浙江农业学报 ›› 2021, Vol. 33 ›› Issue (4): 739-752.DOI: 10.3969/j.issn.1004-1524.2021.04.19
刘俊1(), 朱德泉1,2,*(
), 于从羊1, 薛康1, 张顺1, 廖娟1
收稿日期:
2020-09-03
出版日期:
2021-04-25
发布日期:
2021-04-25
通讯作者:
朱德泉
作者简介:
*朱德泉,E-mail:dqzhu@sina.com基金资助:
LIU Jun1(), ZHU Dequan11,2,*(
), YU Congyang1, XUE Kang1, ZHANG Shun1, LIAO Juan1
Received:
2020-09-03
Online:
2021-04-25
Published:
2021-04-25
Contact:
ZHU Dequan1
摘要:
针对现有水稻排种器采用被动充种存在充种性能差、高速排种精度低的问题,设计了一种舀勺型孔轮式水稻精量排种器。阐述了该排种器的基本结构和工作原理,确定了排种轮、舀勺、型孔、护种板等关键零部件的结构参数,建立了排种器充种过程的力学模型。以冈优898 种子为试验材料,利用离散元法,选取排种轮转速、型孔倾角为试验因素,以排种合格率、重播率和漏播率为评价指标,进行单因素试验、对比试验和二因素五水平正交旋转组合试验,建立排种性能指标与试验因素之间的回归模型,利用响应面法分析了各试验因素对排种性能的影响规律,并采用多目标优化方法,确定了最佳参数组合。优化结果表明:排种轮转速为25.94 r·min -1、型孔倾角为34.75°时,排种器的排种性能最佳,排种合格率、重播率、漏播率分别为87.55%、9.79%、2.66%。为验证仿真结果的可靠性和排种器的适应性,以丰两优3948、冈优898、冈优3551 3个水稻品种种子为试验材料,对排种器进行台架性能试验和田间播种试验。试验结果表明:台架试验与仿真结果基本一致,丰两优3948、冈优898、冈优3551种子的排种合格率分别为84.40%、84.53%、83.74%;田间播种合格率分别为81.34%、82.13%、80.67%,3个水稻品种种子排种性能皆满足水稻精量播种要求。研究结果可为舀勺型孔轮式水稻精量排种器的结构优化和性能提升提供参考。
中图分类号:
刘俊, 朱德泉, 于从羊, 薛康, 张顺, 廖娟. 舀勺型孔轮式水稻精量排种器设计与试验[J]. 浙江农业学报, 2021, 33(4): 739-752.
LIU Jun, ZHU Dequan1, YU Congyang, XUE Kang, ZHANG Shun, LIAO Juan. Design and experiment on scoop hole-wheel precision seed-metering device for rice[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 739-752.
图1 排种器结构与工作原理图 a,排种器轴侧图;b,工作原理与排种过程。1,法兰盘;2,排种轴;3,排种轮;4,限种板;5,壳体;6,清种毛刷;7,型孔;8,护种板;9,阻种毛刷;10,舀勺。
Fig.1 Diagram of structure and working principle of seed-metering device a, Isometric view of seed-metering device; b, Working principle and seed-metering process. 1, Flange; 2, Seeding shaft; 3, Seeding wheel; 4, Limit plate; 5, Shield shell; 6, Cleaning brush; 7, Shaped hole; 8, Protection guard; 9, Resist brush; 10, Scoop.
图2 舀勺结构示意图 a,排种轮局部剖视图;b,舀勺示意图。1,舀勺;2,型孔;3,排种轮。w1为舀勺宽度,mm;t1为舀勺厚度,mm;l1为舀勺内长度,mm。
Fig.2 Schematic diagram of scoop structure a, Partial sectional view of seeding wheel; b, Schematic diagram of scoop. 1, Scoop; 2, Shaped hole; 3, Seeding wheel. w1 was the width of scoop, mm; t1 was the thickness of scoop, mm; l1 was the length of scoop, mm.
