Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (4): 952-961.DOI: 10.3969/j.issn.1004-1524.2023.04.22
• Biosystems Engineering • Previous Articles Next Articles
ZHANG Meng1(
), SHE Bao1,2,*(
), YANG Yuying2, HUANG Linsheng2, ZHU Mengqi1
Received:2022-05-22
Online:2023-04-25
Published:2023-05-05
CLC Number:
ZHANG Meng, SHE Bao, YANG Yuying, HUANG Linsheng, ZHU Mengqi. Study on extraction method of soybean planting areas based on unmanned aerial vehicle RGB image[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 952-961.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.04.22
Fig.3 Relationship between classification accuracy and feature dimension under different algorithms The red points represent the specific dimension corresponding to the maximum accuracy.
| 算法 Algorithm | 优选特征变量 Optimum feature-subset |
|---|---|
| RF | r, BRRI, ExR, h, NGRDI, DSM, Correlation, ASM, Entropy |
| SVM | ExR, BRRI, Correlation, DSM, ASM, Entropy, GBRI |
| XGBoost | ExR, r, NGRDI, BRRI, h, CIVE, VDVI, DSM, ASM |
| BPNN | NGRDI, r, ExR, ExG, ASM, DSM |
Table 1 Optimum feature-subsets under different algorithms
| 算法 Algorithm | 优选特征变量 Optimum feature-subset |
|---|---|
| RF | r, BRRI, ExR, h, NGRDI, DSM, Correlation, ASM, Entropy |
| SVM | ExR, BRRI, Correlation, DSM, ASM, Entropy, GBRI |
| XGBoost | ExR, r, NGRDI, BRRI, h, CIVE, VDVI, DSM, ASM |
| BPNN | NGRDI, r, ExR, ExG, ASM, DSM |
| 算法 Algorithm | 输入数据 Input data | P/% | UA/% | OA/% | Kappa系数 Kappa coefficient |
|---|---|---|---|---|---|
| RF | RGB影像RGB image | 87.01 | 94.54 | 91.53 | 0.82 |
| 优选特征Optimum features | 90.96 | 96.27 | 93.96 | 0.87 | |
| SVM | RGB影像RGB image | 79.37 | 95.89 | 88.46 | 0.76 |
| 优选特征Optimum features | 92.13 | 95.09 | 93.93 | 0.87 | |
| XGBoost | RGB影像RGB image | 87.13 | 94.07 | 91.18 | 0.82 |
| 优选特征Optimum features | 90.82 | 96.16 | 93.84 | 0.87 | |
| BPNN | RGB影像RGB image | 92.21 | 88.85 | 90.78 | 0.81 |
| 优选特征Optimum features | 89.32 | 94.14 | 92.19 | 0.84 |
Table 2 Soybean extraction accuracy based on RGB image and optimum features under different algorithms
| 算法 Algorithm | 输入数据 Input data | P/% | UA/% | OA/% | Kappa系数 Kappa coefficient |
|---|---|---|---|---|---|
| RF | RGB影像RGB image | 87.01 | 94.54 | 91.53 | 0.82 |
| 优选特征Optimum features | 90.96 | 96.27 | 93.96 | 0.87 | |
| SVM | RGB影像RGB image | 79.37 | 95.89 | 88.46 | 0.76 |
| 优选特征Optimum features | 92.13 | 95.09 | 93.93 | 0.87 | |
| XGBoost | RGB影像RGB image | 87.13 | 94.07 | 91.18 | 0.82 |
| 优选特征Optimum features | 90.82 | 96.16 | 93.84 | 0.87 | |
| BPNN | RGB影像RGB image | 92.21 | 88.85 | 90.78 | 0.81 |
| 优选特征Optimum features | 89.32 | 94.14 | 92.19 | 0.84 |
| [1] | 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748-767. |
| CHEN Z X, REN J Q, TANG H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748-767. (in Chinese with English abstract) | |
| [2] |
BERNI J A J, ZARCO-TEJADA P J, SUAREZ L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 722-738.
DOI URL |
| [3] |
YU N, LI L J, SCHMITZ N, et al. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform[J]. Remote Sensing of Environment, 2016, 187: 91-101.
