浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 67-77.DOI: 10.3969/j.issn.1004-1524.20231181
廖珍凤1(), 宋西娇1, 沈梦梦1, 肖彬1, 周媛2,*(
)
收稿日期:
2023-10-13
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
廖珍凤(1991—),女,福建三明人,硕士,研究实习员,研究方向为电镜技术。E-mail:liaozhenfeng2@163.com
通讯作者:
*周媛,E-mail:dazhouyuan19@163.com
LIAO Zhenfeng1(), SONG Xijiao1, SHEN Mengmeng1, XIAO Bin1, ZHOU Yuan2,*(
)
Received:
2023-10-13
Online:
2025-01-25
Published:
2025-02-14
摘要: 为了明确耧斗菜属不同品种间的花粉形态特征,并探究不同制样处理方式对花粉形态变化的影响,分别用冷冻扫描法、新鲜花粉干燥法、戊二醛固定法制备6种耧斗菜(Aquilegia)花粉样品。结果表明:在相同制样方法下,不同品种的花粉具有一定的共性和特异性;6种耧斗菜花粉均为等极的辐射对称型花粉,萌发沟为3沟型,覆盖层表面具刺状突起纹饰,说明不同品种耧斗菜之间具有高度的保守性;而极轴长度、赤道轴长度、极轴/赤道轴比值等方面存在显著差异,可作为耧斗菜品种分类鉴定的孢粉学依据。不同制样方法下,6种耧斗菜花粉大小排序基本一致,紫花耧斗菜的花粉最大,其次是无距耧斗菜,其余4种耧斗菜花粉大小差异不明显。冷冻扫描电镜法是研究耧斗菜孢粉学较理想的方法,最大程度地保持了花粉原本的超微结构特征。与冷冻扫描电镜法相比,新鲜花粉干燥法和戊二醛固定法制备的花粉极轴长度、P/E值和P×E值均存在不同程度的减小。该研究不仅成功建立了一套针对花粉超微结构观察的冷冻扫描技术体系,也为耧斗菜品种的分类鉴定提供了理论依据。
中图分类号:
廖珍凤, 宋西娇, 沈梦梦, 肖彬, 周媛. 不同制样方法下6种耧斗菜花粉的形态特征[J]. 浙江农业学报, 2025, 37(1): 67-77.
LIAO Zhenfeng, SONG Xijiao, SHEN Mengmeng, XIAO Bin, ZHOU Yuan. Morphological characteristics of Aquilegia pollen grains from six species under different sample preparation methods[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 67-77.
图1 冷冻扫描制样法得到的6种耧斗菜花粉形态的扫描电镜照片 a1,无距耧斗菜;a2,无距耧斗菜极面观;a3,无距耧斗菜赤道面观;b1,扇形耧斗菜;b2,扇形耧斗菜极面观;b3,扇形耧斗菜赤道面观;c1,紫花耧斗菜;c2,紫花耧斗菜极面观;c3,紫花耧斗菜赤道面观;d1,尖萼耧斗菜;d2,尖萼耧斗菜极面观;d3,尖萼耧斗菜赤道面观;e1,黄花耧斗菜;e2,黄花耧斗菜极面观;e3,黄花耧斗菜赤道面观;f1,黄花尖萼耧斗菜;f2,黄花尖萼耧斗菜极面观;f3,黄花尖萼耧斗菜赤道面观。a1、b1、c1、d1、e1、f1的标尺为100 μm;a2、a3、b2、b3、c2、c3、d2、d3、e2、e3、f2、f3的标尺为10 μm。下同。
Fig.1 Scanning electron microscopy images of pollen grains of six Aquilegia species obtained by cryo-scanning electron microscopy method a1, Aquilegia ecalcarata; a2, Polar view of Aquilegia ecalcarata; a3, Equatorial view of Aquilegia ecalcarata; b1, Aquilegia flabellate; b2, Polar view of Aquilegia flabellate; b3, Equatorial view of Aquilegia flabellate; c1, Aquilegia viridiflora var. atropurpurea; c2, Polar view of Aquilegia viridiflora var. atropurpurea; c3, Equatorial view of Aquilegia viridiflora var. atropurpurea; d1, Aquilegia oxysepala; d2, Polar view of Aquilegia oxysepala; d3, Equatorial view of Aquilegia oxysepala; e1, Aquilegia chrysantha; e2, Polar view of Aquilegia chrysantha; e3, Equatorial view of Aquilegia chrysantha; f1, Aquilegia oxysepala var. oxysepala f. pallidiflora; f2, Polar view of Aquilegia oxysepala var. oxysepala f. pallidiflora; f3, Equatorial view of Aquilegia oxysepala var. oxysepala f. pallidiflora. The bars of figures a1, b1, c1, d1, e1 and f1 were 100 μm, the bars of figures a2, a3, b2, b3, c2, c3, d2, d3, e2, e3, f2, f3 were 10 μm.The same as below.