品种(尺寸等级) Variety (Size level) | 平均长度 Average length/mm | 平均宽度 Average width/mm | 平均厚度 Average thickness/mm | 种子球度 Seed sphericity/% |
---|---|---|---|---|
丰两优3948(大)Fengliangyou3948(Large) | 9.63 | 2.52 | 2.08 | 38.38 |
冈优898(中) Gangyou898(Medium) | 8.29 | 2.96 | 2.10 | 44.89 |
冈优3551(小) Gangyou3551(Small) | 7.77 | 3.14 | 2.16 | 48.25 |
表1 三个水稻品种种子尺寸和球度
Table 1 Seed size and sphericity of three varieties of rice
品种(尺寸等级) Variety (Size level) | 平均长度 Average length/mm | 平均宽度 Average width/mm | 平均厚度 Average thickness/mm | 种子球度 Seed sphericity/% |
---|---|---|---|---|
丰两优3948(大)Fengliangyou3948(Large) | 9.63 | 2.52 | 2.08 | 38.38 |
冈优898(中) Gangyou898(Medium) | 8.29 | 2.96 | 2.10 | 44.89 |
冈优3551(小) Gangyou3551(Small) | 7.77 | 3.14 | 2.16 | 48.25 |
品种 Variety | 平躺 Lying down | 侧卧 Side lying | 竖立 Erect |
---|---|---|---|
丰两优3948 | 48.98 | 40.43 | 10.59 |
Fengliangyou 3948 | |||
冈优898 | 50.59 | 36.59 | 12.82 |
Gangyou 898 | |||
冈优3551 | 50.88 | 34.98 | 14.14 |
Gangyou 3551 |
表2 水稻种子充入型孔姿态概率
Table 2 Pose probability of rice seed in filling hole %
品种 Variety | 平躺 Lying down | 侧卧 Side lying | 竖立 Erect |
---|---|---|---|
丰两优3948 | 48.98 | 40.43 | 10.59 |
Fengliangyou 3948 | |||
冈优898 | 50.59 | 36.59 | 12.82 |
Gangyou 898 | |||
冈优3551 | 50.88 | 34.98 | 14.14 |
Gangyou 3551 |
图3 护种板结构 a,弧形护种板;b,开有槽口的弧形护种板;c,槽口内装毡毛的弧形护种板。H为护种板宽度,单位mm;H1为槽口宽度,单位mm。
Fig.3 Structure of protection guard a, Curved seed protection belt; b, Curved seed protection belt with notch; c,Curved seed protection belt with felted hair in large notch. H was the width of seed protection belt, mm; H1 was the width of notch, mm.3种护种板厚度H均为32 mm,槽口宽度H1长度应满足式(9)要求。
护种板类型 Type of protection guard | 合格率 Qualified rate/% | 重播率 Replay rate/% | 漏播率 Missing rate/% | 穴距变异系数 Variation coefficient of hole distance |
---|---|---|---|---|
弧形护种板Curved seed protection guard | 76.54 | 16.93 | 6.53 | 15.57 |
开有槽口的弧形护种板Curved seed protection guard with small notch | 82.27 | 12.80 | 4.93 | 9.60 |
槽口内装毡毛的弧形护种板 | 84.00 | 11.33 | 4.67 | 8.57 |
Curved seed protection guard with felted hair in large notch |
表3 试验结果
Table 3 Test results
护种板类型 Type of protection guard | 合格率 Qualified rate/% | 重播率 Replay rate/% | 漏播率 Missing rate/% | 穴距变异系数 Variation coefficient of hole distance |
---|---|---|---|---|
弧形护种板Curved seed protection guard | 76.54 | 16.93 | 6.53 | 15.57 |
开有槽口的弧形护种板Curved seed protection guard with small notch | 82.27 | 12.80 | 4.93 | 9.60 |
槽口内装毡毛的弧形护种板 | 84.00 | 11.33 | 4.67 | 8.57 |
Curved seed protection guard with felted hair in large notch |
图4 水稻种子充种过程受力分析 Fr为种子的离心力,单位N;F1为舀勺对种子的支持力,单位N;F2为种子群的挤压力,单位N;G为种子自身的重力,单位N;f1为舀勺内壁对种子的摩擦力,单位N;f2为种子群内摩擦力,单位N;α为重力方向与x轴方向的夹角,单位(°);β为F1方向与x轴方向的夹角,单位(°)。
Fig.4 Stress analysis of rice seed in seed-filling process Fr was centrifugal force of seed, N; F1 was support force of scoop to seed, N; F2 was pushing force among seed groups, N; G was gravity of seed, N; f1 was friction force between inner surface of scoop and seed, N; f2 was friction force in seed groups, N; α was the angle between direction of gravity and x axis, (°); β was the angle between direction of F1 and x axis, (°).
