浙江农业学报 ›› 2025, Vol. 37 ›› Issue (11): 2426-2440.DOI: 10.3969/j.issn.1004-1524.20250187
李新欣1,2(
), 徐恒2, 宋涛2, 袁熹1, 孙梅好1, 朱英2, 张华2,*(
)
收稿日期:2025-03-12
出版日期:2025-11-25
发布日期:2025-12-08
作者简介:李新欣(1999—),女,河南开封人,硕士研究生,主要从事水稻耐高温基因的克隆和功能研究。E-mail:3330867235@qq.com
通讯作者:
*张华,E-mail:zhanghua2011@whu.edu.cn
基金资助:
LI Xinxin1,2(
), XU Heng2, SONG Tao2, YUAN Xi1, SUN Meihao1, ZHU Ying2, ZHANG Hua2,*(
)
Received:2025-03-12
Online:2025-11-25
Published:2025-12-08
摘要:
全球气候变化背景下高温胁迫频发,严重威胁水稻生产安全和粮食安全。培育耐高温水稻品种是应对该挑战的关键策略。文章系统综述了与水稻耐高温性状相关的数量性状基因座(QTL)和关键基因,解析了其调控机制,旨在深入了解水稻耐高温的遗传基础与分子机理。基于当前研究进展,作者对未来研究方向作了展望:1)深入解析水稻耐高温复杂调控网络;2)系统评估不同耐高温基因在不同遗传背景下的效应,为分子育种提供精准指导;3)建立科学、全面的耐高温水稻品种评价体系。
中图分类号:
李新欣, 徐恒, 宋涛, 袁熹, 孙梅好, 朱英, 张华. 水稻耐高温遗传基础和调控机制的研究进展[J]. 浙江农业学报, 2025, 37(11): 2426-2440.
LI Xinxin, XU Heng, SONG Tao, YUAN Xi, SUN Meihao, ZHU Ying, ZHANG Hua. Progress of genetic basis and regulatory mechanism of high temperature tolerance in rice[J]. Acta Agriculturae Zhejiangensis, 2025, 37(11): 2426-2440.
| 亲本 Parents | 遗传材料 Genetic material | QTL | 所在染色体 Chromosome | 所处位置 Marker/location | 农艺性状 Agronomic trait | 参考文献 Reference | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IR64/N22 | BC5F2 | qHTSF4.1 | 4 | M85-M83 | 小穗育性Spikelet fertility | [ | |||||||||
| IR64/Giza178, | F2 | qHTSF1.2 | 1 | 103.5-109.0 cM | 小穗育性 | [ | |||||||||
| Milyang23/Giza178 | qHTSF2.1 | 2 | 4.8-19.8 cM | Spikelet fertility | |||||||||||
| qHTSF2.2 | 2 | 43.0-63.0 cM | |||||||||||||
| qHTSF3.1 | 3 | 1.5-17.5 cM | |||||||||||||
| qHTSF4.1 | 4 | 66.0-73.0 cM | |||||||||||||
| qHTSF6.1 | 6 | 27.5-31.5 cM | |||||||||||||
| qHTSF11.2 | 11 | 25.3-42.3 cM | |||||||||||||
| qHTSF11.3 | 11 | 11.6-14.6 cM | |||||||||||||
| IR64/N22 | RIL | qSTIPSS9.1 | 9 | SNP12393-12417 | 小穗育性Spikelet fertility | [ | |||||||||
| qSTIPSS12.1 | 12 | SNP14876-14892 | |||||||||||||
| qSTIY3.1 | 3 | SNP5308-5336 | 产量Yield | ||||||||||||
| qSTIY5.1 | 5 | SNP8377-8401 | |||||||||||||
| Chikushi52/ | BC4F3:4 | qWB1 | 1 | RM10870-RM7075 | 稻米垩白 | [ | |||||||||
| Tsukushiroman | qWB3 | 3 | RM3372-RM2791 | White-back grains ratio | |||||||||||
| qWB8 | 8 | RM3181-RM3689 | |||||||||||||
| qBW2 | 2 | RM5470 | 稻米垩白Basal-white-grains | ||||||||||||
| qBW3 | 3 | RM3372-RM2791 | |||||||||||||
| qBW6 | 6 | RM20429-RM6395 | |||||||||||||
| qBW12 | 12 | RM1986 | |||||||||||||
| qGW2 | 2 | RM5470-SNP2_1 | 粒重Grian weight | ||||||||||||
| qGW3 | 3 | RM3372-RM2326 | |||||||||||||
| qGW8 | 8 | RM5556-RM3689 | |||||||||||||
| qGW10 | 10 | RM3373-RM1374 | |||||||||||||
| qDTH3 | 3 | RM3372-RM2326 | 抽穗期Days to heading | ||||||||||||
| qDTH12 | 12 | SNP12_1-RM1986 | |||||||||||||
| Chikushi 52/ | RIL | qMW2 | 2 | RM5470 | 稻米垩白 | [ | |||||||||
| Tsukushiroman | qMW4.1 | 4 | RM16424 | Milky white rice grains | |||||||||||
| qMW4.2 | 4 | RM6906 | |||||||||||||
| qMW9 | 9 | DdeI19 | |||||||||||||
| Sasanishiki/Habataki | CSSL | qSFht2 | 2 | RM1234-RM3850 | 小穗育性Spikelet fertility | [ | |||||||||
| qSFht4.2 | 4 | RM3916-RM2431 | |||||||||||||
| qPS | 1 | RM1196-RM6581 | 花粉发育 | ||||||||||||
| qPSLht4.1 | 4 | RM7585-Bb38P21a | Pollen shedding level | ||||||||||||
| qPSLht5 | 5 | RM1248-RM4915 | |||||||||||||
| qPSLht7 | 7 | RM6394-RM1364 | |||||||||||||
| qPSLht10.2 | 10 | RM7492-RM1859 | |||||||||||||
| qDFT3 | 3 | RM3766-RM3513 | 开花时间Daily flowering time | ||||||||||||
| qDFT8 | 8 | RM5891-RM4997 | |||||||||||||
| qDFT10.1 | 10 | RM6737-RM6673 | |||||||||||||
| qDFT11 | 11 | RM1355-RM2191 | |||||||||||||
