浙江农业学报 ›› 2021, Vol. 33 ›› Issue (10): 1921-1930.DOI: 10.3969/j.issn.1004-1524.2021.10.16
陈德1(
), 赵首萍1, 叶雪珠1,*(
), 张棋1, 肖文丹1, 阮弋飞2, 伍少福3
收稿日期:2021-05-09
出版日期:2021-10-25
发布日期:2021-11-02
作者简介:叶雪珠,E-mail: rosecomepaper@163.com通讯作者:
叶雪珠
基金资助:
CHEN De1(
), ZHAO Shouping1, YE Xuezhu1,*(
), ZHANG Qi1, XIAO Wendan1, RUAN Yifei2, WU Shaofu3
Received:2021-05-09
Online:2021-10-25
Published:2021-11-02
Contact:
YE Xuezhu
摘要:
采用田间小区试验,研究石灰、生物质炭、海泡石、钙镁磷肥等单一和复合钝化剂对小米椒吸收和积累Cd的影响,结合土壤性质和养分含量变化,以期筛选出能有效降低小米椒果实中Cd含量的钝化剂类型。结果表明:供试辣椒品种艳椒425对土壤中Cd有较强的吸收积累能力,不同部位的Cd含量为茎叶>根>果实;不同处理辣椒果实的Cd含量介于0.049~0.106 mg·kg-1,除生物质炭处理外,其他钝化剂处理辣椒果实的Cd含量显著降低,降幅在25%~54%,其中,海泡石处理降幅最高,其次为复合钝化剂。除个别处理外,各钝化剂处理有效地降低了Cd的转运系数和富集系数,降幅分别在26%~44%和23%~52%。辣椒中Cd含量的降低主要是由于钝化剂的施入提高了土壤pH值,降低了土壤中有效态Cd含量;土壤pH值与对照相比提高了0.8~2.4个单位,有效态Cd含量降低了68%~93%,其中,海泡石处理效果最佳,其次为复合钝化剂。此外,不同钝化剂一定程度上提高了土壤有机质含量和主要养分含量。总体来看,海泡石和复合钝化剂能在改善土壤性质的同时有效降低辣椒对土壤中Cd的吸收、转运和积累,有利于保障辣椒的安全生产。
中图分类号:
陈德, 赵首萍, 叶雪珠, 张棋, 肖文丹, 阮弋飞, 伍少福. 不同钝化剂对小米椒吸收和积累镉的影响[J]. 浙江农业学报, 2021, 33(10): 1921-1930.
CHEN De, ZHAO Shouping, YE Xuezhu, ZHANG Qi, XIAO Wendan, RUAN Yifei, WU Shaofu. Effects of soil amendments on Cd uptake and accumulation in red pepper[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1921-1930.
| 处理 | 果实Cd含量 Fruit Cd content/ (mg·kg-1) | 茎叶Cd含量 Shoot Cd content/ (mg·kg-1) | 根系Cd含量 Root Cd content/ (mg·kg-1) | 转运系数 Translocation factor | 富集系数 Concentration factor |
|---|---|---|---|---|---|
| CK | 0.106±0.004a | 1.51±0.15 a | 0.51±0.10 a | 3.10±0.95 a | 0.55±0.03 a |
| BC | 0.104±0.004 a | 1.08±0.05 b | 0.48±0.10 ab | 2.29±0.40 bc | 0.55±0.01 a |
| SH | 0.078±0.015 b | 0.83±0.06 c | 0.41±0.03 ab | 2.04±0.00 c | 0.42±0.09 b |
| SEP | 0.049±0.006 c | 0.53±0.03 e | 0.24±0.00 d | 2.18±0.10 bc | 0.26±0.04 c |
| GMP | 0.079±0.014 b | 0.77±0.10 c | 0.28±0.03 d | 2.77±0.11 ab | 0.41±0.06 b |
| F1 | 0.068±0.006 bc | 0.58±0.06 de | 0.30±0.04 cd | 1.95±0.09 c | 0.37±0.03 b |
| F2 | 0.078±0.013 b | 0.75±0.18 cd | 0.43±0.02 ab | 1.73±0.32 c | 0.41±0.06 b |
| F3 | 0.064±0.018 bc | 0.76±0.09 c | 0.40±0.07 bc | 1.92±0.09 c | 0.34±0.08 bc |
表1 不同钝化剂处理辣椒各部位Cd含量、转运系数和富集系数
Table 1 Cd concentrations in different parts of red pepper, translocation factor and concentration factor
| 处理 | 果实Cd含量 Fruit Cd content/ (mg·kg-1) | 茎叶Cd含量 Shoot Cd content/ (mg·kg-1) | 根系Cd含量 Root Cd content/ (mg·kg-1) | 转运系数 Translocation factor | 富集系数 Concentration factor |
|---|---|---|---|---|---|