项目 Item | 剪切模量 Shear modulus/Pa | 泊松比 Poisson’s ratio | 密度 Density/ (kg·m-3) |
---|---|---|---|
种子Seed | 1.15×107 | 0.30 | 1 163 |
不锈钢Stainless steel | 7.00×1010 | 0.28 | 7 800 |
塑料Plastic | 1.77×106 | 0.50 | 1 180 |
毡毛Felt | 1.00×108 | 0.40 | 1 150 |
表4 材料属性
Table 4 Material properties
项目 Item | 剪切模量 Shear modulus/Pa | 泊松比 Poisson’s ratio | 密度 Density/ (kg·m-3) |
---|---|---|---|
种子Seed | 1.15×107 | 0.30 | 1 163 |
不锈钢Stainless steel | 7.00×1010 | 0.28 | 7 800 |
塑料Plastic | 1.77×106 | 0.50 | 1 180 |
毡毛Felt | 1.00×108 | 0.40 | 1 150 |
图5 水稻模型 a,三轴尺寸;b,EDEM模型。l为水稻种子长度,单位mm;w为水稻种子宽度,单位mm;t为水稻种子厚度,单位mm。
Fig.5 Rice model a, Triaxial size; b, EDEM model. l was length of rice seeds, mm; w was width of rice seeds, mm; t was thickness of rice seeds, mm.
项目 Item | 恢复系数 Coefficient of restitution | 静摩擦系数 Coefficient of static friction | 动摩擦系数 Coefficient of rolling friction |
---|---|---|---|
种子-种子Seed-seed | 0.30 | 0.56 | 0.01 |
种子-塑料 | 0.50 | 0.50 | 0.01 |
Seed-plastic | |||
种子-不锈钢 | 0.60 | 0.30 | 0.01 |
Seed-stainless steel | |||
种子-毡毛 | 0.45 | 0.61 | 0.02 |
Seed-felt |
表5 材料接触系数
Table 5 Coefficients of materials
项目 Item | 恢复系数 Coefficient of restitution | 静摩擦系数 Coefficient of static friction | 动摩擦系数 Coefficient of rolling friction |
---|---|---|---|
种子-种子Seed-seed | 0.30 | 0.56 | 0.01 |
种子-塑料 | 0.50 | 0.50 | 0.01 |
Seed-plastic | |||
种子-不锈钢 | 0.60 | 0.30 | 0.01 |
Seed-stainless steel | |||
种子-毡毛 | 0.45 | 0.61 | 0.02 |
Seed-felt |
图6 EDEM排种过程种子运动仿真 a,充种过程;b,排种过程。
Fig.6 EDEM simulation of seed motion of seed-metering process a. Process of seed-filling; b. Process of seed-metering.
图9 不同转速下2种排种器的排种性能 a.不同转速下2种排种器的合格率;b.不同转速下2种排种器的漏播率。
Fig.9 Seeding performance of the two seed-metering devices at different speeds a, Qualified rate of the two seed-metering devices at different speeds; b, Missing rate of the two seed-metering devices at different speeds.