| Sasanishiki/Habataki | CSSL | qHTB1 | 1 | RM1387-RM8137 | 小穗育性Spikelet fertility | [ | |||||||||
| qHTB3-1 | 3 | RM4108 | |||||||||||||
| qHTB3-2 | 3 | RM5748-RM5864 | |||||||||||||
| qHTB3-3 | 3 | RM3525-RM6970 | |||||||||||||
| qHTB4-1 | 4 | RM7585-RM5633 | |||||||||||||
| qHTB4-2 | 4 | RM3534-RM2431 | |||||||||||||
| qHTB5-1 | 5 | RM1248-RM5579 | |||||||||||||
| qHTB5-2 | 5 | RM3236 | |||||||||||||
| qHTB6 | 6 | RM5963-RM3330 | |||||||||||||
| qHTB10-1 | 10 | RM3882-RM4455 | |||||||||||||
| qHTB10-2 | 10 | RM3773-RM6673 | |||||||||||||
| qHTB11 | 11 | RM286-RM7283 | |||||||||||||
| Hanaechizen/Niigatawase | RIL | qWB3 | 3 | RM4383 | 稻米垩白White-back kernels | [ | |||||||||
| qWB4 | 4 | RM3288 | |||||||||||||
| qWB6 | 6 | RM8125 | |||||||||||||
| qWB9 | 9 | RM2482 | |||||||||||||
| qKW3-1 | 3 | RM7365 | 粒重Grian weight | ||||||||||||
| qKW3-1 | 3 | RM3513 | |||||||||||||
| qKW6 | 6 | RM5314 | |||||||||||||
| qKW7 | 7 | RM505 | |||||||||||||
| qKW10 | 10 | RM2371 | |||||||||||||
| qDH1 | 1 | RM151 | 抽穗期Days to heading | ||||||||||||
| qDH3 | 3 | RM5172 | |||||||||||||
| qDH6 | 6 | RM1369 | |||||||||||||
| R53/HHT4 | BC5F3:4 | qHTB1-1 | 1 | RM11629-RM128 | 小穗育性Spikelet fertility | [ | |||||||||
| M9962/Sinlek | F2 | qSF1 | 1 | 34 280 000-34 420 000 | 小穗育性Spikelet fertility | [ | |||||||||
| qSF2 | 2 | 18 730 000-19 100 000 | |||||||||||||
| qSF3.1 | 3 | 26 120 000-26 220 000 | |||||||||||||
| qSF3.2 | 3 | 28 730 000-28 960 000 | |||||||||||||
| Cheongcheong/Nagdong | DH | qSf3 | 3 | RM15749-RM15689 | 结实率Spikelet fertility | [ | |||||||||
| qSf4 | 4 | RM1205-RM3330 | |||||||||||||
| qSf8 | 8 | RM23178-RM23191 | |||||||||||||
| qTgw7 | 7 | RM248-RM1134 | 千粒重1 000 grain weight | ||||||||||||
| qTgw8 | 8 | RM149-RM23191 | |||||||||||||
| 9311/ IRGC102309 | BC6F3:4 | qHTCGR5 | 5 | RM1200-RM5796 | 稻米垩白Chalky grain rate | [ | |||||||||
| 996/4628 | RIL | qHTCGR1.1 | 1 | RM297-RM6648 | 稻米垩白Chalky grain rate | [ | |||||||||
| qHTCGR1.2 | 1 | RM6648-RM6387 | |||||||||||||
| qHTCGR3 | 3 | SFP3_1-RM231 | |||||||||||||
| qHTCGR6.1 | 6 | RM3353-RM1369 | |||||||||||||
| qHTCGR6.2 | 6 | RM1369-RM190 | |||||||||||||
| qHTCGR7.1 | 7 | RM3859 | |||||||||||||
| qHTCGR7.2 | 7 | RM21327-RM21364 | |||||||||||||
| qHTCGR7.3 | 7 | RM21364-RM3859 | |||||||||||||
| Nipponbare/Kasalath | BIL | qHTAC6 | 6 | R2689-R1962 | 直链淀粉含量 | [ | |||||||||
| qHTAC9-1 | 9 | R1164-R1687 | Amylose content | ||||||||||||
| qHTAC9-2 | 9 | C506-G293 | |||||||||||||
| qHTGC4 | 4 | C1100-R1783 | 直链淀粉含量 | ||||||||||||
| qHTGC6 | 6 | L688-G200 | Amylose content | ||||||||||||
| qHTGC7 | 7 | C596-C213 | |||||||||||||
| qHTGC8 | 8 | G1073-R727 | |||||||||||||
| qHTGC10 | 10 | C1369-R1877 | |||||||||||||
| qHTGC11 | 11 | G257-R728 | |||||||||||||
| qht-1 | 1 | R1613-C970 | 粒重Grian weight | [ | |||||||||||
| qht-4 | 4 | C1100-R1783 | |||||||||||||
| qht-7 | 7 | C1266-R1440 | |||||||||||||
| 284 rice germplasms | 水稻种质 | qHTT1 | 1 | Chr1_2646045 | 小穗育性Spikelet fertility | [ | |||||||||
| (189 indica and | Rice germplasms | qHTT3.1 | 3 | Chr3_17441838 | |||||||||||
| 95 japonica) | qHTT3.2 | 3 | Chr3_17758466 | ||||||||||||
| qHTT4.1 | 4 | Chr4_24524161 | |||||||||||||
| qHTT4.2 | 4 | Chr4_31476593 | |||||||||||||
| qHTT5 | 5 | Chr5_6246272 | |||||||||||||
| qHTT7.1 | 7 | Chr7_252305 | |||||||||||||
| 189 indica rice materials | qHTT7.2 | 7 | Chr7_24472878 | ||||||||||||
| qHTT-X3.1 | 3 | Chr3_18061266 | |||||||||||||
| qHTT-X3.2 | 3 | Chr3_20328744 | |||||||||||||
| qHTT-X3.3 | 3 | Chr3_21497502 | |||||||||||||
