.1G305900 | PpRAV | TTCAGATGGTTCGGCTATT | TCCTTGGCTTCTTGCTAA | 183 |
Prupe.2G258200 | PpERD15 | GAGGAAGAGGAGAAGGATT | CGGACTCACTTTCATCAC | 138 |
Prupe.2G272300 | PpERF1 | CGGATGCTTCAACAACAA | TACTGGTCTTCTGCCTTG | 111 |
Prupe.3G236200 | PpLBD41 | GGATGAGTTGTAATGGATG | CCTCGTATAGCAATGATC | 213 |
Prupe.6G230600 | PpWRKY7 | CAGGTGTCTTCAGTTGGA | AGAGTAATCATCAGGTGGAA | 207 |
Prupe.8G018100 | PpADH1 | GGAGTGATGCTGAGTGAT | CAGACCTGTGGAGATACC | 183 |
Prupe.8G264900 | PpERF071 | CCTCCAATTCCAATTCCAA | GCAATCGCATCCTTATTCA | 226 |
Prupe.6G163400 | PpACTIN | TCTTCCAACCATCACTCAT | GCCACAACCTTAATCTTCAT | 211 |
图1 淹水处理后桃生理指标的变化 利用SPSS Statistics 17.0软件进行显著性差异分析,One-way ANOVA用于显著性检验,Duncan法进行多重比较。柱上无相同小写字母表示差异显著(P<0.05)。
Fig.1 Physiological indexes changes of peach after waterlogging treatment SPSS Statistics 17.0 software was used for significant difference analysis, one-way ANOVA was used for significance test, Duncan method was used for multiple comparison. Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05.
图3 褪黑素诱导富集的GO通路 A,GO富集分析;B,差异基因的表达热图。
Fig.3 Enrichment of the GO items induced by melatonin A, GO enrichment analysis; B, Heat map of differential gene expression.
图4 共同差异表达基因的GO富集分析与表达热图分析 A,组间比较Venn图;B,GO富集分析;C,差异基因的表达热图。
Fig.4 GO enrich and expression analysis of common differentially expressed genes A, Venn diagram between groups; B, GO enrichment analysis; C, Heat map of different expression gene.
转录因子家族 TF family | 数量 Number | 转录因子家族 TF family | 数量 Number |
---|---|---|---|
AP2/ERF | 34 | HD-ZIP | 3 |
WRKY | 23 | NF-YA | 3 |
bZIP | 15 | ARR-B | 2 |
HSF | 12 | BES1 | 2 |
C2C2-GATA | 4 | NF-X1 | 1 |
MADS | 4 | SBP | 1 |
AT-hook | 3 | Trihelix | 1 |
表2 GO显著富集通路中差异表达的转录因子
Table 2 Different expressed transcription factors in the most enrich GO pathway
转录因子家族 TF family | 数量 Number | 转录因子家族 TF family | 数量 Number |
---|---|---|---|
AP2/ERF | 34 | HD-ZIP | 3 |
WRKY | 23 | NF-YA | 3 |
bZIP | 15 | ARR-B | 2 |
HSF | 12 | BES1 | 2 |
C2C2-GATA | 4 | NF-X1 | 1 |
MADS | 4 | SBP | 1 |
AT-hook | 3 | Trihelix | 1 |
ERF家族 ERF family | 数量 Number | 百分比 Percentage/% | ERF家族 ERF family | 数量 Number | 百分比 Percentage/% |
---|---|---|---|---|---|
Ⅰ | 1/6 | 16.7 | Ⅶ | 3/3 | 100 |
Ⅱ | 1/8 | 12.5 | Ⅷ | 3/10 | 30 |
Ⅲ | 5/22 | 22.7 | Ⅸ | 12/20 | 60 |
Ⅳ | 2/7 | 28.6 | Ⅹ | 2/6 | 33.3 |
Ⅴ | 0/12 | 0 | Ⅺ-L | 0/2 | 0 |
Ⅵ | 0/6 | 0 |
表3 桃ERF转录因子家族成员差异表达基因分布
Table 3 Different expressed ERFs in each subfamily group
ERF家族 ERF family | 数量 Number | 百分比 Percentage/% | ERF家族 ERF family | 数量 Number | 百分比 Percentage/% |
---|---|---|---|---|---|
Ⅰ | 1/6 | 16.7 | Ⅶ | 3/3 | 100 |
Ⅱ | 1/8 | 12.5 | Ⅷ | 3/10 | 30 |
Ⅲ | 5/22 | 22.7 | Ⅸ | 12/20 | 60 |
Ⅳ | 2/7 | 28.6 | Ⅹ | 2/6 | 33.3 |
Ⅴ | 0/12 | 0 | Ⅺ-L | 0/2 | 0 |
Ⅵ | 0/6 | 0 |
图7 KEGG富集分析及ERF靶基因预测 A,KEGG富集气泡图;B,糖酵解途径与合成酶基因的表达热图;C,ERF靶基因预测。
Fig.7 KEGG pathway enrichment analysis and ERF transcription factor target gene prediction A, KEGG enrichment analysis; B, Expression heat map of glycolysis pathway genes; C, ERF target gene prediction.