编码 Code | X1:排种轮转速 Rotating speed of seeding wheel/(r·min-1) | X2:型孔倾角 Hole inclination of seeding wheel/(°) |
---|---|---|
1.414 | 37.50 | 50.00 |
1 | 33.84 | 45.60 |
0 | 25.00 | 35.00 |
-1 | 16.16 | 24.40 |
-1.414 | 12.50 | 20.00 |
表6 试验因素编码与水平设置
Table 6 Test factors coding and levels setting
编码 Code | X1:排种轮转速 Rotating speed of seeding wheel/(r·min-1) | X2:型孔倾角 Hole inclination of seeding wheel/(°) |
---|---|---|
1.414 | 37.50 | 50.00 |
1 | 33.84 | 45.60 |
0 | 25.00 | 35.00 |
-1 | 16.16 | 24.40 |
-1.414 | 12.50 | 20.00 |
试验号 No. | 排种轮转速 Rotating speed of seeding wheel | 型孔倾角 Hole inclination of seeding wheel | Y1:合格率 Qualified rate/% | Y2:重播率 Replay rate/% | Y3:漏播率 Missing rate/% |
---|---|---|---|---|---|
1 | 1 | 1 | 81.60 | 7.60 | 10.80 |
2 | 1 | -1 | 83.60 | 12.80 | 3.60 |
3 | -1 | 1 | 82.00 | 12.40 | 5.60 |
4 | -1 | -1 | 81.20 | 16.00 | 2.80 |
5 | 1.414 | 0 | 82.00 | 9.20 | 8.80 |
6 | -1.414 | 0 | 78.40 | 19.20 | 2.40 |
7 | 0 | 1.414 | 83.60 | 6.40 | 10.00 |
8 | 0 | -1.414 | 82.00 | 12.80 | 5.20 |
9 | 0 | 0 | 86.00 | 9.60 | 4.40 |
10 | 0 | 0 | 87.20 | 10.00 | 2.80 |
11 | 0 | 0 | 88.40 | 9.60 | 2.00 |
12 | 0 | 0 | 89.20 | 9.20 | 1.60 |
13 | 0 | 0 | 88.40 | 8.80 | 2.80 |
14 | 0 | 0 | 86.80 | 11.20 | 2.00 |
15 | 0 | 0 | 86.80 | 10.80 | 2.40 |
16 | 0 | 0 | 87.20 | 10.80 | 2.00 |
表7 仿真试验结果
Table 7 Results of simulation experiments
试验号 No. | 排种轮转速 Rotating speed of seeding wheel | 型孔倾角 Hole inclination of seeding wheel | Y1:合格率 Qualified rate/% | Y2:重播率 Replay rate/% | Y3:漏播率 Missing rate/% |
---|---|---|---|---|---|
1 | 1 | 1 | 81.60 | 7.60 | 10.80 |
2 | 1 | -1 | 83.60 | 12.80 | 3.60 |
3 | -1 | 1 | 82.00 | 12.40 | 5.60 |
4 | -1 | -1 | 81.20 | 16.00 | 2.80 |
5 | 1.414 | 0 | 82.00 | 9.20 | 8.80 |
6 | -1.414 | 0 | 78.40 | 19.20 | 2.40 |
7 | 0 | 1.414 | 83.60 | 6.40 | 10.00 |
8 | 0 | -1.414 | 82.00 | 12.80 | 5.20 |
9 | 0 | 0 | 86.00 | 9.60 | 4.40 |
10 | 0 | 0 | 87.20 | 10.00 | 2.80 |
11 | 0 | 0 | 88.40 | 9.60 | 2.00 |
12 | 0 | 0 | 89.20 | 9.20 | 1.60 |
13 | 0 | 0 | 88.40 | 8.80 | 2.80 |
14 | 0 | 0 | 86.80 | 11.20 | 2.00 |
15 | 0 | 0 | 86.80 | 10.80 | 2.40 |
16 | 0 | 0 | 87.20 | 10.80 | 2.00 |
差异来源 Source of variation | 合格率Qualified rate | 重播率Replay rate | 漏播率Missing rate | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平方和 Sum of squares | 自由度 Degree of freedom | F | P | 平方和 Sum of squares | 自由度 Degree of freedom | F | P | 平方和 Sum of squares | 自由度 Degree of freedom | F | P | |||