| qHTT-X4 | 4 | Chr4_31453877 | |||||||||||||
| qHTT-X5 | 5 | Chr5_6820123 | |||||||||||||
| qHTT-X12 | 12 | Chr12_15207279 | |||||||||||||
| 173 rice materials | 水稻种质 | qSF5 | 5 | Chr5_4668375 | 小穗育性Spikelet fertility | [ | |||||||||
| Rice germplasms | qSF7 | 7 | Chr7_28665880 | ||||||||||||
| qRSF1 | 1 | Chr1_19060745 | |||||||||||||
| qRSF2 | 2 | Chr2_23632215 | |||||||||||||
| qRSF9.1 | 9 | Chr9_9380313 | |||||||||||||
| qRSF9.2 | 9 | Chr9_22159984 | |||||||||||||
| qRSF10 | 10 | Chr10_14952621 | |||||||||||||
表1 近年来发现的与水稻耐高温相关的数量性状基因座(QTL)
Table 1 Quantitative trait locus(QTL) for heat tolerance in rice identified in recent years
| 亲本 Parents | 遗传材料 Genetic material | QTL | 所在染色体 Chromosome | 所处位置 Marker/location | 农艺性状 Agronomic trait | 参考文献 Reference | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IR64/N22 | BC5F2 | qHTSF4.1 | 4 | M85-M83 | 小穗育性Spikelet fertility | [ | |||||||||
| IR64/Giza178, | F2 | qHTSF1.2 | 1 | 103.5-109.0 cM | 小穗育性 | [ | |||||||||
| Milyang23/Giza178 | qHTSF2.1 | 2 | 4.8-19.8 cM | Spikelet fertility | |||||||||||
| qHTSF2.2 | 2 | 43.0-63.0 cM | |||||||||||||
| qHTSF3.1 | 3 | 1.5-17.5 cM | |||||||||||||
| qHTSF4.1 | 4 | 66.0-73.0 cM | |||||||||||||
| qHTSF6.1 | 6 | 27.5-31.5 cM | |||||||||||||
| qHTSF11.2 | 11 | 25.3-42.3 cM | |||||||||||||
| qHTSF11.3 | 11 | 11.6-14.6 cM | |||||||||||||
| IR64/N22 | RIL | qSTIPSS9.1 | 9 | SNP12393-12417 | 小穗育性Spikelet fertility | [ | |||||||||
| qSTIPSS12.1 | 12 | SNP14876-14892 | |||||||||||||
| qSTIY3.1 | 3 | SNP5308-5336 | 产量Yield | ||||||||||||
| qSTIY5.1 | 5 | SNP8377-8401 | |||||||||||||
| Chikushi52/ | BC4F3:4 | qWB1 | 1 | RM10870-RM7075 | 稻米垩白 | [ | |||||||||
| Tsukushiroman | qWB3 | 3 | RM3372-RM2791 | White-back grains ratio | |||||||||||
| qWB8 | 8 | RM3181-RM3689 | |||||||||||||
| qBW2 | 2 | RM5470 | 稻米垩白Basal-white-grains | ||||||||||||
| qBW3 | 3 | RM3372-RM2791 | |||||||||||||
| qBW6 | 6 | RM20429-RM6395 | |||||||||||||
| qBW12 | 12 | RM1986 | |||||||||||||
| qGW2 | 2 | RM5470-SNP2_1 | 粒重Grian weight | ||||||||||||
| qGW3 | 3 | RM3372-RM2326 | |||||||||||||
| qGW8 | 8 | RM5556-RM3689 | |||||||||||||
| qGW10 | 10 | RM3373-RM1374 | |||||||||||||
| qDTH3 | 3 | RM3372-RM2326 | 抽穗期Days to heading | ||||||||||||
| qDTH12 | 12 | SNP12_1-RM1986 | |||||||||||||
| Chikushi 52/ | RIL | qMW2 | 2 | RM5470 | 稻米垩白 | [ | |||||||||
| Tsukushiroman | qMW4.1 | 4 | RM16424 | Milky white rice grains | |||||||||||
| qMW4.2 | 4 | RM6906 | |||||||||||||
| qMW9 | 9 | DdeI19 | |||||||||||||
| Sasanishiki/Habataki | CSSL | qSFht2 | 2 | RM1234-RM3850 | 小穗育性Spikelet fertility | [ | |||||||||
| qSFht4.2 | 4 | RM3916-RM2431 | |||||||||||||
| qPS | 1 | RM1196-RM6581 | 花粉发育 | ||||||||||||
| qPSLht4.1 | 4 | RM7585-Bb38P21a | Pollen shedding level | ||||||||||||
| qPSLht5 | 5 | RM1248-RM4915 | |||||||||||||
| qPSLht7 | 7 | RM6394-RM1364 | |||||||||||||
| qPSLht10.2 | 10 | RM7492-RM1859 | |||||||||||||
| qDFT3 | 3 | RM3766-RM3513 | 开花时间Daily flowering time | ||||||||||||
| qDFT8 | 8 | RM5891-RM4997 | |||||||||||||
| qDFT10.1 | 10 | RM6737-RM6673 | |||||||||||||
| qDFT11 | 11 | RM1355-RM2191 | |||||||||||||
| Sasanishiki/Habataki | CSSL | qHTB1 | 1 | RM1387-RM8137 | 小穗育性Spikelet fertility | [ | |||||||||
| qHTB3-1 | 3 | RM4108 | |||||||||||||
| qHTB3-2 | 3 | RM5748-RM5864 | |||||||||||||
| qHTB3-3 | 3 | RM3525-RM6970 | |||||||||||||
| qHTB4-1 | 4 | RM7585-RM5633 | |||||||||||||
| qHTB4-2 | 4 | RM3534-RM2431 | |||||||||||||
| qHTB5-1 | 5 | RM1248-RM5579 | |||||||||||||
| qHTB5-2 | 5 | RM3236 | |||||||||||||
