Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (10): 2308-2315.DOI: 10.3969/j.issn.1004-1524.20230803
• Environmental Science • Previous Articles Next Articles
WU Yuke(), WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin*(
)
Received:
2023-06-29
Online:
2024-10-25
Published:
2024-10-30
CLC Number:
WU Yuke, WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin. Parameters optimization for vermicomposting of cow dung and changes of properties of composting residues[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2308-2315.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230803
处理 Treatment | 预发酵物料 Pre-fermented materials | 添加剂 Additives | 添加水平 Supplemental level/% | 蚯蚓接种数量 Number of earthworms | 堆肥时间 Composting time/d | 含水率 Moisture content/% |
---|---|---|---|---|---|---|
T1 | PM1 | 生物炭Biochar | 0 | 0 | 20 | 70 |
T2 | PM1 | 贝壳粉Shell powder | 2 | 6 | 20 | 80 |
T3 | PM1 | 鸟粪石Struvite | 4 | 12 | 40 | 70 |
T4 | PM1 | 磷镁矿物Phosphorus magnesium minerals | 8 | 24 | 40 | 80 |
T5 | PM2 | 生物炭Biochar | 2 | 12 | 40 | 80 |
T6 | PM2 | 贝壳粉Shell powder | 0 | 24 | 40 | 70 |
T7 | PM2 | 鸟粪石Struvite | 8 | 0 | 20 | 80 |
T8 | PM2 | 磷镁矿物Phosphorus magnesium minerals | 4 | 6 | 20 | 70 |
T9 | PM3 | 生物炭Biochar | 4 | 24 | 20 | 80 |
T10 | PM3 | 贝壳粉Shell powder | 8 | 12 | 20 | 70 |
T11 | PM3 | 鸟粪石Struvite | 0 | 6 | 40 | 80 |
T12 | PM3 | 磷镁矿物Phosphorus magnesium minerals | 2 | 0 | 40 | 70 |
T13 | PM4 | 生物炭Biochar | 8 | 6 | 40 | 70 |
T14 | PM4 | 贝壳粉Shell powder | 4 | 0 | 40 | 80 |
T15 | PM4 | 鸟粪石Struvite | 2 | 24 | 20 | 70 |
T16 | PM4 | 磷镁矿物Phosphorus magnesium minerals | 0 | 12 | 20 | 80 |
Table 1 L16(44+32)orthogonal experiment design
处理 Treatment | 预发酵物料 Pre-fermented materials | 添加剂 Additives | 添加水平 Supplemental level/% | 蚯蚓接种数量 Number of earthworms | 堆肥时间 Composting time/d | 含水率 Moisture content/% |
---|---|---|---|---|---|---|
T1 | PM1 | 生物炭Biochar | 0 | 0 | 20 | 70 |
T2 | PM1 | 贝壳粉Shell powder | 2 | 6 | 20 | 80 |
T3 | PM1 | 鸟粪石Struvite | 4 | 12 | 40 | 70 |
T4 | PM1 | 磷镁矿物Phosphorus magnesium minerals | 8 | 24 | 40 | 80 |
T5 | PM2 | 生物炭Biochar | 2 | 12 | 40 | 80 |
T6 | PM2 | 贝壳粉Shell powder | 0 | 24 | 40 | 70 |
T7 | PM2 | 鸟粪石Struvite | 8 | 0 | 20 | 80 |
T8 | PM2 | 磷镁矿物Phosphorus magnesium minerals | 4 | 6 | 20 | 70 |
T9 | PM3 | 生物炭Biochar | 4 | 24 | 20 | 80 |
T10 | PM3 | 贝壳粉Shell powder | 8 | 12 | 20 | 70 |
T11 | PM3 | 鸟粪石Struvite | 0 | 6 | 40 | 80 |
T12 | PM3 | 磷镁矿物Phosphorus magnesium minerals | 2 | 0 | 40 | 70 |
T13 | PM4 | 生物炭Biochar | 8 | 6 | 40 | 70 |
T14 | PM4 | 贝壳粉Shell powder | 4 | 0 | 40 | 80 |
T15 | PM4 | 鸟粪石Struvite | 2 | 24 | 20 | 70 |
T16 | PM4 | 磷镁矿物Phosphorus magnesium minerals | 0 | 12 | 20 | 80 |
处理 Treatment | 存活率 Survival rate/% | 日增重 Daily gain/ (mg·d-1) | 蚓茧和幼蚓数量 Number of cocoons and juvenile earthworms |