| CK | 0.106±0.004a | 1.51±0.15 a | 0.51±0.10 a | 3.10±0.95 a | 0.55±0.03 a |
| BC | 0.104±0.004 a | 1.08±0.05 b | 0.48±0.10 ab | 2.29±0.40 bc | 0.55±0.01 a |
| SH | 0.078±0.015 b | 0.83±0.06 c | 0.41±0.03 ab | 2.04±0.00 c | 0.42±0.09 b |
| SEP | 0.049±0.006 c | 0.53±0.03 e | 0.24±0.00 d | 2.18±0.10 bc | 0.26±0.04 c |
| GMP | 0.079±0.014 b | 0.77±0.10 c | 0.28±0.03 d | 2.77±0.11 ab | 0.41±0.06 b |
| F1 | 0.068±0.006 bc | 0.58±0.06 de | 0.30±0.04 cd | 1.95±0.09 c | 0.37±0.03 b |
| F2 | 0.078±0.013 b | 0.75±0.18 cd | 0.43±0.02 ab | 1.73±0.32 c | 0.41±0.06 b |
| F3 | 0.064±0.018 bc | 0.76±0.09 c | 0.40±0.07 bc | 1.92±0.09 c | 0.34±0.08 bc |
图1 土壤有效态Cd含量 CK,不施钝化剂对照组;BC,花生壳生物质炭处理;SH,生石灰处理;SEP,海泡石处理;GMP,钙镁磷肥处理;F1,复合钝化剂1处理;F2,复合钝化剂2处理;F3,复合钝化剂3处理。柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.1 Available Cd concentration in soil CK, Control group without amendment; BC, Peanut husk biochar treatment; SH, Quicklime treatment; SEP, Sepiolite treatment; GMP, Calcium magnesium phosphate treatment; F1, Composite amendment 1 treatment; F2, Composite amendment 2 treatment; F3, Composite amendment 3 treatment. Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05.The same as below.
| 处理 | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkali hydrolyzable nitrogen/(mg·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) |
|---|---|---|---|---|---|
| CK | 27.00±1.83 d | 1.58±0.03 d | 129.6±3.3 c | 0.91±0.10 b | 28.33±2.74 ef |
| BC | 37.65±4.74 a | 1.84±0.12 a | 148.5±6.3 b | 0.89±0.06 b | 30.37±3.65 de |
| SH | 30.50±0.99 bcd | 1.77±0.03 ab | 170.8±22.8 a | 0.89±0.05 b | 50.83±8.04 b |
| SEP | 27.75±0.21 cd | 1.60±0.03 cd | 146.0±2.2 bc | 0.75±0.01 c | 18.80±2.43 f |
| GMP | 30.70±2.26 bcd | 1.68±0.02 bc | 149.6±5.4 b | 1.07±0.09 a | 69.28±5.55 a |
| F1 | 30.80±1.41 bcd | 1.70±0.06 b | 156.0±6.6 ab | 0.93±0.04 b | 33.45±7.75 cde |
| F2 | 33.13±0.04 ab | 1.70±0.01 b | 158.4±8.9 ab | 0.87±0.01 b | 40.43±5.60 bcd |
| F3 | 31.55±0.92 bc | 1.73±0.07 b | 155.6±8.1 ab | 0.94±0.06 b | 42.10±8.90 bc |
表2 不同钝化剂处理土壤有机质与养分含量
Table 2 Organic matter and nutrient contents in soils
| 处理 | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkali hydrolyzable nitrogen/(mg·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) |
|---|---|---|---|---|---|
| CK | 27.00±1.83 d | 1.58±0.03 d | 129.6±3.3 c | 0.91±0.10 b | 28.33±2.74 ef |
| BC | 37.65±4.74 a | 1.84±0.12 a | 148.5±6.3 b | 0.89±0.06 b | 30.37±3.65 de |
| SH | 30.50±0.99 bcd | 1.77±0.03 ab | 170.8±22.8 a | 0.89±0.05 b | 50.83±8.04 b |