| qHTB6 | 6 | RM5963-RM3330 | |||||||||||||
| qHTB10-1 | 10 | RM3882-RM4455 | |||||||||||||
| qHTB10-2 | 10 | RM3773-RM6673 | |||||||||||||
| qHTB11 | 11 | RM286-RM7283 | |||||||||||||
| Hanaechizen/Niigatawase | RIL | qWB3 | 3 | RM4383 | 稻米垩白White-back kernels | [ | |||||||||
| qWB4 | 4 | RM3288 | |||||||||||||
| qWB6 | 6 | RM8125 | |||||||||||||
| qWB9 | 9 | RM2482 | |||||||||||||
| qKW3-1 | 3 | RM7365 | 粒重Grian weight | ||||||||||||
| qKW3-1 | 3 | RM3513 | |||||||||||||
| qKW6 | 6 | RM5314 | |||||||||||||
| qKW7 | 7 | RM505 | |||||||||||||
| qKW10 | 10 | RM2371 | |||||||||||||
| qDH1 | 1 | RM151 | 抽穗期Days to heading | ||||||||||||
| qDH3 | 3 | RM5172 | |||||||||||||
| qDH6 | 6 | RM1369 | |||||||||||||
| R53/HHT4 | BC5F3:4 | qHTB1-1 | 1 | RM11629-RM128 | 小穗育性Spikelet fertility | [ | |||||||||
| M9962/Sinlek | F2 | qSF1 | 1 | 34 280 000-34 420 000 | 小穗育性Spikelet fertility | [ | |||||||||
| qSF2 | 2 | 18 730 000-19 100 000 | |||||||||||||
| qSF3.1 | 3 | 26 120 000-26 220 000 | |||||||||||||
| qSF3.2 | 3 | 28 730 000-28 960 000 | |||||||||||||
| Cheongcheong/Nagdong | DH | qSf3 | 3 | RM15749-RM15689 | 结实率Spikelet fertility | [ | |||||||||
| qSf4 | 4 | RM1205-RM3330 | |||||||||||||
| qSf8 | 8 | RM23178-RM23191 | |||||||||||||
| qTgw7 | 7 | RM248-RM1134 | 千粒重1 000 grain weight | ||||||||||||
| qTgw8 | 8 | RM149-RM23191 | |||||||||||||
| 9311/ IRGC102309 | BC6F3:4 | qHTCGR5 | 5 | RM1200-RM5796 | 稻米垩白Chalky grain rate | [ | |||||||||
| 996/4628 | RIL | qHTCGR1.1 | 1 | RM297-RM6648 | 稻米垩白Chalky grain rate | [ | |||||||||
| qHTCGR1.2 | 1 | RM6648-RM6387 | |||||||||||||
| qHTCGR3 | 3 | SFP3_1-RM231 | |||||||||||||
| qHTCGR6.1 | 6 | RM3353-RM1369 | |||||||||||||
| qHTCGR6.2 | 6 | RM1369-RM190 | |||||||||||||
| qHTCGR7.1 | 7 | RM3859 | |||||||||||||
| qHTCGR7.2 | 7 | RM21327-RM21364 | |||||||||||||
| qHTCGR7.3 | 7 | RM21364-RM3859 | |||||||||||||
| Nipponbare/Kasalath | BIL | qHTAC6 | 6 | R2689-R1962 | 直链淀粉含量 | [ | |||||||||
| qHTAC9-1 | 9 | R1164-R1687 | Amylose content | ||||||||||||
| qHTAC9-2 | 9 | C506-G293 | |||||||||||||
| qHTGC4 | 4 | C1100-R1783 | 直链淀粉含量 | ||||||||||||
| qHTGC6 | 6 | L688-G200 | Amylose content | ||||||||||||
| qHTGC7 | 7 | C596-C213 | |||||||||||||
| qHTGC8 | 8 | G1073-R727 | |||||||||||||
| qHTGC10 | 10 | C1369-R1877 | |||||||||||||
| qHTGC11 | 11 | G257-R728 | |||||||||||||
| qht-1 | 1 | R1613-C970 | 粒重Grian weight | [ | |||||||||||
| qht-4 | 4 | C1100-R1783 | |||||||||||||
| qht-7 | 7 | C1266-R1440 | |||||||||||||
| 284 rice germplasms | 水稻种质 | qHTT1 | 1 | Chr1_2646045 | 小穗育性Spikelet fertility | [ | |||||||||
| (189 indica and | Rice germplasms | qHTT3.1 | 3 | Chr3_17441838 | |||||||||||
| 95 japonica) | qHTT3.2 | 3 | Chr3_17758466 | ||||||||||||
| qHTT4.1 | 4 | Chr4_24524161 | |||||||||||||
| qHTT4.2 | 4 | Chr4_31476593 | |||||||||||||
| qHTT5 | 5 | Chr5_6246272 | |||||||||||||
| qHTT7.1 | 7 | Chr7_252305 | |||||||||||||
| 189 indica rice materials | qHTT7.2 | 7 | Chr7_24472878 | ||||||||||||
| qHTT-X3.1 | 3 | Chr3_18061266 | |||||||||||||
| qHTT-X3.2 | 3 | Chr3_20328744 | |||||||||||||
| qHTT-X3.3 | 3 | Chr3_21497502 | |||||||||||||
| qHTT-X4 | 4 | Chr4_31453877 | |||||||||||||
| qHTT-X5 | 5 | Chr5_6820123 | |||||||||||||
| qHTT-X12 | 12 | Chr12_15207279 | |||||||||||||
| 173 rice materials | 水稻种质 | qSF5 | 5 | Chr5_4668375 | 小穗育性Spikelet fertility | [ | |||||||||
| Rice germplasms | qSF7 | 7 | Chr7_28665880 | ||||||||||||
| qRSF1 | 1 | Chr1_19060745 | |||||||||||||
| qRSF2 | 2 | Chr2_23632215 | |||||||||||||