---|---|---|---|
T1 | — | — | — |
T2 | 100 a | 11.1±0.5 d | 0 c |
T3 | 100 a | 8.2±0.3 e | 47±4 b |
T4 | 0 c | -4.4±0.6 f | 0 c |
T5 | 100 a | 12.3±0.6 cd | 5±1 c |
T6 | 79.2±4.2 b | 8.3±0.8 e | 6±1 c |
T7 | — | — | — |
T8 | 0 c | -12.3±1.0 g | 0 c |
T9 | 100 a | 19.1±0.8 a | 0 c |
T10 | 100 a | 19.1±0.8 a | 0 c |
T11 | 100 a | 15.7±0.9 b | 44±6 b |
T12 | — | — | — |
T13 | 100 a | 13.6±1.6 bc | 63±11 a |
T14 | — | — | — |
T15 | 100 a | 14.3±0.3 bc | 0 c |
T16 | 100 a | 20.3±1.4 a | 0 c |
Table 2 Effect of treatments on earthworm growth indexes
处理 Treatment | 存活率 Survival rate/% | 日增重 Daily gain/ (mg·d-1) | 蚓茧和幼蚓数量 Number of cocoons and juvenile earthworms |
---|---|---|---|
T1 | — | — | — |
T2 | 100 a | 11.1±0.5 d | 0 c |
T3 | 100 a | 8.2±0.3 e | 47±4 b |
T4 | 0 c | -4.4±0.6 f | 0 c |
T5 | 100 a | 12.3±0.6 cd | 5±1 c |
T6 | 79.2±4.2 b | 8.3±0.8 e | 6±1 c |
T7 | — | — | — |
T8 | 0 c | -12.3±1.0 g | 0 c |
T9 | 100 a | 19.1±0.8 a | 0 c |
T10 | 100 a | 19.1±0.8 a | 0 c |
T11 | 100 a | 15.7±0.9 b | 44±6 b |
T12 | — | — | — |
T13 | 100 a | 13.6±1.6 bc | 63±11 a |
T14 | — | — | — |
T15 | 100 a | 14.3±0.3 bc | 0 c |
T16 | 100 a | 20.3±1.4 a | 0 c |
处理 Treatment | pH | EC/(mS·cm-1) | C/N | OM/% | TNu/% |
---|---|---|---|---|---|
T1 | 9.10±0.02 ab | 5.15±0.01 g | 11.73±0.05 e | 38.13±0.77 ef | 4.21±0.09 gh |
T2 | 9.12±0.02 a | 5.17±0.01 g | 11.98±0.14 e | 37.53±0.39 fg | 4.26±0.02 g |
T3 | 8.74±0.01 de | 5.45±0.01 f | 10.59±0.47 fg | 37.75±0.09 efg | 6.09±0.21 d |
T4 | 6.90±0.02 j | 9.43±0.12 a | 8.32±0.13 i | 38.87±0.12 de | 9.38±0.10 a |
T5 | 9.00±0.04 c | 5.72±0.01 e | 12.50±0.91 de | 37.70±0.28 efg | 4.55±0.16 f |
T6 | 9.02±0.01 bc | 6.01±0.01 d | 12.09±0.19 e | 36.61±0.13 g | 4.59±0.15 f |
T7 | 8.06±0.02 h | 7.12±0.19 c | 9.06±0.19 hi | 40.73±0.05 bc | 7.57±0.12 b |
T8 | 7.56±0.02 i | 7.78±0.03 b | 9.89±0.05 gh | 38.24±0.14 ef | 6.63±0.07 c |
T9 | 8.94±0.03 c | 3.52±0.05 k | 18.04±0.17 b | 41.69±0.11 b | 3.95±0.01 hi |
T10 | 8.94±0.01 c | 3.31±0.04 l | 14.79±0.38 c | 33.83±0.50 h | 3.68±0.05 i |
T11 | 8.94±0.01 c | 3.85±0.01 j | 13.35±0.19 d | 37.53±0.54 fg | 4.09±0.02 gh |
T12 | 8.07±0.10 h | 4.55±0.04 h | 11.54±0.21 ef | 38.23±0.50 ef | 5.46±0.03 e |
T13 | 8.65±0.01 e | 3.73±0.01 j | 20.90±0.66 a | 45.57±0.12 a | 4.23±0.08 gh |
T14 | 8.82±0.01 d | 3.71±0.02 j | 13.38±0.11 d | 37.43±0.70 fg | 4.07±0.04 gh |
T15 | 8.42±0.01 f | 4.21±0.02 i | 13.37±0.41 d | 39.57±0.38 cd | 4.83±0.04 f |
T16 | 8.31±0.01 g | 4.07±0.03 i | 13.20±0.14 d | 40.47±0.59 bc | 4.14±0.07 gh |
Table 3 Basic physicochemical properties of composting residues under treatments
处理 Treatment | pH | EC/(mS·cm-1) | C/N | OM/% | TNu/% |
---|---|---|---|---|---|