图2 新鲜花粉干燥法得到的6种耧斗菜花粉形态的扫描电镜照片
Fig.2 Scanning electron microscopy images of pollen grains of six Aquilegia species obtained by fresh pollen drying method
图3 戊二醛固定法得到的6种耧斗菜花粉形态的扫描电镜照片
Fig.3 Scanning electron microscopy images of pollen grains of six Aquilegia species obtained by glutaraldehyde fixation method
方法Method | 品种Species | P/μm | E/μm | P/E | P×E/(μm×μm) |
---|---|---|---|---|---|
冷冻扫描法 | 无距耧斗菜A. ecalcarata | 30.55±2.32 b | 15.92±1.01 c | 1.92±0.13 a | 487.72±58.32 b |
Cryo-scanning | 扇形耧斗菜A. flabellate | 24.27±2.13 e | 17.12±0.78 b | 1.42±0.16 d | 414.93±34.65 c |
electron microscopy | 紫花耧斗菜 | 34.45±2.00 a | 21.55±1.91 a | 1.61±0.13 c | 744.01±91.59 a |
A. viridiflora var. atropurpurea | |||||
尖萼耧斗菜A. oxysepala | 27.19±1.81 c | 15.5±0.62c | 1.76±0.13 b | 421.30±32.24 c | |
黄花耧斗菜A. chrysantha | 25.73±1.65 d | 15.82±0.89 c | 1.63±0.14 c | 407.02±34.90 c | |
黄花尖萼耧斗菜 | 27.20±1.20 c | 14.74±0.91 d | 1.85±0.13 a | 401.01±32.36 c | |
A. oxysepala var. oxysepala f. pallidiflora | |||||
新鲜花粉干燥法 | 无距耧斗菜A. ecalcarata | 25.04±1.13 a | 15.37±1.80 bc | 1.65±0.18 a | 385.17±49.36 a |
Fresh pollen drying | 扇形耧斗菜A. flabellate | 24.45±1.44a | 15.19±1.01 bc | 1.62±0.13 ab | 371.66±35.68 ab |
紫花耧斗菜 | 24.69±1.80 a | 15.75±1.12 b | 1.57±0.14 b | 389.24±44.32 a | |
A. viridiflora var. atropurpurea | |||||
尖萼耧斗菜A. oxysepala | 23.60±1.16 b | 14.95±0.78 c | 1.58±0.09 ab | 353.04±30.05 b | |
黄花耧斗菜A. chrysantha | 22.36±1.02 c | 16.69±1.15 a | 1.34±0.09 c | 373.52±35.08 ab | |
黄花尖萼耧斗菜 | 24.60±0.95 a | 15.05±0.71 c | 1.64±0.10 ab | 370.18±21.40 ab | |
A. oxysepala var. oxysepala f. pallidiflora | |||||
戊二醛固定法 | 无距耧斗菜A. ecalcarata | 23.91±1.24 a | 15.13±0.86 d | 1.58±0.10 a | 362.19±31.95 b |
Glutaraldehyde | 扇形耧斗菜A. flabellate | 19.06±1.49 c | 15.86±1.50 cd | 1.21±0.13 c | 302.69±38.76 cd |
fixation | 紫花耧斗菜 | 23.20±1.09 b | 18.10±2.59 a | 1.32±0.27 b | 419.39±61.36 a |
A. viridiflora var. atropurpurea | |||||
尖萼耧斗菜A. oxysepala | 17.85±1.03 e | 16.34±1.02 bc | 1.09±0.07 d | 292.19±30.24 cd | |
黄花耧斗菜A. chrysantha | 18.33±0.71 de | 16.86±1.02 b | 1.09±0.05 d | 309.52±27.30 c | |
黄花尖萼耧斗菜 | 18.67±1.02 cd | 15.14±1.25 d | 1.24±0.09 c | 283.20±33.77 d | |
A. oxysepala var. oxysepala f. pallidiflora |
表1 三种方法得到的6种耧斗菜花粉的形态特征
Table 1 Morphological characteristics of pollen grains of six Aquilegia species obtained by three methods
方法Method | 品种Species | P/μm | E/μm | P/E | P×E/(μm×μm) |
---|---|---|---|---|---|
冷冻扫描法 | 无距耧斗菜A. ecalcarata | 30.55±2.32 b | 15.92±1.01 c | 1.92±0.13 a | 487.72±58.32 b |
Cryo-scanning | 扇形耧斗菜A. flabellate | 24.27±2.13 e | 17.12±0.78 b | 1.42±0.16 d | 414.93±34.65 c |
