浙江农业学报 ›› 2025, Vol. 37 ›› Issue (9): 2012-2020.DOI: 10.3969/j.issn.1004-1524.20240431
• 综述 • 上一篇
裴惠民1(
), 巫明明2, 翟荣荣2, 叶靖2, 金月1, 朱仪1, 侯建军1, 朱国富2, 叶胜海2,*(
)
收稿日期:2024-05-14
出版日期:2025-09-25
发布日期:2025-10-15
作者简介:叶胜海,E-mail:shenghaiye@163.com通讯作者:
叶胜海
PEI Huimin1(
), WU Mingming2, ZHAI Rongrong2, YE Jing2, JIN Yue1, ZHU Yi1, HOU Jianjun1, ZHU Guofu2, YE Shenghai2,*(
)
Received:2024-05-14
Online:2025-09-25
Published:2025-10-15
Contact:
YE Shenghai
摘要:
镉在人体长期积累可导致严重疾病。稻米是人体摄入镉的主要来源之一。在镉污染土壤中,培育低镉水稻品种是生产低镉稻米最经济且有效的途径。目前,关于水稻镉积累的基因资源挖掘与功能研究已广泛开展,低镉水稻品种筛选也取得初步进展。本文综述了低镉水稻基因和种质资源挖掘及低镉水稻品种选育等方面的研究进展,并对当前低镉水稻新品种培育面临的问题进行了讨论与展望,旨在为低镉水稻的分子育种和安全生产提供理论参考。
中图分类号:
裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020.
PEI Huimin, WU Mingming, ZHAI Rongrong, YE Jing, JIN Yue, ZHU Yi, HOU Jianjun, ZHU Guofu, YE Shenghai. Research progress on gene function and breeding of low-cadmium rice cultivars[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2012-2020.
| 基因 Gene | 基因号 GenBank No. | 编码蛋白 Encoded protein | 功能 Function | 参考文献 References |
|---|---|---|---|---|
| OsNramp1 | LOC_Os07g15460 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd吸收 Cd absorption | [ |
| OsNramp2 | LOC_Os03g11010 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd外排 Cd emission | [ |
| OsNramp5 | LOC_Os07g15370 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd吸收 Cd absorption | [ |
| OsZIP1 | LOC_Os01g74110 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd外排Cd emission | [ |
| OsZIP5 | LOC_Os05g39560 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd吸收Cd absorption | [ |
| OsZIP7 | LOC_Os05g10940 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd转运Cd transport | [ |
| OsZIP9 | LOC_Os05g39540 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd吸收Cd absorption | [ |
| OsIRT1 | LOC_Os03g46470 | 铁调控转运蛋白Iron-regulated metal transporter | Cd吸收Cd absorption | [ |
| OsIRT2 | LOC_Os03g46454 | 铁调控转运蛋白Iron-regulated metal transporter | Cd吸收Cd absorption | [ |
| OsABCG36 | LOC_Os01g42380 | ABCG亚家族转运蛋白ATP Binding Cassette G36 | Cd隔离Cd segregation | [ |
| OsABCG43 | LOC_Os07g33780 | ABCG亚家族转运蛋白ATP Binding Cassette G43 | Cd隔离Cd segregation | [ |
| OsCd1 | LOC_Os03g02380 | MFS超家族转运蛋白 Major facilitator superfamily domain-containing protein | Cd吸收 Cd absorption | [ |
| OsHMA3 | LOC_Os07g12900 | 重金属ATP酶Heavy-metal ATPase | Cd转运Cd transport | [ |
| OsHMA2 | LOC_Os06g48720 | 重金属ATP酶Heavy-metal ATPase | Cd转运Cd transport | [ |
| OsFWL4 | LOC_Os03g61440 | 果重同源基因Fruit-weight 2.2-like 4 | Cd转运Cd transport | [ |
| OsCCX2 | LOC_Os03g45370 | 钙离子/阳离子交换蛋白Calcium/cation exchanger | Cd转运Cd transport | [ |
| OsLCT1 | LOC_Os06g38120 | 低亲和性阳离子转运蛋白Low-affinity cation transporter | Cd转运Cd transport | [ |
| OsLCT2 | EEC79340.1/MW757982 | 低亲和性阳离子转运蛋白Low-affinity cation transporter | Cd转运Cd transport | [ |
| OsMTP1 | LOC_Os05g03780 | 锌转运蛋白Zn transporter 1 | Cd转运Cd transport | [ |
| LCD | LOC_Os01g72670 | 低镉Low cadmium | Cd转运Cd transport | [ |
| CAL1 | LOC_Os02g41904 | 防御素类蛋白 Defensin-like protein | Cd外排/Cd螯合 Cd emissions/Cd chelation | [ |
| OsPCS1 | LOC_Os05g34290 | 螯合肽合酶基因Phytochelatin synthase gene | Cd螯合Cd chelation | [ |
| OsPCS2 | LOC_Os06g01260 | 螯合肽合酶基因Phytochelatin synthase gene | Cd螯合Cd chelation | [ |
| OsCADT1 | LOC_Os01g65410 | 丝氨酸羟甲基转移酶Serine hydroxymethyltransferase | Cd螯合Cd chelation | [ |
表1 已克隆的与水稻镉吸收和转运相关的基因
Table 1 Cloned genes related to cadmium uptake and translocation in rice
| 基因 Gene | 基因号 GenBank No. | 编码蛋白 Encoded protein | 功能 Function | 参考文献 References |
|---|---|---|---|---|
| OsNramp1 | LOC_Os07g15460 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd吸收 Cd absorption | [ |
| OsNramp2 | LOC_Os03g11010 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd外排 Cd emission | [ |