| qRSF9.1 | 9 | Chr9_9380313 | |||||||||||||
| qRSF9.2 | 9 | Chr9_22159984 | |||||||||||||
| qRSF10 | 10 | Chr10_14952621 | |||||||||||||
| [1] | CAMIGER S, VALLEE D. More crop per drop[J]. Rice Today, 2007(6):10-13. |
| [2] | PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 9971-9975. |
| [3] | XU Y F, ZHANG L, OU S J, et al. Natural variations of SLG1 confer high-temperature tolerance in indica rice[J]. Nature Communications, 2020, 11: 5441. |
| [4] | LI X M, CHAO D Y, WU Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
| [5] | ZHANG H, ZHOU J F, KAN Y, et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance[J]. Science, 2022, 376(6599): 1293-1300. |
| [6] | LIU H Q, ZENG B H, ZHAO J L, et al. Genetic research progress: heat tolerance in rice[J]. International Journal of Molecular Sciences, 2023, 24(8): 7140. |
| [7] | XING Y H, LU H Y, ZHU X F, et al. How rice responds to temperature changes and defeats heat stress[J]. Rice, 2024, 17(1): 73. |
| [8] | PS S, SV A M, PRAKASH C, et al. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array[J]. Rice, 2017, 10(1): 28. |
| [9] | YE C R, TENORIO F A, REDOÑA E D, et al. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice[J]. Theoretical and Applied Genetics, 2015, 128(8): 1507-1517. |
| [10] | YE C R, TENORIO F A, ARGAYOSO M A, et al. Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations[J]. BMC Genetics, 2015, 16: 41. |
| [11] | ZHAO L, LEI J G, HUANG Y J, et al. Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines[J]. Breeding Science, 2016, 66(3): 358-366. |
| [12] | ZHU S, HUANG R L, WAI H P, et al. Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice[J]. Physiology and Molecular Biology of Plants, 2017, 23(4): 817-825. |
| [13] | CAO Z B, LI Y, TANG H W, et al. Fine mapping of the qHTB1-1 QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line[J]. Theoretical and Applied Genetics, 2020, 133(4): 1161-1175. |
| [14] | NUBANKOH P, WANCHANA S, SAENSUK C, et al. QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.)[J]. Plant Cell Reports, 2020, 39(1): 149-162. |
| [15] | PARK J R, KIM E G, JANG Y H, et al. Screening and identification of genes affecting grain quality and spikelet fertility during high-temperature treatment in grain filling stage of rice[J]. BMC Plant Biology, 2021, 21(1): 263. |
| [16] | PAN Y H, CHEN L, ZHU X Y, et al. Utilization of natural alleles for heat adaptability QTLs at the flowering stage in rice[J]. BMC Plant Biology, 2023, 23(1): 256. |
| [17] | HU C M, JIANG J H, LI Y L, et al. QTL mapping and identification of candidate genes using a genome-wide association study for heat tolerance at anthesis in rice (Oryza sativa L.)[J]. Frontiers in Genetics, 2022, 13: 983525. |
| [18] | WADA T, MIYAHARA K, SONODA J Y, et al. Detection of QTLs for white-back and basal-white grains caused by high temperature during ripening period in Japonica rice[J]. Breeding Science, 2015, 65(3): 216-225. |
| [19] | MIYAHARA K, WADA T, SONODA J Y, et al. Detection and validation of QTLs for milky-white grains caused by high temperature during the ripening period in Japonica rice[J]. Breeding Science, 2017, 67(4): 333-339. |
| [20] | KOBAYASHI A, SONODA J, SUGIMOTO K, et al. Detection and verification of QTLs associated with heat-induced quality decline of rice (Oryza sativa L.) using recombinant inbred lines and near-isogenic lines[J]. Breeding Science, 2013, 63(3): 339-346. |
| [21] | 朱昌兰, 肖应辉, 王春明, 等. 水稻灌浆期耐热害的数量性状基因位点分析[J]. 中国水稻科学, 2005, 19(2): 117-121. |