DOI URL |
| [4] | 汪沛, 罗锡文, 周志艳, 等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报, 2014, 30(18): 1-12. |
| WANG P, LUO X W, ZHOU Z Y, et al. Key technology for remote sensing information acquisition based on micro UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 1-12. (in Chinese with English abstract) | |
| [5] | 安谈洲, 李俐俐, 张瑞杰, 等. 无人机遥感及深度学习在油菜冻害识别中的应用研究[J]. 中国油料作物学报, 2021, 43(3): 479-486. |
| AN T Z, LI L L, ZHANG R J, et al. Application research of unmanned aerial vehicle remote sensing and deep learning in identification of freezing injury in rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(3): 479-486. (in Chinese with English abstract) | |
| [6] | 韩文霆, 张立元, 牛亚晓, 等. 无人机遥感技术在精量灌溉中应用的研究进展[J]. 农业机械学报, 2020, 51(2): 1-14. |
| HAN W T, ZHANG L Y, NIU Y X, et al. Review on UAV remote sensing application in precision irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 1-14. (in Chinese with English abstract) | |
| [7] | 李明, 黄愉淇, 李绪孟, 等. 基于无人机遥感影像的水稻种植信息提取[J]. 农业工程学报, 2018, 34(4): 108-114. |
| LI M, HUANG Y Q, LI X M, et al. Extraction of rice planting information based on remote sensing image from UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 108-114. (in Chinese with English abstract) | |
| [8] |
CAO J J, LENG W C, LIU K, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J]. Remote Sensing, 2018, 10(2): 89.
DOI URL |
| [9] | 赵立成, 段玉林, 史云, 等. 基于无人机DSM的小麦倒伏识别方法[J]. 中国农业信息, 2019, 31(4): 36-42. |
| ZHAO L C, DUAN Y L, SHI Y, et al. Wheat lodging identification using DSM by drone[J]. China Agricultural Informatics, 2019, 31(4): 36-42. (in Chinese with English abstract) | |
| [10] | 李宗南, 陈仲新, 王利民, 等. 基于小型无人机遥感的玉米倒伏面积提取[J]. 农业工程学报, 2014, 30(19): 207-213. |
| LI Z N, CHEN Z X, WANG L M, et al. Area extraction of maize lodging based on remote sensing by small unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 207-213. (in Chinese with English abstract) | |
| [11] | 郭铌. 植被指数及其研究进展[J]. 干旱气象, 2003, 21(4): 71-75. |
| GUO N. Vegetation index and its advances[J]. Arid Meteorology, 2003, 21(4): 71-75. (in Chinese with English abstract) | |
| [12] |
POBLETE-ECHEVERRÍA C, OLMEDO G, INGRAM B, et al. Detection and segmentation of vine canopy in ultra-high spatial resolution RGB imagery obtained from unmanned aerial vehicle (UAV): a case study in a commercial vineyard[J]. Remote Sensing, 2017, 9(3): 268.
DOI URL |
| [13] | 杨国英, 邢前国, 赵春晖, 等. 基于无人机RGB光学相机的漂浮绿藻探测研究[J]. 激光生物学报, 2021, 30(4): 316-324. |
| YANG G Y, XING Q G, ZHAO C H, et al. Detection of floating green algae based on UAV RGB optical camera[J]. Acta Laser Biology Sinica, 2021, 30(4): 316-324. (in Chinese with English abstract) | |
| [14] |
RAN DELOVIC P, DOR DEVIC V, MILIC S, et al. Prediction of soybean plant density using a machine learning model and vegetation indices extracted from RGB images taken with a UAV[J]. Agronomy, 2020, 10(8): 1108.
DOI URL |
| [15] | 赵静, 杨焕波, 兰玉彬, 等. 基于无人机可见光图像的夏季玉米植被覆盖度提取方法[J]. 农业机械学报, 2019, 50(5): 232-240. |
| ZHAO J, YANG H B, LAN Y B, et al. Extraction method of summer corn vegetation coverage based on visible light image of unmanned aerial vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 232-240. (in Chinese with English abstract) | |
| [16] | 曹英丽, 林明童, 郭忠辉, 等. 基于Lab颜色空间的非监督GMM水稻无人机图像分割[J]. 农业机械学报, 2021, 52(1): 162-169. |
| CAO Y L, LIN M T, GUO Z H, et al. Unsupervised GMM for rice segmentation with UAV images based on lab color space[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 162-169. (in Chinese with English abstract) | |
| [17] | 李志铭, 赵静, 兰玉彬, 等. 基于无人机可见光图像的作物分类研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(6): 137-144. |
| LI Z M, ZHAO J, LAN Y B, et al. Crop classification based on UAV visible image[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(6): 137-144. (in Chinese with English abstract) | |
| [18] |
赵静, 李志铭, 鲁力群, 等. 基于无人机多光谱遥感图像的玉米田间杂草识别[J]. 中国农业科学, 2020, 53(8): 1545-1555.