模型Model | 145.10 | 5 | 25.60 | ** | 139.72 | 5 | 27.87 | ** | 125.67 | 5 | 26.63 | ** | ||
X1 | 6.29 | 1 | 5.54 | * | 61.28 | 1 | 61.13 | ** | 28.32 | 1 | 30.01 | ** | ||
X2 | 0.14 | 1 | 0.12 | 39.83 | 1 | 39.73 | ** | 35.23 | 1 | 37.33 | ** | |||
X1X2 | 1.96 | 1 | 1.73 | 0.64 | 1 | 0.64 | 4.84 | 1 | 5.13 | * | ||||
97.99 | 1 | 86.54 | ** | 37.85 | 1 | 37.75 | ** | 14.04 | 1 | 14.88 | ** | |||
38.71 | 1 | 34.14 | ** | 0.13 | 1 | 0.12 | 43.24 | 1 | 45.82 | ** | ||||
残差 | 11.34 | 10 | 10.03 | 10 | 9.44 | 10 | ||||||||
Residual | ||||||||||||||
失拟 | 3.42 | 3 | 1.01 | 0.444 4 | 4.91 | 3 | 2.24 | 0.171 6 | 4.08 | 3 | 1.77 | 0.239 3 | ||
Lack of fit | ||||||||||||||
误差 | 7.92 | 7 | 5.12 | 7 | 5.36 | 7 | ||||||||
Pure error | ||||||||||||||
总和Total | 156.44 | 15 | 149.75 | 15 | 135.11 | 15 |
表8 回归方程方差分析结果
Table 8 Variance analysis of regression equations
差异来源 Source of variation | 合格率Qualified rate | 重播率Replay rate | 漏播率Missing rate | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平方和 Sum of squares | 自由度 Degree of freedom | F | P | 平方和 Sum of squares | 自由度 Degree of freedom | F | P | 平方和 Sum of squares | 自由度 Degree of freedom | F | P | |||
模型Model | 145.10 | 5 | 25.60 | ** | 139.72 | 5 | 27.87 | ** | 125.67 | 5 | 26.63 | ** | ||
X1 | 6.29 | 1 | 5.54 | * | 61.28 | 1 | 61.13 | ** | 28.32 | 1 | 30.01 | ** | ||
X2 | 0.14 | 1 | 0.12 | 39.83 | 1 | 39.73 | ** | 35.23 | 1 | 37.33 | ** | |||
X1X2 | 1.96 | 1 | 1.73 | 0.64 | 1 | 0.64 | 4.84 | 1 | 5.13 | * | ||||
97.99 | 1 | 86.54 | ** | 37.85 | 1 | 37.75 | ** | 14.04 | 1 | 14.88 | ** | |||
38.71 | 1 | 34.14 | ** | 0.13 | 1 | 0.12 | 43.24 | 1 | 45.82 | ** | ||||
残差 | 11.34 | 10 | 10.03 | 10 | 9.44 | 10 | ||||||||
Residual | ||||||||||||||
失拟 | 3.42 | 3 | 1.01 | 0.444 4 | 4.91 | 3 | 2.24 | 0.171 6 | 4.08 | 3 | 1.77 | 0.239 3 | ||
Lack of fit | ||||||||||||||
误差 | 7.92 | 7 | 5.12 | 7 | 5.36 | 7 | ||||||||
Pure error | ||||||||||||||
总和Total | 156.44 | 15 | 149.75 | 15 | 135.11 | 15 |
图11 台架试验图 1,种床带;2,油泵;3,固定支架;4,控制台;5,照明装置;6,电机;7,排种器。
Fig.11 Diagram of bench test 1, Seed bed belt; 2, Oil pump; 3, Fixed bracket; 4, Control console; 5, Lighting installation; 6, Motor; 7, Seed-metering device.