T1 | 9.10±0.02 ab | 5.15±0.01 g | 11.73±0.05 e | 38.13±0.77 ef | 4.21±0.09 gh |
T2 | 9.12±0.02 a | 5.17±0.01 g | 11.98±0.14 e | 37.53±0.39 fg | 4.26±0.02 g |
T3 | 8.74±0.01 de | 5.45±0.01 f | 10.59±0.47 fg | 37.75±0.09 efg | 6.09±0.21 d |
T4 | 6.90±0.02 j | 9.43±0.12 a | 8.32±0.13 i | 38.87±0.12 de | 9.38±0.10 a |
T5 | 9.00±0.04 c | 5.72±0.01 e | 12.50±0.91 de | 37.70±0.28 efg | 4.55±0.16 f |
T6 | 9.02±0.01 bc | 6.01±0.01 d | 12.09±0.19 e | 36.61±0.13 g | 4.59±0.15 f |
T7 | 8.06±0.02 h | 7.12±0.19 c | 9.06±0.19 hi | 40.73±0.05 bc | 7.57±0.12 b |
T8 | 7.56±0.02 i | 7.78±0.03 b | 9.89±0.05 gh | 38.24±0.14 ef | 6.63±0.07 c |
T9 | 8.94±0.03 c | 3.52±0.05 k | 18.04±0.17 b | 41.69±0.11 b | 3.95±0.01 hi |
T10 | 8.94±0.01 c | 3.31±0.04 l | 14.79±0.38 c | 33.83±0.50 h | 3.68±0.05 i |
T11 | 8.94±0.01 c | 3.85±0.01 j | 13.35±0.19 d | 37.53±0.54 fg | 4.09±0.02 gh |
T12 | 8.07±0.10 h | 4.55±0.04 h | 11.54±0.21 ef | 38.23±0.50 ef | 5.46±0.03 e |
T13 | 8.65±0.01 e | 3.73±0.01 j | 20.90±0.66 a | 45.57±0.12 a | 4.23±0.08 gh |
T14 | 8.82±0.01 d | 3.71±0.02 j | 13.38±0.11 d | 37.43±0.70 fg | 4.07±0.04 gh |
T15 | 8.42±0.01 f | 4.21±0.02 i | 13.37±0.41 d | 39.57±0.38 cd | 4.83±0.04 f |
T16 | 8.31±0.01 g | 4.07±0.03 i | 13.20±0.14 d | 40.47±0.59 bc | 4.14±0.07 gh |
处理 Treatment | Pb2+吸附率 Adsorption rate of Pb2 | Cd2+吸附率 Adsorption rate of Cd2+ |
---|---|---|
T1 | 96.87±0.01 b | 39.74±0.39 gh |
T2 | 96.60±0.18 bc | 40.72±0.22 fgh |
T3 | 99.44±0.01 a | 53.84±0.51 b |
T4 | 93.87±0.49 def | 50.02±0.84 c |
T5 | 97.16±0.10 b | 40.59±0.51 fgh |
T6 | 97.40±0.26 b | 41.52±0.24 fg |
T7 | 95.15±0.27 cd | 59.37±1.09 a |
T8 | 97.25±0.60 b | 44.19±0.52 e |
T9 | 94.99±1.43 de | 40.36±0.26 fgh |
T10 | 91.74±0.54 g | 38.94±0.69 h |
T11 | 93.74±0.45 def | 41.70±1.00 f |
T12 | 99.23±0.43 a | 47.41±0.91 d |
T13 | 93.54±0.39 ef | 40.48±0.14 fgh |
T14 | 93.64±0.20 ef | 40.60±0.46 fgh |
T15 | 97.67±0.22 b | 44.90±0.31 e |
T16 | 92.69±0.24 fg | 40.63±1.03 fgh |
Table 4 Pb2+ and Cd2+ adsorption properties of composting residues under treatments %
处理 Treatment | Pb2+吸附率 Adsorption rate of Pb2 | Cd2+吸附率 Adsorption rate of Cd2+ |
---|---|---|
T1 | 96.87±0.01 b | 39.74±0.39 gh |
T2 | 96.60±0.18 bc | 40.72±0.22 fgh |
T3 | 99.44±0.01 a | 53.84±0.51 b |
T4 | 93.87±0.49 def | 50.02±0.84 c |
T5 | 97.16±0.10 b | 40.59±0.51 fgh |
T6 | 97.40±0.26 b | 41.52±0.24 fg |
T7 | 95.15±0.27 cd | 59.37±1.09 a |
T8 | 97.25±0.60 b | 44.19±0.52 e |
T9 | 94.99±1.43 de | 40.36±0.26 fgh |
T10 | 91.74±0.54 g | 38.94±0.69 h |
T11 | 93.74±0.45 def | 41.70±1.00 f |
T12 | 99.23±0.43 a | 47.41±0.91 d |
T13 | 93.54±0.39 ef | 40.48±0.14 fgh |
T14 | 93.64±0.20 ef | 40.60±0.46 fgh |
T15 | 97.67±0.22 b | 44.90±0.31 e |
T16 | 92.69±0.24 fg | 40.63±1.03 fgh |