| SEP | 27.75±0.21 cd | 1.60±0.03 cd | 146.0±2.2 bc | 0.75±0.01 c | 18.80±2.43 f |
| GMP | 30.70±2.26 bcd | 1.68±0.02 bc | 149.6±5.4 b | 1.07±0.09 a | 69.28±5.55 a |
| F1 | 30.80±1.41 bcd | 1.70±0.06 b | 156.0±6.6 ab | 0.93±0.04 b | 33.45±7.75 cde |
| F2 | 33.13±0.04 ab | 1.70±0.01 b | 158.4±8.9 ab | 0.87±0.01 b | 40.43±5.60 bcd |
| F3 | 31.55±0.92 bc | 1.73±0.07 b | 155.6±8.1 ab | 0.94±0.06 b | 42.10±8.90 bc |
| 参数 Parameter | 果实中Cd Fruit Cd | 土壤pH值 Soil pH value | 有效态Cd Available Cd | 有机质 Organic matter | 茎叶中Cd Shoot Cd | 根中Cd Root Cd |
|---|---|---|---|---|---|---|
| 土壤pH值 Soil pH value | -0.768** | |||||
| 有效态Cd Available Cd | 0.655** | -0.856** | ||||
| 有机质 Organic matter | 0.255 | -0.062 | -0.204 | |||
| 茎叶中Cd Shoot Cd | 0.746** | -0.892** | 0.873** | 0.039 | ||
| 根中Cd Root Cd | 0.685** | -0.694** | 0.599** | 0.363 | 0.710** | |
| 转运系数 Translocation factor | 0.340 | -0.523** | 0.560** | -0.290 | 0.638** | -0.078 |
表3 辣椒各部位Cd的含量与土壤基本性质之间的相关系数
Table 3 Correlation coefficient among Cd concentrations in different parts of pepper and soil properties
| 参数 Parameter | 果实中Cd Fruit Cd | 土壤pH值 Soil pH value | 有效态Cd Available Cd | 有机质 Organic matter | 茎叶中Cd Shoot Cd | 根中Cd Root Cd |
|---|---|---|---|---|---|---|
| 土壤pH值 Soil pH value | -0.768** | |||||
| 有效态Cd Available Cd | 0.655** | -0.856** | ||||
| 有机质 Organic matter | 0.255 | -0.062 | -0.204 | |||
| 茎叶中Cd Shoot Cd | 0.746** | -0.892** | 0.873** | 0.039 | ||
| 根中Cd Root Cd | 0.685** | -0.694** | 0.599** | 0.363 | 0.710** | |
| 转运系数 Translocation factor | 0.340 | -0.523** | 0.560** | -0.290 | 0.638** | -0.078 |
| [1] | 王大州, 林剑, 王大霞, 等. 根际土-辣椒系统中重金属的分布及食物安全风险评价[J]. 地球与环境, 2014, 42(4):546-549. |
| WANG D Z, LIN J, WANG D X, et al. Distribution of heavy metals in the rhizospheric soil-Capsicum system and risk assessment[J]. Earth and Environment, 2014, 42(4):546-549.(in Chinese with English abstract) | |
| [2] | 孙硕, 李菊梅, 马义兵, 等. 河北省蔬菜大棚土壤及蔬菜中重金属累积分析[J]. 农业资源与环境学报, 2019, 36(2):236-244. |
| SUN S, LI J M, MA Y B, et al. Accumulation of heavy metals in soil and vegetables of greenhouses in Hebei Province, China[J]. Journal of Agricultural Resources and Environment, 2019, 36(2):236-244.(in Chinese with English abstract) | |
| [3] |
DUDKA S, MILLER W P. Accumulation of potentially toxic elements in plants and their transfer to human food chain[J]. Journal of Environmental Science and Health, Part B, 1999, 34(4):681-708.