[1] |
ANDERSEN P, LOMBARD P, WESTWOOD M N. Leaf conductance, growth, and survival of willow and deciduous fruit tree species under flooded soil conditions[J]. Journal of The American Society for Horticultural Science, 1984, 109(2): 132-138.
DOI URL |
[2] | 郁万文, 蔡金峰, 高长忠. 不同桃砧类型对淹水胁迫的生理响应及耐涝性评价[J]. 中国果树, 2016(3): 1-6. |
YU W W, CAI J F, GAO C Z. Physiological responses of different peach rootstocks to submergence stress and their waterlogging tolerance evaluation[J]. China Fruits, 2016(3): 1-6. (in Chinese) | |
[3] |
WU X L, TANG Y L, LI C S, et al. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China[J]. Field Crops Research, 2018, 215: 163-172.
DOI URL |
[4] | 聂功平, 陈敏敏, 杨柳燕, 等. 植物响应淹水胁迫的研究进展[J]. 中国农学通报, 2021, 37(18): 57-64. |
NIE G P, CHEN M M, YANG L Y, et al. Plant response to waterlogging stress: research progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 57-64. (in Chinese with English abstract) | |
[5] | 刘周斌, 周宇健, 杨博智, 等. 植物抗涝性研究进展[J]. 湖北农业科学, 2015, 54(18): 4385-4389, 4393. |
LIU Z B, ZHOU Y J, YANG B Z, et al. Research progress in waterlogging of plant[J]. Hubei Agricultural Sciences, 2015, 54(18): 4385-4389, 4393. (in Chinese with English abstract) | |
[6] |
SALAH A, ZHAN M, CAO C G, et al. γ-aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings[J]. Scientific Reports, 2019, 9(1): 484.
DOI PMID |
[7] | 王蕊, 杨小龙, 须晖, 等. 高等植物褪黑素的合成和代谢研究进展[J]. 植物生理学报, 2016, 52(5): 615-627. |
WANG R, YANG X L, XU H, et al. Research progress of melatonin biosynthesis and metabolism in higher plants[J]. Plant Physiology Journal, 2016, 52(5): 615-627. (in Chinese with English abstract) | |
[8] |
ARNAO M B, HERNÁNDEZ-RUIZ J. Melatonin: a new plant hormone and/or a plant master regulator?[J]. Trends in Plant Science, 2019, 24(1): 38-48.
DOI PMID |
[9] |
WANG Y P, REITER R J, CHAN Z L. Phytomelatonin: a universal abiotic stress regulator[J]. Journal of Experimental Botany, 2017, 69(5): 963-974.
DOI URL |
[10] |
吴燕, 乔晓燕, 葛伟强, 等. 高温强光下外源褪黑素对栝楼雌花生理生化特性的影响[J]. 浙江农业学报, 2020, 32(3): 421-429.
DOI |
WU Y, QIAO X Y, GE W Q, et al. Effects of exogenous melatonin on physiological and biochemical characteristics in female flowers of Trichosanthes kirilowii under high temperature and strong light[J]. Acta Agriculturae Zhejiangensis, 2020, 32(3): 421-429. (in Chinese with English abstract) | |
[11] | ZHENG X D, ZHOU J Z, TAN D X, et al. Melatonin improves waterlogging tolerance of Malus baccata(Linn.) Borkh. seedlings by maintaining aerobic respiration, photosynthesis and ROS migration[J]. Frontiers in Plant Science, 2017, 8: 483. |
[12] |
ZHANG R D, YUE Z X, CHEN X F, et al. Foliar applications of urea and melatonin to alleviate waterlogging stress on photosynthesis and antioxidant metabolism in sorghum seedlings[J]. Plant Growth Regulation, 2022, 97(2): 429-438.
DOI URL |
[13] |
GU X B, XUE L, LU L H, et al. Melatonin enhances the waterlogging tolerance of Prunus persica by modulating antioxidant metabolism and anaerobic respiration[J]. Journal of Plant Growth Regulation, 2021, 40(5): 2178-2190.
DOI URL |
[14] | 赵婷, 李琴, 潘学军, 等. 陆生植物对淹水胁迫的适应机制[J]. 植物生理学报, 2021, 57(11): 2091-2103. |
ZHAO T, LI Q, PAN X J, et al. Adaptive mechanism of terrestrial plants to waterlogging stress[J]. Plant Physiology Journal, 2021, 57(11): 2091-2103. (in Chinese with English abstract) | |
[15] |
ALTAF M A, SHAHID R, REN M X, et al. Phytomelatonin: an overview of the importance and mediating functions of melatonin against environmental stresses[J]. Physiologia Plantarum, 2021, 172(2): 820-846.
DOI URL |
[16] |
韩国民, 刘茜, 唐美玲, 等. 外源褪黑素对NaCl胁迫下5BB葡萄叶片生理特性的影响[J]. 浙江农业学报, 2019, 31(4): 556-564.