| ZHU C L, XIAO Y H, WANG C M, et al. Mapping QTLs for heat tolerance during grain filling in rice[J]. Chinese Journal of Rice Science, 2005, 19(2): 117-121. (in Chinese with English abstract) | |
| [22] | 朱昌兰, 江玲, 张文伟, 等. 稻米直链淀粉含量和胶稠度对高温耐性的QTL分析[J]. 中国水稻科学, 2006, 20(3): 248-252. |
| ZHU C L, JIANG L, ZHANG W W, et al. Identifying QTLs for thermo-tolerance of amylose content and gel consistency in rice[J]. Chinese Journal of Rice Science, 2006, 20(3): 248-252. (in Chinese with English abstract) | |
| [23] | 曹志斌, 李瑶, 曾博虹, 等. 非洲栽培稻垩白粒率耐热性QTL的定位[J]. 中国水稻科学, 2020, 34(2): 135-142. |
| CAO Z B, LI Y, ZENG B H, et al. QTL mapping for heat tolerance of chalky grain rate of Oryza glaberrima Steud[J]. Chinese Journal of Rice Science, 2020, 34(2): 135-142. (in Chinese with English abstract) | |
| [24] | 张桂莲, 廖斌, 唐文帮, 等. 稻米垩白性状对高温耐性的QTL分析[J]. 中国水稻科学, 2017, 31(3): 257-264. |
| ZHANG G L, LIAO B, TANG W B, et al. Identifying QTLs for thermo-tolerance of grain chalkiness trait in rice[J]. Chinese Journal of Rice Science, 2017, 31(3): 257-264. (in Chinese with English abstract) | |
| [25] | ZHANG H, DUAN L, DAI J S, et al. Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency of Wx pre-mRNA[J]. Theoretical and Applied Genetics, 2014, 127(2): 273-282. |
| [26] | DONG N Q, SUN Y W, GUO T, et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, 11: 2629. |
| [27] | KAN Y, MU X R, ZHANG H, et al. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis[J]. Nature Plants, 2021, 8(1): 53-67. |
| [28] | LIU J P, ZHANG C C, WEI C C, et al. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice[J]. Plant Physiology, 2016, 170(1): 429-443. |
| [29] | TAKEHARA K, MURATA K, YAMAGUCHI T, et al. Thermo-responsive allele of sucrose synthase 3 (Sus 3) provides high-temperature tolerance during the ripening stage in rice (Oryza sativa L.)[J]. Breeding Science, 2018, 68(3): 336-342. |
| [30] | CAO Z B, TANG H W, CAI Y H, et al. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high-temperature tolerance at the heading stage[J]. Plant Biotechnology Journal, 2022, 20(8): 1591-1605. |
| [31] | WU N, YAO Y L, XIANG D H, et al. A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of JASMONATE ZIM-DOMAIN genes in rice[J]. New Phytologist, 2022, 234(4): 1315-1331. |
| [32] | CHANDRAN A K N, SANDHU J, IRVIN L, et al. Rice Chalky Grain 5 regulates natural variation for grain quality under heat stress[J]. Frontiers in Plant Science, 2022, 13: 1026472. |
| [33] | SANDHU J, IRVIN L, CHANDARAN A K, et al. Natural variation in LONELY GUY-Like 1 regulates rice grain weight under warmer night conditions[J]. Plant Physiology, 2024, 196(1): 164-180. |
| [34] | CHEN K, GUO T, LI X M, et al. Translational regulation of plant response to high temperature by a dual-function tRNAHis guanylyltransferase in rice[J]. Molecular Plant, 2019, 12(8): 1123-1142. |
| [35] | GU X T, SI F Y, FENG Z X, et al. The OsSGS3-tasiRNA-OsARF3 module orchestrates abiotic-biotic stress response trade-off in rice[J]. Nature Communications, 2023, 14: 4441. |
| [36] | CHEN F, DONG G J, WANG F, et al. A β-ketoacyl carrier protein reductase confers heat tolerance via the regulation of fatty acid biosynthesis and stress signaling in rice[J]. New Phytologist, 2021, 232(2): 655-672. |
| [37] | WANG D, QIN B X, LI X, et al. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice[J]. PLoS Genetics, 2016, 12(2): e1005844. |