[1] | 王明利. 改革开放四十年我国畜牧业发展: 成就、经验及未来趋势[J]. 农业经济问题, 2018, 39(8): 60-70. |
WANG M L. China’s livestock industry development: achievements, experiences and future trends[J]. Issues in Agricultural Economy, 2018, 39(8): 60-70. (in Chinese with English abstract) | |
[2] | 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6): 1168-1176. |
WU H W, SUN X Q, LIANG B W, et al. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization[J]. Journal of Agro-Environment Science, 2020, 39(6): 1168-1176. (in Chinese with English abstract) | |
[3] | 刘晨阳, 马广旭, 刘春, 等. 畜禽粪便资源化利用研究综述与对策建议: 基于供给与需求二维度视角[J]. 黑龙江畜牧兽医, 2022(2): 13-17. |
LIU C Y, MA G X, LIU C, et al. Review and countermeasures on resource utilization of livestock and poultry manure: based on the two-dimensional perspective of supply and demand[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(2): 13-17. (in Chinese with English abstract) | |
[4] | ZHANG X Y, ZHONG T Y, LIU L, et al. Impact of soil heavy metal pollution on food safety in China[J]. PLoS One, 2015, 10(8): e0135182. |
[5] | PENG J Y, ZHANG S, HAN Y Y, et al. Soil heavy metal pollution of industrial legacies in China and health risk assessment[J]. The Science of the Total Environment, 2022, 816: 151632. |
[6] | YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. The Science of the Total Environment, 2018, 642: 690-700. |
[7] | WU Y P, LI Q F, ZHENG Y, et al. Optimizing biochar addition for vermicomposting: a comprehensive evaluation of earthworms’ activity, N2O emissions andcompost quality[J]. Biochar, 2023, 5(1): 4. |
[8] | 张智, 李双来, 陈云峰, 等. 蚯蚓堆肥模式的环境效益评价[J]. 中国土壤与肥料, 2022(8): 198-204. |
ZHANG Z, LI S L, CHEN Y F, et al. Environmental benefits evaluation of vermicomposting[J]. Soil and Fertilizer Sciences in China, 2022(8): 198-204. (in Chinese with English abstract) | |
[9] | WANG Y, XU Y A, LI D, et al. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress[J]. The Science of the Total Environment, 2018, 621: 1057-1065. |
[10] | 李扬, 乔玉辉, 莫晓辉, 等. 蚯蚓粪作为土壤重金属污染修复剂的潜力分析[J]. 农业环境科学学报, 2010, 29(S1): 250-255. |
LI Y, QIAO Y H, MO X H, et al. Analysis for earthworm feces as one of potential repair agents of heavy metal contamination in soil[J]. Journal of Agro-Environment Science, 2010, 29(S1): 250-255. (in Chinese with English abstract) | |
[11] | 杜文慧, 朱维琴, 潘晓慧, 等. 牛粪源蚓粪及其生物炭对Pb2+、Cd2+的吸附特性[J]. 环境科学, 2017, 38(5): 2172-2181. |
DU W H, ZHU W Q, PAN X H, et al. Adsorption of Pb2+ and Cd2+ from aqueous solution using vermicompost derived from cow manure and its biochar[J]. Environmental Science, 2017, 38(5): 2172-2181. (in Chinese with English abstract) | |
[12] | 王碧玲, 谢正苗, 孙叶芳, 等. 磷肥对铅锌矿污染土壤中铅毒的修复作用[J]. 环境科学学报, 2005, 25(9): 1189-1194. |