DOI |
HAN G M, LIU X, TANG M L, et al. Effects of exogenous melatonin on physiological characteristics of 5BB grape leaves under NaCl stress[J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 556-564. (in Chinese with English abstract)
DOI |
|
[17] |
陈东, 李强, 彭彦, 等. 淹水胁迫下褪黑素浸种对水稻幼苗生长的影响[J]. 华北农学报, 2019, 34(3): 129-136.
DOI |
CHEN D, LI Q, PENG Y, et al. Effect of melatonin on rice seedling growth under submergence stress[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(3): 129-136. (in Chinese with English abstract)
DOI |
|
[18] |
张明聪, 何松榆, 秦彬, 等. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
DOI |
ZHANG M C, HE S Y, QIN B, et al. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress[J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. (in Chinese with English abstract) | |
[19] |
WANG X, LI F, CHEN Z Y, et al. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress[J]. Journal of Proteomics, 2021, 232: 104064.
DOI URL |
[20] |
李小兰, 张瑞, 郝兰兰, 等. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780.
DOI |
LI X L, ZHANG R, HAO L L, et al. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. (in Chinese with English abstract)
DOI |
|
[21] |
MOHANTY B. Promoter architecture and transcriptional regulation of genes upregulated in germination and coleoptile elongation of diverse rice genotypes tolerant to submergence[J]. Frontiers in Genetics, 2021, 12: 639654.
DOI URL |
[22] |
YU F, TAN Z D, FANG T, et al. A comprehensive transcriptomics analysis reveals long non-coding RNA to be involved in the key metabolic pathway in response to waterlogging stress in maize[J]. Genes, 2020, 11(3): 267.
DOI URL |
[23] |
NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432.
DOI URL |
[24] | WEI X N, XU H J, RONG W, et al. Constitutive expression of a stabilized transcription factor group Ⅶ ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield[J]. Plant, Cell & Environment, 2019, 42(5): 1471-1485. |
[25] |
PAN D L, WANG G, WANG T, et al. AdRAP2.3, a novel ethylene response factor Ⅶ from Actinidia deliciosa, enhances waterlogging resistance in transgenic tobacco through improving expression levels of PDC and ADH genes[J]. International Journal of Molecular Sciences, 2019, 20(5): 1189.
DOI URL |
[26] |
UMEDA M, UCHIMIYA H. Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress[J]. Plant Physiology, 1994, 106(3): 1015-1022.
DOI URL |
[27] |
KOMATSU S, YAMAGUCHI H, HITACHI K, et al. Proteomic and biochemical analyses of the mechanism of tolerance in mutant soybean responding to flooding stress[J]. International Journal of Molecular Sciences, 2021, 22(16): 9046.
DOI URL |
[28] |
WEI W L, LI D H, WANG L H, et al. Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.)[J]. Plant Science, 2013, 208: 102-111.
DOI URL |
[1] | 金宝霞, 王伟杰, 朱晓林, 王贤, 魏小红. 不同激素组合对番茄离体再生和相关基因表达的影响[J]. 浙江农业学报, 2022, 34(9): 1889-1900. |
[2] | 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(9): 1935-1944. |
[3] | 邵宇辰, 穆宏磊, 陈杭君, 殷军艺, 房祥军, 吴伟杰, 刘瑞玲, 韩延超, 郜海燕. 肠道条件和粒径对加工山核桃体外消化的影响[J]. 浙江农业学报, 2022, 34(8): 1734-1742. |
[4] | 黄灵芝, 姜广泽, 丁艳菲, 朱诚. 核桃乳DNA提取方法优化与DNA条形码鉴定[J]. 浙江农业学报, 2022, 34(8): 1752-1761. |
[5] | 王斯亮, 邵越, 闫成进. 草地贪夜蛾在玉米-小麦寄主转换中的转录组分析[J]. 浙江农业学报, 2022, 34(6): 1236-1247. |
[6] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[7] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[8] | 王乾昆, 张小辉, 庞有志, 祁艳霞, 雷莹, 白俊艳, 户运奇, 赵毅威, 苑志文, 王涛. 基于RNA-seq技术挖掘鹌鹑羽色自别雌雄相关基因[J]. 浙江农业学报, 2022, 34(3): 498-506. |
[9] | 兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516. |
[10] | 王慧茹, 李建设, 闫思华, 高艳明. 整枝方式对樱桃番茄冠层截获和荧光特性的影响[J]. 浙江农业学报, 2022, 34(3): 525-533. |
[11] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[12] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
[13] | 杨生海, 刘西兰, 张勇. 利用加权基因共表达网络分析牛口蹄疫病毒感染通路变化[J]. 浙江农业学报, 2021, 33(9): 1617-1624. |
[14] | 马杰, 屈雯, 陈春艳, 王磊, 马俊, 刘针杉, 马维, 周平, 何远宽, 孙勃. 基于转录组序列的叶用芥菜奶奶青菜EST-SSR标记开发与遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1640-1649. |
[15] | 黄长兵, 程培蕾, 杨绍宗, 张焕朝, 姜正之, 金立敏. 萱草根茎低温胁迫转录组分析[J]. 浙江农业学报, 2021, 33(8): 1445-1460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||