DOI URL |
| [4] |
REEVES P G, CHANEY R L. Bioavailability as an issue in risk assessment and management of food cadmium: a review[J]. Science of the Total Environment, 2008, 398(1/2/3):13-19.
DOI URL |
| [5] | 王美娥, 彭驰, 陈卫平. 水稻品种及典型土壤改良措施对稻米吸收镉的影响[J]. 环境科学, 2015, 36(11):4283-4290. |
| WANG M E, PENG C, CHEN W P. Effects of rice cultivar and typical soil improvement measures on the uptake of Cd in rice grains[J]. Environmental Science, 2015, 36(11):4283-4290.(in Chinese with English abstract) | |
| [6] |
KUMAR SHARMA R, AGRAWAL M, MARSHALL F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India[J]. Ecotoxicology and Environmental Safety, 2007, 66(2):258-266.
DOI URL |
| [7] | 赵云青, 周怡, 黄兴洁, 等. 重金属在矿区土壤-蔬菜系统的吸收与迁移特性研究[J]. 土壤通报, 2019, 50(5):1233-1238. |
| ZHAO Y Q, ZHOU Y, HUANG X J, et al. Absorption and migration of heavy metals in soil-vegetable system in mining area[J]. Chinese Journal of Soil Science, 2019, 50(5):1233-1238.(in Chinese with English abstract) | |
| [8] | 冯艳红, 王国庆, 张亚, 等. 土壤-蔬菜系统中镉的生物富集效应及土壤阈值研究[J]. 地球与环境, 2019, 47(5):653-661. |
| FENG Y H, WANG G Q, ZHANG Y, et al. Study on bioaccumulation of cadmium in soil-vegetable system and pollution threshold in soil[J]. Earth and Environment, 2019, 47(5):653-661.(in Chinese with English abstract) | |
| [9] | 肖青青, 王宏镔, 赵宾, 等. 云南个旧市郊农作物重金属污染现状及健康风险[J]. 农业环境科学学报, 2011, 30(2):271-281. |
| XIAO Q Q, WANG H B, ZHAO B, et al. Heavy metal pollution in crops growing in suburb of Gejiu City, Yunnan Province, China: present situation and health risk[J]. Journal of Agro-Environment Science, 2011, 30(2):271-281.(in Chinese with English abstract) | |
| [10] | 冯英, 马璐瑶, 王琼, 等. 我国土壤-蔬菜作物系统重金属污染及其安全生产综合农艺调控技术[J]. 农业环境科学学报, 2018, 37(11):2359-2370. |
| FENG Y, MA L Y, WANG Q, et al. Heavy-metal pollution and safety production technologies of soil-vegetable crop systems in China[J]. Journal of Agro-Environment Science, 2018, 37(11):2359-2370.(in Chinese) | |
| [11] | 彭秋, 李桃, 徐卫红, 等. 不同品种辣椒镉亚细胞分布和化学形态特征差异[J]. 环境科学, 2019, 40(7):3347-3354. |
| PENG Q, LI T, XU W H, et al. Differences in the cadmium-enrichment capacity and subcellular distribution and chemical form of cadmium in different varieties of pepper[J]. Environmental Science, 2019, 40(7):3347-3354.(in Chinese with English abstract) | |
| [12] | 刘青栋. 镉在土壤-辣椒体系迁移富集及其耦合关系探究[D]. 贵阳: 贵州大学, 2019. |
| LIU Q D. Study on migration and enrichment of cadmium in soil-pepper system and its coupling relationship[D]. Guiyang: Guizhou University, 2019. (in Chinese with English abstract) | |
| [13] |
GUO G L, ZHOU Q X, MA L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review[J]. Environmental Monitoring and Assessment, 2006, 116(1/2/3):513-528.