WANG B L, XIE Z M, SUN Y F, et al. Effects of phosphorus fertilizers on remediation of lead toxicity in a soil contaminated by lead and zinc mining[J]. Acta Scientiae Circumstantiae, 2005, 25(9): 1189-1194. (in Chinese with English abstract) | |
[13] | WANG F, SHEN X Y, WU Y K, et al. Evaluation of the effectiveness of amendments derived from vermicompost combined with modified shell powder on Cd immobilization in Cd-contaminated soil by multiscale experiments[J]. Ecotoxicology and Environmental Safety, 2023, 262: 115166. |
[14] | WANG F, WANG Y F, WU Y K, et al. Using amendment derived from vermicompost combined with calcium and magnesium mineral to achieve safe production of eggplant and its microbial ecological effect in Cd-contaminated soil[J]. Journal of Soils and Sediments, 2023, 23(1): 1-14. |
[15] | TANG C J, LIU Z G, PENG C, et al. New insights into the interaction between heavy metals and struvite: struvite as platform for heterogeneous nucleation of heavy metal hydroxide[J]. Chemical Engineering Journal, 2019, 365: 60-69. |
[16] | CHEN X M, DU Z, LIU D, et al. Biochar mitigates the biotoxicity of heavy metals in livestock manure during composting[J]. Biochar, 2022, 4(1): 48. |
[17] | LIU W, HUO R, XU J X, et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting[J]. Bioresource Technology, 2017, 235: 43-49. |
[18] | 王峰, 缪丽娟, 王依凡, 等. 牛粪-贝壳粉蚯蚓反应器中堆制物表征及其对Cd2+去除性能研究[J]. 生态与农村环境学报, 2021, 37(8): 1073-1079. |
WANG F, MIAO L J, WANG Y F, et al. Study on the characterization and the removal efficiency of Cd2+ by the substrate residues from cow dung-shell powder vermireactors[J]. Journal of Ecology and Rural Environment, 2021, 37(8): 1073-1079. (in Chinese with English abstract) | |
[19] | 钟仁. 废水磷回收过程中鸟粪石结晶对重金属的吸附及共沉淀机制研究[D]. 广州: 广东工业大学, 2021. |
ZHONG R. Investigation on the adsorption and co-precipitation mechanism of heavy metals on struvite crystals during the process of phosphorus recovery from wastewater[D]. Guangzhou: Guangdong University of Technology, 2021. (in Chinese with English abstract) | |
[20] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[21] | 朱欣洁, 孙先锋, 周秋丹, 等. 好氧堆肥与蚯蚓堆肥对污泥处理污泥效果比较研究[J]. 环境科学与技术, 2015, 38(4): 79-83. |
ZHU X J, SUN X F, ZHOU Q D, et al. Comparative study on influence of aerobic composting and earthworm composting on sludge treatment[J]. Environmental Science & Technology, 2015, 38(4): 79-83. (in Chinese with English abstract) | |
[22] | KHWAIRAKPAM M, BHARGAVA R. Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species[J]. Bioresource Technology, 2009, 100(23): 5846-5852. |
[23] | 缪丽娟, 王依凡, 张明月, 等. 餐厨垃圾生化尾渣蚯蚓堆肥中矿物的调节效应[J]. 农业环境科学学报, 2022, 41(2): 425-433. |