品种 Variety | 合格率 Qualified rate/% | 重播率 Replay rate/% | 漏播率 Missing rate/% | 穴距 Hill distance/mm | 穴距变异系数 Variation coefficient of hill distance/% |
---|---|---|---|---|---|
丰两优3948 | 84.40 | 8.27 | 7.33 | 205.32 | 7.98 |
Fengliangyou 3948 | |||||
冈优898 | 84.53 | 10.67 | 4.80 | 206.34 | 8.32 |
Gangyou 898 | |||||
冈优3551 | 83.74 | 12.13 | 4.13 | 208.84 | 9.22 |
Gangyou 3551 |
表9 台架试验结果
Table 9 Results of bench tests
品种 Variety | 合格率 Qualified rate/% | 重播率 Replay rate/% | 漏播率 Missing rate/% | 穴距 Hill distance/mm | 穴距变异系数 Variation coefficient of hill distance/% |
---|---|---|---|---|---|
丰两优3948 | 84.40 | 8.27 | 7.33 | 205.32 | 7.98 |
Fengliangyou 3948 | |||||
冈优898 | 84.53 | 10.67 | 4.80 | 206.34 | 8.32 |
Gangyou 898 | |||||
冈优3551 | 83.74 | 12.13 | 4.13 | 208.84 | 9.22 |
Gangyou 3551 |
品种 Variety | 合格率 Qualified rate/% | 重播率 Replay rate/% | 漏播率 Missing rate/% | 穴距 Hill distance/mm | 穴距变异系数 Variation coefficient of hill distance/% |
---|---|---|---|---|---|
丰两优3948 | 81.34 | 10.93 | 7.73 | 209.57 | 15.36 |
Fengliangyou 3948 | |||||
冈优898 | 82.13 | 11.87 | 6.00 | 209.12 | 16.48 |
Gangyou 898 | |||||
冈优3551 | 80.67 | 13.73 | 5.60 | 212.73 | 18.36 |
Gangyou3551 |
表10 田间试验结果
Table 10 Results of field test
品种 Variety | 合格率 Qualified rate/% | 重播率 Replay rate/% | 漏播率 Missing rate/% | 穴距 Hill distance/mm | 穴距变异系数 Variation coefficient of hill distance/% |
---|---|---|---|---|---|
丰两优3948 | 81.34 | 10.93 | 7.73 | 209.57 | 15.36 |
Fengliangyou 3948 | |||||
冈优898 | 82.13 | 11.87 | 6.00 | 209.12 | 16.48 |
Gangyou 898 | |||||
冈优3551 | 80.67 | 13.73 | 5.60 | 212.73 | 18.36 |
Gangyou3551 |
[1] | 罗锡文, 王在满, 曾山, 等. 水稻机械化直播技术研究进展[J]. 华南农业大学学报, 2019,40(5):1-13. |
LUO X W, WANG Z M, ZENG S, et al. Recent advances in mechanized direct seeding technology for rice[J]. Journal of South China Agricultural University, 2019,40(5):1-13. (in Chinese with English abstract) | |
[2] | ZHANG M A, WANG Z M, LUO X W, et al. Review of precision rice hill-drop drilling technology and machine for paddy[J]. International Journal of Agricultural and Biological Engineering, 2018,11(3):1-11. |
[3] | 张顺, 杨继涛, 李勇, 等. 水稻内充气力式精量穴直播排种器吸种性能试验[J]. 浙江农业学报, 2019,31(8):1379-1387. |
ZHANG S, YANG J T, LI Y, et al. Experiment of sucking performance of inside-filling pneumatic type precision hill-drop drilling seed-metering device for rice[J]. Acta Agriculturae Zhejiangensis, 2019,31(8):1379-1387. (in Chinese with English abstract) | |
[4] | 邢赫, 臧英, 王在满, 等. 水稻气力式播量可调排种器设计与参数优化[J]. 农业工程学报, 2019,35(4):20-28. |
XING H, ZANG Y, WANG Z M, et al. Design and parameter optimization of rice pneumatic seeding metering device with adjustable seeding rate[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(4):20-28. (in Chinese with English abstract) | |
[5] | 张明华, 罗锡文, 王在满, 等. 水稻精量穴直播机仿形与滑板机构的优化设计与试验[J]. 农业工程学报, 2017,33(6):18-26. |
ZHANG M H, LUO X W, WANG Z M, et al. Optimization design and experiment of profiling and slide board mechanism of precision rice hill-drop drilling machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(6):18-26. (in Chinese with English abstract) | |
[6] | WANG J W, ZHOU W Q, TIAN LI Q, et al. Virtual simulation analysis and verification of seed-filling mechanism for dipper hill-drop precision direct rice seeder[J]. International Journal of Agricultural and Biological Engineering, 2017,10(6):77-85. |