| OsNramp5 | LOC_Os07g15370 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd吸收 Cd absorption | [ |
| OsZIP1 | LOC_Os01g74110 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd外排Cd emission | [ |
| OsZIP5 | LOC_Os05g39560 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd吸收Cd absorption | [ |
| OsZIP7 | LOC_Os05g10940 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd转运Cd transport | [ |
| OsZIP9 | LOC_Os05g39540 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd吸收Cd absorption | [ |
| OsIRT1 | LOC_Os03g46470 | 铁调控转运蛋白Iron-regulated metal transporter | Cd吸收Cd absorption | [ |
| OsIRT2 | LOC_Os03g46454 | 铁调控转运蛋白Iron-regulated metal transporter | Cd吸收Cd absorption | [ |
| OsABCG36 | LOC_Os01g42380 | ABCG亚家族转运蛋白ATP Binding Cassette G36 | Cd隔离Cd segregation | [ |
| OsABCG43 | LOC_Os07g33780 | ABCG亚家族转运蛋白ATP Binding Cassette G43 | Cd隔离Cd segregation | [ |
| OsCd1 | LOC_Os03g02380 | MFS超家族转运蛋白 Major facilitator superfamily domain-containing protein | Cd吸收 Cd absorption | [ |
| OsHMA3 | LOC_Os07g12900 | 重金属ATP酶Heavy-metal ATPase | Cd转运Cd transport | [ |
| OsHMA2 | LOC_Os06g48720 | 重金属ATP酶Heavy-metal ATPase | Cd转运Cd transport | [ |
| OsFWL4 | LOC_Os03g61440 | 果重同源基因Fruit-weight 2.2-like 4 | Cd转运Cd transport | [ |
| OsCCX2 | LOC_Os03g45370 | 钙离子/阳离子交换蛋白Calcium/cation exchanger | Cd转运Cd transport | [ |
| OsLCT1 | LOC_Os06g38120 | 低亲和性阳离子转运蛋白Low-affinity cation transporter | Cd转运Cd transport | [ |
| OsLCT2 | EEC79340.1/MW757982 | 低亲和性阳离子转运蛋白Low-affinity cation transporter | Cd转运Cd transport | [ |
| OsMTP1 | LOC_Os05g03780 | 锌转运蛋白Zn transporter 1 | Cd转运Cd transport | [ |
| LCD | LOC_Os01g72670 | 低镉Low cadmium | Cd转运Cd transport | [ |
| CAL1 | LOC_Os02g41904 | 防御素类蛋白 Defensin-like protein | Cd外排/Cd螯合 Cd emissions/Cd chelation | [ |
| OsPCS1 | LOC_Os05g34290 | 螯合肽合酶基因Phytochelatin synthase gene | Cd螯合Cd chelation | [ |
| OsPCS2 | LOC_Os06g01260 | 螯合肽合酶基因Phytochelatin synthase gene | Cd螯合Cd chelation | [ |
| OsCADT1 | LOC_Os01g65410 | 丝氨酸羟甲基转移酶Serine hydroxymethyltransferase | Cd螯合Cd chelation | [ |
| [1] | TANAKA K, SUEDA K, ONOSAKA S, et al. Fate of 109Cd-labeled metallothionein in rats[J]. Toxicology and Applied Pharmacology, 1975, 33(2): 258-266. |
| [2] | 朱凯, 余恩源, 张群祥, 等. 网络时代农产品质量安全事件风险扩散的路径研究: 以镉大米事件为例[J]. 河北科技师范学院学报(社会科学版), 2023, 22(4): 61-68. |
| ZHU K, YU E Y, ZHANG Q X, et al. Research on the risk diffusion path of agricultural product quality and safety events in the network era: taking the cadmium rice incident as an example[J]. Journal of Hebei Normal University of Science & Technology(Social Sciences), 2023, 22(4): 61-68. (in Chinese with English abstract) | |
| [3] | URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 5. |
| [4] | 方波, 肖腾伟, 苏娜娜, 等. 水稻镉吸收及其在各器官间转运积累的研究进展[J]. 中国水稻科学, 2021, 35(3): 225-237. |
| FANG B, XIAO T W, SU N N, et al. Research progress on cadmium uptake and its transport and accumulation among organs in rice[J]. Chinese Journal of Rice Science, 2021, 35(3): 225-237. (in Chinese with English abstract) | |
| [5] | FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806. |
| [6] | YANG M, ZHANG Y Y, ZHANG L J, et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. Journal of Experimental Botany, 2014, 65(17): 4849-4861. |
| [7] | ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2: 286. |
| [8] | SATORU ISHIKAWA Y I. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19166-19171. |
| [9] | YU E, WANG W G, YAMAJI N, et al. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain[J]. Nature Food, 2022, 3(8): 597-607. |
| [10] | CHANG J D, HUANG S, YAMAJI N, et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]. Plant, Cell & Environment, 2020, 43(10): 2476-2491. |