electron microscopy | 紫花耧斗菜 | 34.45±2.00 a | 21.55±1.91 a | 1.61±0.13 c | 744.01±91.59 a |
A. viridiflora var. atropurpurea | |||||
尖萼耧斗菜A. oxysepala | 27.19±1.81 c | 15.5±0.62c | 1.76±0.13 b | 421.30±32.24 c | |
黄花耧斗菜A. chrysantha | 25.73±1.65 d | 15.82±0.89 c | 1.63±0.14 c | 407.02±34.90 c | |
黄花尖萼耧斗菜 | 27.20±1.20 c | 14.74±0.91 d | 1.85±0.13 a | 401.01±32.36 c | |
A. oxysepala var. oxysepala f. pallidiflora | |||||
新鲜花粉干燥法 | 无距耧斗菜A. ecalcarata | 25.04±1.13 a | 15.37±1.80 bc | 1.65±0.18 a | 385.17±49.36 a |
Fresh pollen drying | 扇形耧斗菜A. flabellate | 24.45±1.44a | 15.19±1.01 bc | 1.62±0.13 ab | 371.66±35.68 ab |
紫花耧斗菜 | 24.69±1.80 a | 15.75±1.12 b | 1.57±0.14 b | 389.24±44.32 a | |
A. viridiflora var. atropurpurea | |||||
尖萼耧斗菜A. oxysepala | 23.60±1.16 b | 14.95±0.78 c | 1.58±0.09 ab | 353.04±30.05 b | |
黄花耧斗菜A. chrysantha | 22.36±1.02 c | 16.69±1.15 a | 1.34±0.09 c | 373.52±35.08 ab | |
黄花尖萼耧斗菜 | 24.60±0.95 a | 15.05±0.71 c | 1.64±0.10 ab | 370.18±21.40 ab | |
A. oxysepala var. oxysepala f. pallidiflora | |||||
戊二醛固定法 | 无距耧斗菜A. ecalcarata | 23.91±1.24 a | 15.13±0.86 d | 1.58±0.10 a | 362.19±31.95 b |
Glutaraldehyde | 扇形耧斗菜A. flabellate | 19.06±1.49 c | 15.86±1.50 cd | 1.21±0.13 c | 302.69±38.76 cd |
fixation | 紫花耧斗菜 | 23.20±1.09 b | 18.10±2.59 a | 1.32±0.27 b | 419.39±61.36 a |
A. viridiflora var. atropurpurea | |||||
尖萼耧斗菜A. oxysepala | 17.85±1.03 e | 16.34±1.02 bc | 1.09±0.07 d | 292.19±30.24 cd | |
黄花耧斗菜A. chrysantha | 18.33±0.71 de | 16.86±1.02 b | 1.09±0.05 d | 309.52±27.30 c | |
黄花尖萼耧斗菜 | 18.67±1.02 cd | 15.14±1.25 d | 1.24±0.09 c | 283.20±33.77 d | |
A. oxysepala var. oxysepala f. pallidiflora |
[1] | KRAMER E M, HODGES S A. Aquilegia as a model system for the evolution and ecology of petals[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2010, 365(1539): 477-490. |
[2] | 周媛, 朱强, 田丹青, 等. 新优花卉耧斗菜引种杭州的栽培及观赏性试验[J]. 浙江农业科学, 2021, 62(9): 1781-1782. |
ZHOU Y, ZHU Q, TIAN D Q, et al. Cultivation and ornamental test of new optimal flower Aquilegia in Hangzhou[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(9): 1781-1782. (in Chinese with English abstract) | |
[3] | NOLD R. Columbines: Aquilegia, Paraquilegia, and Semiaquilegia[J]. Portland: Timber Press, 2010. |
[4] | 肖培根. 耧斗菜属[M]//中国植物志:第27卷. 北京: 科学出版社, 1979: 490-502. |
[5] | 李春雨. 毛茛科耧斗菜亚族(Aquilegiinae Tamura)的系统学研究[D]. 北京: 中国科学院研究生院(植物研究所), 2006. |
LI C Y. Systematic study on Aquilegiinae Tamura of Ranunculaceae[D]. Beijing: Institute of Botany, Chinese Academy of Sciences, 2006. (in Chinese with English abstract) | |
[6] | KRAMER E M. Aquilegia: a new model for plant development, ecology, and evolution[J]. Annual Review of Plant Biology, 2009, 60(1): 261-277. |