| [38] | LI X T, TANG H S, XU T, et al. N-terminal acetylation orchestrates glycolate-mediated ROS homeostasis to promote rice thermoresponsive growth[J]. New Phytologist, 2024, 243(5): 1742-1757. |
| [39] | ZHANG P, ZHU W W, HE Y, et al. THERMOSENSITIVE BARREN PANICLE (TAP) is required for rice panicle and spikelet development at high ambient temperature[J]. New Phytologist, 2023, 237(3): 855-869. |
| [40] | LIU K W, WANG M N, WANG L J, et al. RMI1 is essential for maintaining rice genome stability at high temperature[J]. The Plant Journal, 2024, 120(5): 1735-1750. |
| [41] | SHE K C, KUSANO H, KOIZUMI K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. The Plant Cell, 2010, 22(10): 3280-3294. |
| [42] | TABASSUM R, DOSAKA T, ICHIDA H, et al. FLOURY ENDOSPERM11-2 encodes plastid HSP70-2 involved with the temperature-dependent chalkiness of rice (Oryza sativa L.) grains[J]. The Plant Journal, 2020, 103(2): 604-616. |
| [43] | AMBAVARAM M M R, BASU S, KRISHNAN A, et al. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress[J]. Nature Communications, 2014, 5: 5302. |
| [44] | LIU X H, LYU Y S, YANG W P, et al. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice[J]. Plant Biotechnology Journal, 2020, 18(5): 1317-1329. |
| [45] | CUI Y M, LU S, LI Z, et al. CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice[J]. Plant Physiology, 2020, 183(4): 1794-1808. |
| [46] | LO S F, CHENG M L, HSING Y C, et al. Rice Big Grain 1 promotes cell division to enhance organ development, stress tolerance and grain yield[J]. Plant Biotechnology Journal, 2020, 18(9): 1969-1983. |
| [47] | CHEN S Q, CAO H R, HUANG B L, et al. The WRKY10-VQ8 module safely and effectively regulates rice thermotolerance[J]. Plant, Cell & Environment, 2022, 45(7): 2126-2144. |
| [48] | QIAO B, ZHANG Q, LIU D L, et al. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2[J]. Journal of Experimental Botany, 2015, 66(19): 5853-5866. |
| [49] | CAINE R S, YIN X J, SLOAN J, et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions[J]. New Phytologist, 2019, 221(1): 371-384. |
| [50] | GANDASS N, KAJAL , SALVI P. Intrinsically disordered protein, DNA binding with one finger transcription factor (OsDOF27) implicates thermotolerance in yeast and rice[J]. Frontiers in Plant Science, 2022, 13: 956299. |
| [51] | HE Y, ZHANG X B, SHI Y F, et al. PREMATURE SENESCENCE LEAF 50 promotes heat stress tolerance in rice (Oryza sativa L.)[J]. Rice, 2021, 14(1): 53. |
| [52] | RANA R M, DONG S N, TANG H J, et al. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2012, 63(16): 6003-6016. |
| [53] | TANG Y Y, GAO C C, GAO Y, et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature[J]. Developmental Cell, 2020, 53(3): 272-286.e7. |
| [54] | GAO C, LU S, ZHOU R, et al. The OsCBL8-OsCIPK17 module regulates seedling growth and confers resistance to heat and drought in rice[J]. International Journal of Molecular Sciences, 2022, 23(20): 12451. |
| [55] | GUO M X, ZHANG X T, LIU J J, et al. OsProDH negatively regulates thermotolerance in rice by modulating proline metabolism and reactive oxygen species scavenging[J]. Rice, 2020, 13(1): 61. |
| [56] | LIU J P, SUN X J, XU F Y, et al. Suppression of OsMDHAR4 enhances heat tolerance by mediating H2O2-induced stomatal closure in rice plants[J]. Rice, 2018, 11(1): 38. |
| [57] | LI J J, YANG J, ZHU B H, et al. Overexpressing OsFBN1 enhances plastoglobule formation, reduces grain-filling percent and jasmonate levels under heat stress in rice[J]. Plant Science, 2019, 285: 230-238. |