DOI URL |
| [14] | 孟龙, 黄涂海, 陈謇, 等. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3):263-271. |
| MENG L, HUANG T H, CHEN J, et al. Safe utilization of farmland soil with cadmium pollution: strategies and deliberations[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3):263-271.(in Chinese with English abstract) | |
| [15] | 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展:修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4):1140-1148. |
| LIU Z G, XIA Y, MENG Y H, et al. Research advances in biomass-based carbon materials for remediation of heavy metal contaminated soil: immobilization mechanism and analysis of related studies[J]. Chinese Journal of Environmental Engineering, 2021, 15(4):1140-1148.(in Chinese with English abstract) | |
| [16] |
SUN Y B, XU Y, XU Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208:739-746.
DOI URL |
| [17] |
CHEN D, LIU X Y, BIAN R J, et al. Effects of biochar on availability and plant uptake of heavy metals: a meta-analysis[J]. Journal of Environmental Management, 2018, 222:76-85.
DOI URL |
| [18] | 黄柏豪, 吴秦慧姿, 肖亨, 等. 连施石灰对Cd污染土壤Cd形态及稻麦吸收Cd的影响[J]. 中国土壤与肥料, 2020(3):138-143. |
| HUANG B H, WU Q H Z, XIAO H, et al. Effects of continuous application of lime for three years on cadmium concentration and uptake by wheat and rice in Cd contaminated soil[J]. Soil and Fertilizer Sciences in China, 2020(3):138-143.(in Chinese with English abstract) | |
| [19] |
ALVANI S, HOJATI S, LANDI A. Effects of sepiolite nanoparticles on the kinetics of Pb and Cu removal from aqueous solutions and their immobilization in columns with different soil textures[J]. Geoderma, 2019, 350:19-28.
DOI URL |
| [20] |
CHEN D, YE X Z, ZHANG Q, et al. The effect of sepiolite application on rice Cd uptake: a two-year field study in Southern China[J]. Journal of Environmental Management, 2020, 254:109788.
DOI URL |
| [21] | LEHMANN J, JOSEPH S. Biochar for environmental management[M]. London: Routledge, 2015. |
| [22] |
ALBERT H A, LI X, JEYAKUMAR P, et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: a meta-analysis[J]. Science of the Total Environment, 2021, 755:142582.
DOI URL |
| [23] |
TIAN X S, WANG D Y, CHAI G Q, et al. Does biochar inhibit the bioavailability and bioaccumulation of As and Cd in co-contaminated soils? A meta-analysis[J]. Science of the Total Environment, 2021, 762:143117.
DOI URL |
| [24] |
WANG D, JIANG P K, ZHANG H B, et al. Biochar production and applications in agro and forestry systems: a review[J]. Science of the Total Environment, 2020, 723:137775.
DOI URL |
| [25] | 蔡鑫, 白珊, 陈绩, 等. 碱性肥料和生物质炭对土壤镉的钝化效果[J]. 浙江农业科学, 2021, 62(2):448-452. |
| CAI X, BAI S, CHEN J, et al. Passivation effects of alkaline fertilizer and biochar on heavy metal cadmium in soil[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(2):448-452.(in Chinese) | |
| [26] | LUO K, LIU H Y, LIU Q D, et al. Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical anomaly[J]. Environmental Technology, 2020: 1-11. |
| [27] | 赵首萍, 叶雪珠, 张棋, 等. 不同辣椒品种镉吸收积累能力及关键期研究[J]. 植物营养与肥料学报, 2021, 27(4):695-705. |
| ZHAO S P, YE X Z, ZHANG Q, et al. The capacity and critical stage of Cd absorption and accumulation of different pepper cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4):695-705.(in Chinese with English abstract) | |
| [28] | 李素霞, 谢朝阳, 季斌, 等. 不同改良剂在镉与硝酸盐复合污染下对辣椒品质的影响[J]. 西南农业学报, 2011, 24(4):1480-1483. |
| LI S X, XIE Z Y, JI B, et al. Effects of several modifiers on quality of pepper in interactive of nitrogen nutrition and cadmium contamination soil[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(4):1480-1483.(in Chinese with English abstract) | |
| [29] |
YANG J X, GUO H T, MA Y B, et al. Genotypic variations in the accumulation of Cd exhibited by different vegetables[J]. Journal of Environmental Sciences, 2010, 22(8):1246-1252.