[7] | FIOR S, LI M A, OXELMAN B, et al. Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions[J]. New Phytologist, 2013, 198(2):579-592. |
[8] | XUE C, GENG F D, ZHANG X Y, et al. Morphological variation pattern ofAquilegia ecalcarataand its relatives[J]. Journal of Systematics and Evolution, 2020, 58(3): 221-233. |
[9] | MONTALVO A M. Relative success of self and outcross pollen comparing mixed-and single-donor pollinations in Aquilegia Caerulea[J]. Evolution; International Journal of Organic Evolution, 1992, 46(4): 1181-1198. |
[10] | 予茜, 郭友好, 黄双全. 三种耧斗菜属植物柱头的特征[J]. 植物分类学报, 2005, 43(6): 513-516. |
YU Q, GUO Y H, HUANG S Q. Characters of stigma in three Aquilegia species[J]. Acta Phytotaxonomica Sinica, 2005, 43(6): 513-516. (in Chinese with English abstract) | |
[11] | 翁育林. 耧斗菜属(Aquilegia)近缘种间的生殖隔离机制研究[D]. 昆明: 云南大学, 2021. |
WENG Y L. Study on reproductive isolation mechanism among related species of Aquilegia[D]. Kunming: Yunnan University, 2021. (in Chinese with English abstract) | |
[12] | 陈四保, 王立为, 杨峻山, 等. 耧斗菜族药用植物化学成分及资源利用概况[J]. 中草药, 2001, 32(11): W003-W005. |
CHEN S B, WANG L W, YANG J S, et al. Survey in chemical constituent and resource utilization of medicinal plant from tribe isopyreae[J]. Chinese Traditional and Herbal Drugs, 2001, 32(11): W003-W005. (in Chinese with English abstract) | |
[13] | XU F X, DE CRAENE L P R. Pollen morphology and ultrastructure of selected species from Annonaceae[J]. Plant Systematics and Evolution, 2013, 299(1): 11-24. |
[14] | 李京璟, 张日清, 马庆华, 等. 榛属植物花粉形态扫描电镜观察[J]. 电子显微学报, 2017, 36(4): 404-413. |
LI J J, ZHANG R Q, MA Q H, et al. SEM observation on the pollen morphology in Corylus[J]. Journal of Chinese Electron Microscopy Society, 2017, 36(4): 404-413. (in Chinese with English abstract) | |
[15] | 周静伟, 吴晓梦, 周慧晶, 等. 10个八仙花品种花粉粒形态扫描电镜观察[J]. 分子植物育种, 2021, 19(21): 7240-7250. |
ZHOU J W, WU X M, ZHOU H J, et al. Observation of pollen grains of ten Hydrangea varieties with scanning electron microscope(SEM)[J]. Molecular Plant Breeding, 2021, 19(21): 7240-7250. (in Chinese with English abstract) | |
[16] | 谢微微, 于文涛, 杨国一, 等. 14个茶树品种的花粉微形态观察[J]. 南方农业学报, 2018, 49(9): 1698-1704. |
XIE W W, YU W T, YANG G Y, et al. Micromorphological observation on pollen of 14 cultivars of tea tree(Camellia sinensis)[J]. Journal of Southern Agriculture, 2018, 49(9): 1698-1704. (in Chinese with English abstract) | |
[17] | 孙立. 耧斗菜族(毛茛科)三种植物的繁育系统和传粉生物学研究[D]. 西安: 陕西师范大学, 2014. |
SUN L. Studies on the breeding system and pollination biology of three plants in the Aquilegia family (Ranunculaceae)[D]. Xi’an: Shaanxi Normal University, 2014. (in Chinese with English abstract) | |