| [58] | YAN Y, LI C, LIU Z, et al. A new demethylase gene, OsDML4, is involved in high temperature-increased grain chalkiness in rice[J]. Journal of Experimental Botany, 2022, 73(22): 7273-7284. |
| [59] | XU H, LI X F, ZHANG H, et al. High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice[J]. Plant, Cell & Environment, 2020, 43(8): 1879-1896. |
| [60] | HAKATA M, KURODA M, MIYASHITA T, et al. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature[J]. Plant Biotechnology Journal, 2012, 10(9): 1110-1117. |
| [61] | KUSANO H, ARISU Y, NAKAJIMA J, et al. Implications of the gene for F1-ATPase β subunit (AtpB) for the grain quality of rice matured in a high-temperature environment[J]. Plant Biotechnology, 2016, 33(3): 169-175. |
| [62] | ZHANG H, XU H, FENG M J, et al. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress[J]. Plant Biotechnology Journal, 2018, 16(1): 18-26. |
| [63] | SHEN C Q, ZHANG Y Y, LI G, et al. MADS8 is indispensable for female reproductive development at high ambient temperatures in cereal crops[J]. The Plant Cell, 2023, 36(1): 65-84. |
| [64] | CHEN C, BEGCY K, LIU K, et al. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity[J]. Plant Physiology, 2016, 171(1): 606-622. |
| [65] | LIAO M, MA Z M, KANG Y R, et al. ENHANCED DISEASE SUSCEPTIBILITY 1 promotes hydrogen peroxide scavenging to enhance rice thermotolerance[J]. Plant Physiology, 2023, 192(4): 3106-3119. |
| [66] | KIM S R, AN G. Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions[J]. Journal of Plant Physiology, 2013, 170(9): 854-863. |
| [67] | YANG X J, LI G, TIAN Y S, et al. A rice glutamyl-tRNA synthetase modulates early anther cell division and patterning[J]. Plant Physiology, 2018, 177(2): 728-744. |
| [68] | FAN Y R, ZHANG Q F. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice[J]. Plant Reproduction, 2018, 31(1): 3-14. |
| [69] | YU H X, CAO Y J, YANG Y B, et al. A TT1-SCE1 module integrates ubiquitination and sumoylation to regulate heat tolerance in rice[J]. Molecular Plant, 2024, 17(12): 1899-1918. |
| [70] | ZHOU H F, WANG X L, HUO C M, et al. A quantitative proteomics study of early heat-regulated proteins by two-dimensional difference gel electrophoresis identified OsUBP21 as a negative regulator of heat stress responses in rice[J]. Proteomics, 2019, 19(20): e1900153. |
| [1] | 裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020. |
| [2] | 谭诗逸, 俞国红, 薛向磊, 赵颖雷, 许宝玉, 张成浩. 工厂化水稻育秧盘搬运装置设计与试验[J]. 浙江农业学报, 2025, 37(7): 1545-1555. |
| [3] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [4] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [5] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [6] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. |
| [7] | 宋欣录, 范书红, 武桄旗, 展梦琪, 侯倩, 李明月, 徐艳. 铜-菲复合污染对分蘖期水稻根系生理特性和污染物积累的影响[J]. 浙江农业学报, 2025, 37(3): 521-529. |
| [8] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. |
| [9] | 谢昶琰, 金雨濛, 张苗, 董青君, 李青, 纪力, 钟平, 陈川, 章安康. 利用河道淤泥开发机插水稻秧苗营养土及其应用效果[J]. 浙江农业学报, 2025, 37(3): 538-547. |
| [10] | 兰雪成, 赵凤亮, 张光旭, 李杨, 郭晓红. 纳米氧化锌和纳米氧化硅对水稻种子萌发的影响[J]. 浙江农业学报, 2025, 37(2): 269-277. |
| [11] | 谈静如, 胡齐赞, 岳智臣, 陶鹏, 雷娟利, 李必元, 赵彦婷, 臧运祥. 基于叶绿素荧光参数的苗用型大白菜耐热性综合评价体系[J]. 浙江农业学报, 2025, 37(2): 288-299. |
| [12] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
| [13] | 杨锦皓, 江洁, 刘行, 李福强. 基于离散元法的水稻种子参数标定与旱作排种仿真[J]. 浙江农业学报, 2025, 37(11): 2376-2386. |
| [14] | 徐伟东, 陆强, 姚张良, 王晖, 王瑞森, 郎淑平. 水稻田夏熟杂草多样性特征对不同轮作模式的响应[J]. 浙江农业学报, 2025, 37(10): 2138-2149. |
| [15] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||