DOI URL |
| [30] |
WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science & Technology, 2019, 53(5):2500-2508.
DOI URL |
| [31] | LINDSAY W L. Chemical equilibria in soils[M]. New York: John Wiley and Sons Ltd, 1979:222-236. |
| [32] |
MCBRIDE M, SAUVE S, HENDERSHOT W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils[J]. European Journal of Soil Science, 1997, 48(2):337-346.
DOI URL |
| [33] |
CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291.
DOI URL |
| [34] |
INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4):406-433.
DOI URL |
| [35] | CHEN D, LI R Y, BIAN R J, et al. Contribution of soluble minerals in biochar to Pb2+ adsorption in aqueous solutions[J]. BioResources, 2017, 12(1):1662-1679. |
| [36] |
ZACHARA J M, MCKINLEY J P. Influence of hydrolysis on the sorption of metal cations by smectites: importance of edge coordination reactions[J]. Aquatic Sciences, 1993, 55(4):250-261.
DOI URL |
| [37] |
URAGUCHI S, MORI S, KURAMATA M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9):2677-2688.
DOI URL |
| [38] |
YU Z G, ZHOU Q X. Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorus[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):38-43.
DOI URL |
| [39] | 袁兴超, 李博, 朱仁凤, 等. 不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究[J]. 农业环境科学学报, 2019, 38(4):807-817. |
| YUAN X C, LI B, ZHU R F, et al. Immobilization of Cd and Pb using different amendments of cultivated soils around lead-zinc mines[J]. Journal of Agro-Environment Science, 2019, 38(4):807-817.(in Chinese with English abstract) | |
| [40] |
LIANG X F, HAN J, XU Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235/236:9-18.
DOI URL |
| [41] |
SUN Y B, SUN G H, XU Y M, et al. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite[J]. Journal of Environmental Sciences, 2012, 24(10):1799-1805.
DOI URL |
| [42] |
HOODA P S, ALLOWAY B J. The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils[J]. The Journal of Agricultural Science, 1996, 127(3):289-294.
DOI URL |
| [43] |
RUTTENS A, ADRIAENSEN K, MEERS E, et al. Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition[J]. Environmental Pollution, 2010, 158(5):1428-1434.
DOI URL |
| [44] | 潘根兴, 张阿凤, 邹建文, 等. 农业废弃物生物黑炭转化还田作为低碳农业途径的探讨[J]. 生态与农村环境学报, 2010, 26(4):394-400. |
| PAN G X, ZHANG A, ZOU J W, et al. Biochar from agro-byproducts used as amendment to croplands: an option for low carbon agriculture[J]. Journal of Ecology and Rural Environment, 2010, 26(4):394-400.(in Chinese with English abstract) | |