DOI |
|
ZHAO J, LI Z M, LU L Q, et al. Weed identification in maize field based on multi-spectral remote sensing of unmanned aerial vehicle[J]. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555. (in Chinese with English abstract)
DOI |
|
| [19] | 阳昌霞, 刘汉湖, 张春. 基于SVM与RF的无人机高光谱农作物精细分类[J]. 河南科学, 2020, 38(12): 1987-1995. |
| YANG C X, LIU H H, ZHANG C. UAV hyperspectral remote sensing image crop fine classification based on SVM and RF[J]. Henan Science, 2020, 38(12): 1987-1995. (in Chinese with English abstract) | |
| [20] | 刘雪莲, 石雷, 李宇宸, 等. 基于无人机高光谱影像的薇甘菊分布提取研究: 以云南德宏州为例[J]. 热带亚热带植物学报, 2021, 29(6): 579-588. |
| LIU X L, SHI L, LI Y C, et al. Distribution extraction of Mikania micrantha based on UAV hyperspectral image: a case study in Dehong, Yunnan Province, China[J]. Journal of Tropical and Subtropical Botany, 2021, 29(6): 579-588. (in Chinese with English abstract) | |
| [21] |
YOU N S, DONG J W, HUANG J X, et al. The 10-m crop type maps in Northeast China during 2017-2019[J]. Scientific Data, 2021, 8: 41.
DOI PMID |
| [22] |
LIU X X, YU L, ZHONG L H, et al. Spatial-temporal patterns of features selected using random forests: a case study of corn and soybeans mapping in the US[J]. International Journal of Remote Sensing, 2019, 40(1): 269-283.
DOI URL |
| [23] | 王利民, 刘佳, 杨玲波, 等. 短波红外波段对玉米大豆种植面积识别精度的影响[J]. 农业工程学报, 2016, 32(19): 169-178. |
| WANG L M, LIU J, YANG L B, et al. Impact of short infrared wave band on identification accuracy of corn and soybean area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(19): 169-178. (in Chinese with English abstract) | |
| [24] |
XIE C Q, HE Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves[J]. Sensors (Basel, Switzerland), 2016, 16(5): 676.
DOI URL |
| [25] |
SABERIOON M M, AMIN M S M, ANUAR A R, et al. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 32: 35-45.
DOI URL |
| [26] |
ZHOU X, ZHENG H B, XU X Q, et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 246-255.
DOI URL |
| [27] |
WOEBBECKE D M, MEYER G E, BARGEN K V, et al. Color indices for weed identification under various soil, residue, and lighting conditions[J]. Transactions of the ASAE, 1995, 38(1): 259-269.
DOI URL |
| [28] | MEYER G E, HINDMAN T W, LAKSMI K. Machine vision detection parameters for plant species identification[J]. Proceedings of SPIE, 1999, 3543: 327-335. |
| [29] |
HUNT E R, CAVIGELLI M, DAUGHTRY C S T, et al. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status[J]. Precision Agriculture, 2005, 6(4): 359-378.
DOI URL |
| [30] |
SELLARO R, CREPY M, TRUPKIN S A, et al. Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis[J]. Plant Physiology, 2010, 154(1): 401-409.
DOI URL |
| [31] |
魏全全, 李岚涛, 任涛, 等. 基于数字图像技术的冬油菜氮素营养诊断[J]. 中国农业科学, 2015, 48(19): 3877-3886.
DOI |
| WEI Q Q, LI L T, REN T, et al. Diagnosing nitrogen nutrition status of winter rapeseed via digital image processing technique[J]. Scientia Agricultura Sinica, 2015, 48(19): 3877-3886. (in Chinese with English abstract) | |
| [32] |
NIE S, WANG C, DONG P L, et al. Estimating leaf area index of maize using airborne discrete-return LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3259-3266.
DOI URL |
| [33] |
井然, 邓磊, 赵文吉, 等. 基于可见光植被指数的面向对象湿地水生植被提取方法[J]. 应用生态学报, 2016, 27(5): 1427-1436.