MIAO L J, WANG Y F, ZHANG M Y, et al. Regulation effect of mineral addition during vermicomposting of biochemical disposal residues from kitchen wastes[J]. Journal of Agro-Environment Science, 2022, 41(2): 425-433. (in Chinese with English abstract) | |
[24] | LASARIDI K, PROTOPAPA I, KOTSOU M, et al. Quality assessment of composts in the Greek market: the need for standards and quality assurance[J]. Journal of Environmental Management, 2006, 80(1): 58-65. |
[25] | 伍玉鹏, 张宁, 孙振钧. 赤子爱胜蚓对不同盐分含量土壤的耐受性研究[J]. 湖北农业科学, 2012, 51(17): 3722-3725. |
WU Y P, ZHANG N, SUN Z J. Salt tolerance of Eisenia fetida in soil[J]. Hubei Agricultural Sciences, 2012, 51(17): 3722-3725. (in Chinese with English abstract) | |
[26] | 张婷敏, 呼世斌, 陈晓飞. 蚯蚓堆肥处理有机废弃物的研究: 基于红薯秸秆、牛粪和污泥的混合物料[J]. 农机化研究, 2012, 34(4): 110-114. |
ZHANG T M, HU S B, CHEN X F. Study on vermicomposting of sweet potato straw, cow dung and sewage sludge[J]. Journal of Agricultural Mechanization Research, 2012, 34(4): 110-114. (in Chinese with English abstract) | |
[27] | BORUAH T, BARMAN A, KALITA P, et al. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida[J]. Bioresource Technology, 2019, 294: 122147. |
[28] | ALI N S, KALASH K R, AHMED A N, et al. Performance of a solar photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO2, and UV/H2O2 to control membrane fouling[J]. Scientific Reports, 2022, 12(1): 16782. |
[29] | YANG X J, ZHAO Z W, YU Y, et al. Enhanced biosorption of Cr(VI) from synthetic wastewater using algal-bacterial aerobic granular sludge: batch experiments, kinetics and mechanisms[J]. Separation and Purification Technology, 2020, 251: 117323. |
[30] | WANG C, TU Q P, DONG D, et al. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting[J]. Journal of Hazardous Materials, 2014, 280: 409-416. |
[31] | KHAN M B, CUI X Q, JILANI G, et al. New insight into the impact of biochar during vermi-stabilization of divergent biowastes: literature synthesis and research pursuits[J]. Chemosphere, 2020, 238: 124679. |
[32] | 任露陆, 蔡宗平, 张艳林, 等. 含磷材料对土壤重金属有效性及微生物响应[J]. 环境科学与技术, 2022, 45(6): 37-46. |
REN L L, CAI Z P, ZHANG Y L, et al. Effects of phosphorus-containing amendments on Cd, Cu, Pb, and Zn availability and microbial community structure in soils[J]. Environmental Science & Technology, 2022, 45(6): 37-46. (in Chinese with English abstract) |
[1] | WU Jialong, CHI Ming, GAO Yan, WANG Xiang, SHEN Haiou. Effects of biochar application on soil physiochemical indicators at sloping farmland in black soil region [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2060-2069. |
[2] | ZHU Renchao, YUAN Yingqi, YANG Yu, YANG Qiyue, YU Aihua. Heavy metal pollution in farmland along highway [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1887-1897. |