| [45] | 张阿凤, 潘根兴, 李恋卿. 生物黑炭及其增汇减排与改良土壤意义[J]. 农业环境科学学报, 2009, 28(12):2459-2463. |
| ZHANG A F, PAN G X, LI L Q. Biochar and the effect on C stock enhancement, emission reduction of greenhouse gases and soil reclaimation[J]. Journal of Agro-Environment Science, 2009, 28(12):2459-2463.(in Chinese with English abstract) | |
| [46] | 金睿, 刘可星, 艾绍英, 等. 生物炭复配调理剂对镉污染土壤性状和小白菜镉吸收及其生理特性的影响[J]. 南方农业学报, 2016, 47(9):1480-1487. |
| JIN R, LIU K X, AI S Y, et al. Effects of biochar complex conditioner on properties of cadmium contaminated soil and cadmium absorption and physiological characteristics of Brassica chinensis[J]. Journal of Southern Agriculture, 2016, 47(9):1480-1487. (in Chinese with English abstract) | |
| [47] | 赵莎莎, 肖广全, 陈玉成, 等. 不同施用量石灰和生物炭对稻田镉污染钝化的延续效应[J]. 水土保持学报, 2021, 35(1):334-340. |
| ZHAO S S, XIAO G Q, CHEN Y C, et al. Continuous effect of different application rates of lime and biochar on the passivation of cadmium pollution in paddy fields[J]. Journal of Soil and Water Conservation, 2021, 35(1):334-340.(in Chinese with English abstract) |
| [1] | 吴菊, 杨飞, 吴国泉, 傅贤, 徐晨光. 砂培和土壤栽培对黄瓜生长、产量与品质的影响[J]. 浙江农业学报, 2025, 37(9): 1905-1913. |
| [2] | 朱为静, 吴佳, 洪春来, 朱凤香, 洪磊东, 张涛, 张硕, 诸惠芬. 秸秆覆盖对土壤水热肥及蟠桃产量和品质的影响[J]. 浙江农业学报, 2025, 37(9): 1924-1932. |
| [3] | 韦庆翠, 姜娜英, 沈骏扬, 张焕朝, 张衡锋. 化肥减量配施生物质炭对高沙土氮磷淋失及土壤性质的影响[J]. 浙江农业学报, 2025, 37(9): 1943-1950. |
| [4] | 谭海霞, 彭红丽, 王连龙, 魏建梅. 马铃薯健康株与疮痂病株根区土壤微生物群落多样性差异分析[J]. 浙江农业学报, 2025, 37(8): 1743-1754. |
| [5] | 高扬, 张瑜昕, 卜爱爱, 徐佳怡, 马嘉伟, 叶正钱, 柳丹, 方先芝. 基于改进的内梅罗综合指数法的浙江省典型“非粮化”土壤肥力质量评价[J]. 浙江农业学报, 2025, 37(8): 1755-1765. |
| [6] | 严福林, 郎云虎, 简应权, 陈雄飞, 魏巍, 王志威, 安江勇, 任得强, 丁宁, 魏升华. 八爪金龙药材产量与品质对土壤理化性状的响应[J]. 浙江农业学报, 2025, 37(8): 1766-1775. |
| [7] | 陈星星, 虞雯煊, 徐健炜, 张鹏. 裙带菜不同部位重金属含量特征分析及健康风险评估[J]. 浙江农业学报, 2025, 37(8): 1794-1804. |
| [8] | 江振蓝, 陈付勋, 罗双飞, 罗烨琴, 沙晋明. 基于多光谱变换和主成分分析的土壤全铁含量随机森林模型反演[J]. 浙江农业学报, 2025, 37(7): 1521-1532. |
| [9] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [10] | 何昕昀, 邓碧纯, 胡清钰, 冯宏, 郭彦彪. 基于土壤溶液中硝态氮浓度的香蕉氮肥施用研究[J]. 浙江农业学报, 2025, 37(6): 1319-1326. |
| [11] | 任宁, 俞国红, 郑航, 陈志东. 基于离散元法的茶园土壤参数标定[J]. 浙江农业学报, 2025, 37(6): 1353-1359. |
| [12] | 卓文琪, 麻万诸, 卓志清, 朱康莹. 亚热带残积与坡积母质发育的低山林地土壤性状比较[J]. 浙江农业学报, 2025, 37(5): 1121-1129. |
| [13] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [14] | 朱哲毅, 施芳, 宁可, 郑姗. 政策激励对农户保护性耕作技术采纳行为的影响——基于要素质量和时间偏好的视角[J]. 浙江农业学报, 2025, 37(5): 1172-1181. |
| [15] | 王丽, 陈立明, 王鹏飞, 张彬, 穆霄鹏. 有机肥配施菌肥对欧李果实品质和土壤性质的影响[J]. 浙江农业学报, 2025, 37(4): 820-830. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||