[18] | 方晨. 不同观察方式下的花粉形态变化幅度研究[D]. 上海: 华东师范大学, 2020. |
FANG C. Variation of pollen morphology under different observing methods[D]. Shanghai: East China Normal University, 2020. (in Chinese with English abstract) | |
[19] | 陈菁瑛, 陈弁, 张丽梅, 等. 用于扫描电镜观察的花粉不同制样方法对枇杷花粉形态的影响[J]. 福建农业学报, 2003, 18(2): 107-111. |
CHEN J Y, CHEN B, ZHANG L M, et al. Effects of different sampling method for scanning electron microscopic observation on pollen morphology of loquat varieties[J]. Fujian Journal of Agricultural Sciences, 2003, 18(2): 107-111. (in Chinese with English abstract) | |
[20] | HESLOP-HARRISON Y. Scanning electron microscopy of fresh leaves of Pinguicula[J]. Science, 1970, 167(3915): 172-174. |
[21] | MCCULLY M E, CANNY M J, HUANG C X. Invited review: cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology. Morphological and anatomical applications[J]. Functional Plant Biology, 2009, 36(2): 97-124. |
[22] | HRUBANOVA K, NEBESAROVA J, RUZICKA F, et al. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm[J]. Micron, 2018, 110: 28-35. |
[23] | SEMPERE F, SANTAMARINA M P. Cryo-scanning electron microscopy and light microscopy for the study of fungi interactions[J]. Microscopy Research and Technique, 2011, 74(3): 207-211. |
[24] | BABOSHA A V, RYABCHENKO A S, AVETISYAN G A, et al. Visualization of the halo region in plant-powdery mildew interactions by cryoscanning electron microscopy[J]. Journal of Plant Pathology, 2020, 102(1): 103-111. |
[25] | 杨彩婷. 水生动物冷冻扫描电镜技术研究[D]. 上海: 华东师范大学, 2015. |
YANG C T. Studies on the techology of cryo-scanning electron microscope with aquatic animals[D]. Shanghai: East China Normal University, 2015. (in Chinese with English abstract) | |
[26] | 田彦宝. 拟南芥花粉管的原位冷冻扫描电镜实验方法[J]. 电子显微学报, 2017, 36(5): 505-509. |
TIAN Y B. In-situ experimental method on pollen tube of Arabidopsis by cryo-SEM[J]. Journal of Chinese Electron Microscopy Society, 2017, 36(5): 505-509. (in Chinese with English abstract) | |
[27] | YU Z M, CHEN H M, TONG Y L, et al. Analysis of rice root hair morphology using cryo-scanning electron microscopy[J]. Methods in Molecular Biology, 2013, 956: 243-248. |
[28] | FUJIKAWA S, ENDOH K. Cryo-scanning electron microscopy to study the freezing behavior of plant tissues[J]. Methods in Molecular Biology, 2014, 1166: 99-116. |
[29] | 徐钰林, 童林芬. 孢粉学教程[M]. 武汉: 武汉地质学院印刷厂, 1984. |
[30] | 陈朝文, 朱海生, 凌永胜, 等. 20个丝瓜品种的花粉形态特征研究[J]. 福建农业学报, 2023, 38(1): 31-38. |
CHEN C W, ZHU H S, LING Y S, et al. Morphological characteristics of pollens of varieties of Luffa[J]. Fujian Journal of Agricultural Sciences, 2023, 38(1): 31-38. (in Chinese with English abstract) | |