| [11] | YANG W, CHEN L, MA Y M, et al. OsNRAMP2 facilitates Cd efflux from vacuoles and contributes to the difference in grain Cd accumulation between japonica and indica rice[J]. The Crop Journal, 2023, 11(2): 417-426. |
| [12] | LIU X S, FENG S J, ZHANG B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice[J]. BMC Plant Biology, 2019, 19(1): 283. |
| [13] | TAN L T, ZHU Y X, FAN T, et al. OsZIP 7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice[J]. Biochemical and Biophysical Research Communications, 2019, 512(1): 112-118. |
| [14] | TAN L T, QU M M, ZHU Y X, et al. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake[J]. Plant Physiology, 2020, 183(3): 1235-1249. |
| [15] | BUGHIO N, YAMAGUCHI H, NISHIZAWA N K, et al. Cloning an iron‐regulated metal transporter from rice[J]. Journal of Experimental Botany, 2002, 53(374): 1677-1682. |
| [16] | ISHIMARU Y, SUZUKI M, TSUKAMOTO T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. The Plant Journal, 2006, 45(3): 335-346. |
| [17] | NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469. |
| [18] | FU S, LU Y S, ZHANG X, et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice[J]. Journal of Experimental Botany, 2019, 70(20): 5909-5918. |
| [19] | ODA K, OTANI M, URAGUCHI S, et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast[J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(6): 1211-1213. |
| [20] | YAN H L, XU W X, XIE J Y, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 2019, 10: 2562. |
| [21] | MIYADATE H, ADACHI S, HIRAIZUMI A, et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199. |
| [22] | SASAKI A, YAMAJI N, MA J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6013-6021. |
| [23] | LU C N, ZHANG L X, TANG Z, et al. Producing cadmium-free Indica rice by overexpressing OsHMA3[J]. Environment International, 2019, 126: 619-626. |
| [24] | SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224. |
| [25] | TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell & Environment, 2012, 35(11): 1948-1957. |
| [26] | TIAN S Q, LIANG S, QIAO K, et al. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa)[J]. Journal of Hazardous Materials, 2019, 380: 120853. |
| [27] | XIONG W T, WANG P, YAN T Z, et al. The rice “fruit-weight 2.2-like” gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots[J]. Planta, 2018, 247(5): 1247-1260. |
| [28] | HAO X H, ZENG M, WANG J, et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science, 2018, 9: 476. |
| [29] | URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 20959-20964. |
| [30] | URAGUCHI S, KAMIYA T, CLEMENS S, et al. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa)[J]. Physiologia Plantarum, 2014, 151(3): 339-347. |
| [31] | TANG L, DONG J Y, TAN L T, et al. Overexpression of OsLCT2, a low-affinity cation transporter gene, reduces cadmium accumulation in shoots and grains of rice[J]. Rice, 2021, 14(1): 89. |
| [32] | YUAN L Y, YANG S G, LIU B X, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1[J]. Plant Cell Reports, 2012, 31(1): 67-79. |
| [33] | SHIMO H, ISHIMARU Y, AN G, et al. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15): 5727-5734. |
| [34] | CHEN H M, YE R, LIANG Y, et al. Generation of low-cadmium rice germplasms via knockout of OsLCD using CRISPR/Cas9[J]. Journal of Environmental Sciences, 2023, 126: 138-152. |
| [35] | LUO J S, HUANG J, ZENG D L, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9: 645. |
| [36] | DAS N, BHATTACHARYA S, BHATTACHARYYA S, et al. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses[J]. Plant Molecular Biology, 2017, 94(1): 167-183. |