[3] | FU Zhiqiang, LIU Zhen, MA Chunhua, WEN Mengling, XI Ruchun. Effects of biochar and biochar-based fertilizers on soil quality and plant growth [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1634-1645. |
[4] | XIAO Yinrun, MA Jiping, WANG Yunping, WANG Suzhen, ZHONG Guoxiang, XIONG Xiaowen, ZHANG Cheng. Effects of passivators on contents of heavy metals in soil and morel fruiting body [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1646-1656. |
[5] | LUZI Zhenggang, ZHU Lixin, JI Hongbing, WANG Kang. Research progress in remediation of soil heavy metal pollution by Sphingosinomonas [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1208-1216. |
[6] | YU Chao, WANG Yinyu, LIU Qizhen, WANG Yun, SHEN Hong, FENG Ying. Effects of application of biochar from different raw materials combined with inorganic amendments on cadmium accumulation in pakchoi shoots and soil cadmium inactivation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 613-621. |
[7] | LIANG Xiumei, ZHANG Weiyi, CHEN Guanju, XIA Haitao, GUO Xiuzhu, HE Ruyi, JIANG Jiaming, LIN Dingpeng. Investigation of pesticide residues and heavy metal contamination characteristics and dietary risk assessment of Myrica rubra in Wenzhou, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2347-2357. |
[8] | YANG Xifan, GUO Bin, QIU Gaoyang, LIU Junli, TONG Wenbin, YANG Haijun, ZHU Weidong, MAO Congyan. Inhibiting effects of immobilization agents on cadmium, lead and arsenic in rice production [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 1-8. |
[9] | HAN Jing, ZHU Yiting, ZHENG Chi, MA Lihong, ZHANG Yanan, ZENG Qiuyan, LIU Shuliang, CHEN Shujuan. Activation of soybean shell biochar and its adsorption performance for carbaryl [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2202-2211. |
[10] | XIAO Hua, XU Xing, XIE Chuanqi, ZHOU Xin, ZHOU Weidong, TANG Wensheng. Effect of struvite precipitation pretreatment on membrane concentration process of piggery biogas slurry [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1407-1415. |
[11] | XU Yang, REN Yilin, WANG Haojie, HUANG Qiuhang, XING Boyuan, CAO Hongliang. Comprehensive evaluation of rape straw biochar as slow-release carrier under different preparation conditions [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 893-902. |
[12] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
[13] | RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402. |
[14] | WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424. |
[15] | WANG Jianbing, WANG Jintao, YAN Kexin, GUO Xiaolan, WANG Dun, DAI Hongwen. Cadmium and lead accumulation characteristics of watercress under cadmium-lead combined pollution [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2664-2672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||