[31] | 方仁, 安振宇, 黄伟雄, 等. 8个番荔枝栽培品种的花粉形态扫描电镜观察[J]. 南方农业学报, 2020, 51(7): 1553-1559. |
FANG R, AN Z Y, HUANG W X, et al. Morphology of pollens of eight Annona squamosa L. varieties by scanning electron microscope[J]. Journal of Southern Agriculture, 2020, 51(7): 1553-1559. (in Chinese with English abstract) | |
[32] | 李婷, 邓绍勇, 谷振军, 等. 泡桐属植物花粉不同处理方法的扫描电镜观察[J]. 电子显微学报, 2020, 39(1): 75-78. |
LI T, DENG S Y, GU Z J, et al. SEM examination of Paulownia pollen with different treatments[J]. Journal of Chinese Electron Microscopy Society, 2020, 39(1): 75-78. (in Chinese with English abstract) | |
[33] | 张国云, 张雯婷, 姚娟妮, 等. 不同处理条件下几种松树花粉的扫描电镜观察[J]. 电子显微学报, 2016, 35(1): 49-52. |
ZHANG G Y, ZHANG W T, YAO J N, et al. Characterization of several Pinus species pollens via different treatments by SEM[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(1): 49-52. (in Chinese with English abstract) | |
[34] | WEHLING K, NIESTER C, BOON J J, et al. P-Coumaric acid: a monomer in the sporopollenin skeleton[J]. Planta, 1989, 179(3): 376-380. |
[35] | ESPELIE K E, LOEWUS F A, PUGMIRE R J, et al. Structural analysis of Lilium longiflorum sporopollenin by 13C NMR spectroscopy[J]. Phytochemistry, 1989, 28(3): 751-753. |
[1] | 王苗苗, 秦嘉泽, 郭佳琪, 于天成. 杓唇石斛开花特性与繁育系统研究[J]. 浙江农业学报, 2025, 37(1): 103-114. |
[2] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
[3] | 贺宇杉, 朱海霞. 梨黑孢链格孢GD-011菌株除草机制的初步研究[J]. 浙江农业学报, 2024, 36(5): 1094-1101. |
[4] | 徐金铭, 常毅洪, 龚涵, 龚文芳, 袁德义. 外源物质对油茶花粉萌发和花粉管生长的影响[J]. 浙江农业学报, 2023, 35(4): 789-798. |
[5] | 王赟萍, 贺佩珊, 马吉平, 钟国祥, 王素贞, 肖银润, 熊小文, 张诚. 危害茶树菇新害虫——Bradysia peraffinis Tuomikoski 1960(Diptera: Sciaridae)的生物学特性[J]. 浙江农业学报, 2023, 35(4): 884-892. |
[6] | 袁太艳, 严正娟, 黄成东, 张志业, 王辛龙. 聚磷酸铵在紫色土壤中的吸附-解吸特征[J]. 浙江农业学报, 2023, 35(2): 403-416. |
[7] | 单英杰, 任白琳, 陈宇航, 丁志峰, 章明奎. 茭白田土壤磷库特征及其与种植年限的关系和流失风险[J]. 浙江农业学报, 2023, 35(11): 2645-2654. |
[8] | 戴前莉, 朱恒星, 卢敏, 黄飞逸, 陈本文, 陈琴, 尹思琴, 祝元春. 重庆老鹰茶种质资源调查与评价[J]. 浙江农业学报, 2022, 34(3): 447-456. |
[9] | 吴涛, 魏玉明, 江小帆, 黄杰, 杨发荣, 陈国顺, 蔡原, 焦婷, 赵生国. 日粮中添加藜麦对芦花鸡生长性能、屠宰性能、器官指数与肠道形态的影响[J]. 浙江农业学报, 2022, 34(2): 255-265. |
[10] | 江小帆, 吴涛, 魏玉明, 杨发荣, 陈国顺, 焦婷, 蔡原, 赵生国. 饲粮中添加牛至精油对芦花鸡生长性能、屠宰性能、器官指数和肠道形态的影响[J]. 浙江农业学报, 2022, 34(1): 41-49. |
[11] | 蔡家旭, 王飞, 奚冬冬, 刘路, 王玉伟. 基于条纹投影的苹果果梗/花萼识别方法[J]. 浙江农业学报, 2021, 33(8): 1497-1504. |
[12] | 谢放, 夏樱霞, 苏强军, UWITUGABIYE Vestine, 陈照禾, 周刚. 中国被毛孢三种菌丝形态的超显微特征观察[J]. 浙江农业学报, 2021, 33(5): 855-860. |
[13] | 陈莎, 何贝贝, 陈启武, 李利. 血耳及其宿主菌的分离与系统发育分析[J]. 浙江农业学报, 2021, 33(3): 447-453. |
[14] | 沈植国, 孙萌, 丁鑫, 程建明, 陈迪新. 不同培养基组分对5个蜡梅品系花粉萌发和花粉管生长的影响[J]. 浙江农业学报, 2021, 33(2): 278-287. |
[15] | 胡宗文, 杨娟, 苗春辉, 黄新球, 杨爽. 侵染狄斯瓦螨后西方蜜蜂的致畸等级划分[J]. 浙江农业学报, 2020, 32(7): 1187-1195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||