DOI |
| JING R, DENG L, ZHAO W J, et al. Object-oriented aquatic vegetation extracting approach based on visible vegetation indices[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1427-1436. (in Chinese with English abstract) | |
| [34] | 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152-157. |
| WANG X Q, WANG M M, WANG S Q, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 152-157. (in Chinese with English abstract) | |
| [35] | 支俊俊, 董娅, 鲁李灿, 等. 基于无人机RGB影像的玉米种植信息高精度提取方法[J]. 农业工程学报, 2021, 37(18): 48-54. |
| ZHI J J, DONG Y, LU L C, et al. High-precision extraction method for maize planting information based on UAV RGB images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 48-54. (in Chinese with English abstract) |
| [1] | WU Haolin, WANG Shuzhen, ZHU Zhujun, HE Yong. Rapid detection of contents of different types of nitrogen in substrates using near-infrared spectrum and machine learning [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1159-1171. |
| [2] | HE Guoxin, LI Sujuan, WANG Jian, TAO Xiaoyuan, YE Zihong, CHEN Guang, XU Shengchun. Screening and identification of soybean germplasm for low nitrogen tolerance during seedling stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 965-976. |
| [3] | XU Zhuwei, LEI Jun, SHAO Xiaowei, CHEN Runxing, JIANG Huan, WANG Shougen, YU Wenhui. Evaluation of Quzhou fresh soybean oligosaccharide germplasm resources based on analytic hierarchy process and fuzzy comprehensive evaluation method [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 754-766. |
| [4] | TANG Aoran, JIN Xiu, WANG Tan, RAO Yuan, LI Jiajia, ZHANG Wu. Physiological plant height measurement method based on the reconstruction of the main stem skeleton for curved soybean plants [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 466-479. |
| [5] | OU Jinwen, ZHANG Guwen, FENG Zhijuan, WANG Bin, BU Yuanpeng, XU Yu, RU Lei, LIU Na, GONG Yaming. Identification of soybean trehalose-6-phosphate phosphatase gene GmTPP and its expression analysis in growth and abiotic stress response [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2031-2041. |
| [6] | CHENG Jiayu, CHEN Miaojin, LI Tong, SUN Qinan, ZHANG Xiaobin, ZHAO Yiying, ZHU Yihang, GU Qing. Detection of peach trees in unmanned aerial vehicle (UAV) images based on improved Faster-RCNN network [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1909-1919. |
| [7] | ZHANG Yongbin, LI Xiang, MAN Weidong, LIU Mingyue, FAN Jihao, HU Haoran, SONG Lijie, LIU Weijia. Research on yield estimation method of winter wheat based on Sentinel-1/2 data and machine learning algorithms [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2812-2822. |
| [8] | ZHOU Lili, FENG Haikuan, NIE Chenwei, XU Xiaobin, LIU Yuan, MENG Lin, XUE Beibei, MING Bo, LIANG Qiyun, SU Tao, JIN Xiuliang. Influence of unmanned aerial vehicle observation time on estimation of canopy chlorophyll density of maize [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 18-31. |
| [9] | GUO Faxu, FENG Quan, YANG Sen, YANG Wanxia. Inversion of leaf nitrogen content in potato canopy based on unmanned aerial vehicle hyperspectral images [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1904-1914. |
| [10] | SUN Xiujuan, XU Weihui, WANG Zhigang. Isolation and identification of endophytic bacteria from soybean nodule and their effects on soybean plant [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1532-1541. |
| [11] | BU Yuanpeng, LIU Na, ZHANG Guwen, FENG Zhijuan, WANG Bin, GONG Yaming, XU Linying. Diversity evaluation of agronomic traits and construction of core collection and taste quality evaluation system in vegetable soybean germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1307-1314. |
| [12] | YANG Songhua, SHI Guiyang, WANG Jingqin, CHEN Zhu. Effects of soybean root exudates on insoluble phosphorus in soil under low phosphorus stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1396-1406. |
| [13] | TAN Shuxia, ZHAO Taodi, YANG Hao, NING Kejun, LIU Li, HE Qingyuan, HUANG Shoucheng, SHU Yingjie. Effects of shading on agronomic characters, yield and nitrogen metabolism of 10 vegetable soybean varieties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 729-735. |
| [14] | LIU Yue, XU Weihui, WANG Zhigang. Screening and identification of soybean rhizosphere growth-promoting bacteria and their growth-promoting effects [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2775-2784. |
| [15] | TAN Yunfeng, CHEN Lin, HU Sen, WANG Jian, CHEN Zhifan, LYU Xiaorong. Design and experiment of longitudinal-axial flow flexible bent-tooth soybean thresher [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2954-2965. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||