| [37] | LI J C, GUO J B, XU W Z, et al. RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds[J]. Journal of Integrative Plant Biology, 2007, 49(7): 1032-1037. |
| [38] | CHEN J, HUANG X Y, SALT D E, et al. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain[J]. New Phytologist, 2020, 226(3): 838-850. |
| [39] | 江淼, 余海娟, 李亮, 等. 水稻核心种质的耐镉性鉴定[J]. 植物生理学报, 2015, 51(10): 1617-1624. |
| JIANG M, YU H J, LI L, et al. Identification of cadmium tolerance of rice core germplasm[J]. Plant Physiology Journal, 2015, 51(10): 1617-1624. | |
| [40] | ZHAO J L, YANG W, ZHANG S H, et al. Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection[J]. Rice, 2018, 11(1): 61. |
| [41] | 洪涌, 林金纶, 钟雪萌, 等. 不同镉耐性水稻品种资源的筛选[J]. 福建农林大学学报(自然科学版), 2022, 51(6): 730-736. |
| HONG Y, LIN J L, ZHONG X M, et al. Screening of Oryza sativa varieties with different cadmium tolerances[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2022, 51(6): 730-736. (in Chinese with English abstract) | |
| [42] | 黄春艳. 低镉水稻资源的筛选与主栽水稻品种镉积累特性的比较[D]. 长沙: 湖南师范大学, 2014. |
| HUANG C Y. The screening of low-Cd rice resources and comparisons of Cd-accmulation characteristics in main rice varieties[D]. Changsha: Hunan Normal University, 2014. (in Chinese with English abstract) | |
| [43] | 牛荣成. 镉低积累水稻品种筛选及其污染土壤改良剂研究[D]. 北京: 中国科学院大学, 2011. |
| NIU R C. Screening of rice varieties with low cadmium accumulation and study on its contaminated soil improver[D]. Beijing: University of Chinese Academy of Sciences, 2011. (in Chinese with English abstract) | |
| [44] | AKIMASA SASAKI N Y. Nramp 5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167. |
| [45] | 唐丽, 李曜魁, 毛毕刚, 等. 靶向突变OsNramp5基因创制镉低积累籼型杂交稻亲本及组合[C]// 2018中国作物学会学术年会论文摘要集. 扬州, 2018: 18. |
| [46] | WANG T K, LI Y X, FU Y F, et al. Mutation at different sites of metal transporter gene OsNramp 5 affects Cd accumulation and related agronomic traits in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2019, 10: 1081. |
| [47] | YANG C H, ZHANG Y, HUANG C F. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5[J]. Journal of Integrative Agriculture, 2019, 18(3): 688-697. |
| [48] | 龙起樟, 黄永兰, 唐秀英, 等. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻[J]. 中国水稻科学, 2019, 33(5): 407-420. |
| LONG Q Z, HUANG Y L, TANG X Y, et al. Creation of low-Cd-accumulating indica rice by disruption of OsNramp5 gene via CRISPR/Cas9[J]. Chinese Journal of Rice Science, 2019, 33(5): 407-420. (in Chinese with English abstract) | |
| [49] | ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759. |
| [1] | 谭诗逸, 俞国红, 薛向磊, 赵颖雷, 许宝玉, 张成浩. 工厂化水稻育秧盘搬运装置设计与试验[J]. 浙江农业学报, 2025, 37(7): 1545-1555. |
| [2] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [3] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [4] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [5] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. |
| [6] | 宋欣录, 范书红, 武桄旗, 展梦琪, 侯倩, 李明月, 徐艳. 铜-菲复合污染对分蘖期水稻根系生理特性和污染物积累的影响[J]. 浙江农业学报, 2025, 37(3): 521-529. |
| [7] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. |
| [8] | 谢昶琰, 金雨濛, 张苗, 董青君, 李青, 纪力, 钟平, 陈川, 章安康. 利用河道淤泥开发机插水稻秧苗营养土及其应用效果[J]. 浙江农业学报, 2025, 37(3): 538-547. |
| [9] | 兰雪成, 赵凤亮, 张光旭, 李杨, 郭晓红. 纳米氧化锌和纳米氧化硅对水稻种子萌发的影响[J]. 浙江农业学报, 2025, 37(2): 269-277. |
| [10] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
| [11] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
| [12] | 吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968. |
| [13] | 展梦琪, 苏傲雪, 侯倩, 张皓宇, 姜欣蕊, 徐艳. 水稻对林丹的吸收累积与代谢组学研究[J]. 浙江农业学报, 2024, 36(9): 2110-2121. |
| [14] | 邵亚旭, 刘涛, 王事成, 晏磊. 秸秆-有机肥育秧基质的配比筛选与成型工艺[J]. 浙江农业学报, 2024, 36(8): 1856-1866. |
| [15] | 董爱琴, 陈院华, 杨涛, 徐昌旭, 程丽群, 谢杰. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 2024, 36(3): 600-612. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||