[7] | JIA H L, CHEN Y L, ZHAO J L, et al. Design and key parameter optimization of an agitated soybean seed metering device with horizontal seed filling[J]. International Journal of Agricultural and Biological Engineering, 2018,11(2):76-87. |
[8] | 李大鹏, 刘飞, 赵满全, 等. 气力式谷子精量排种器结构设计及性能试验[J]. 中国农业大学学报, 2019,24(11):141-151. |
LI D P, LIU F, ZHAO M Q, et al. Structural design and performance test of one pneumatic millet precision seed metering device[J]. Journal of China Agricultural University, 2019,24(11):141-151. (in Chinese with English abstract) | |
[9] | 李兰兰. 滑片型孔轮式水稻精量穴播排种器设计与试验[D]. 合肥: 安徽农业大学, 2019. |
LI L L. Design and experiment of slider-hole-wheel precision hill direct seed metering device for rice[D]. Hefei: Anhui Agricultural University, 2019. (in Chinese with English abstract) | |
[10] | MALEKI M R, JAFARI J F, RAUFAT M H, et al. Evaluation of seed distribution uniformity of a multi-flight auger as a grain drill metering device[J]. Biosystems Engineering, 2006,94(4):535-543. |
[11] | MALEKI M R, MOUAZEN A M, DE KETELAERE B, et al. A new index for seed distribution uniformity evaluation of grain drills[J]. Biosystems Engineering, 2006,94(3):471-475. |
[12] | 刘彩玲, 王亚丽, 都鑫, 等. 摩擦复充种型孔带式水稻精量排种器充种性能分析与验证[J]. 农业工程学报, 2019,35(4):29-36. |
LIU C L, WANG Y L, DOU X, et al. Filling performance analysis and verification of cell-belt rice precision seed-metering based on friction and repeated filling principle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(4):29-36. (in Chinese with English abstract) | |
[13] | 李兰兰, 朱德泉, 张顺, 等. 滑片型孔轮式水稻精量穴直播排种器设计与试验[J]. 浙江农业学报, 2018,30(12):2153-2160. |
LI L L, ZHU D Q, ZHANG S, et al. Design and experiment of slider-hole-wheel precision hill-direct-seeding metering device for rice[J]. Acta Agriculturae Zhejiangensis, 2018,30(12):2153-2160. (in Chinese with English abstract) | |
[14] | 王在满, 黄逸春, 王宝龙, 等. 播量无级调节水稻精量排种装置设计与试验[J]. 农业工程学报, 2018,34(11):9-16. |
WANG Z M, HUANG Y C, WANG B L, et al. Design and experiment of rice precision metering device with sowing amountstepless adjusting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(11):9-16. (in Chinese with English abstract) | |
[15] | 张国忠, 张沙沙, 杨文平, 等. 双腔侧充种式水稻精量穴播排种器的设计与试验[J]. 农业工程学报, 2016,32(8):9-17. |
ZHANG G Z, ZHANG S S, YANG W P, et al. Design and experiment of double cavity side-filled precision hole seed metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(8):9-17. (in Chinese with English abstract) | |
[16] | 中国农业机械化科学研究院. 农业机械设计手册:上册[M]. 北京: 中国农业科学技术出版社, 2007. |
[17] | 都鑫, 刘彩玲, 姜萌, 等. 自扰动内充型孔轮式玉米精量排种器设计与试验[J]. 农业工程学报, 2019,35(13):23-34. |
DU X, LIU C L, JIANG M, et al. Design and experiment of self-disturbance inner-filling cell wheel maize precision seed-metering device[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(13):23-34. (in Chinese with English abstract) | |
[18] | 周祖锷. 农业物料学[M]. 北京: 中国农业出版社, 1994. |
[19] | 田立权, 王金武, 唐汉, 等. 螺旋槽式水稻穴直播排种器设计与性能试验[J]. 农业机械学报, 2016,47(5):46-52. |
TIAN L Q, WANG J W, TANG H, et al. Design an performance experiment of helix grooved rice seeding device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(5):46-52. (in Chinese with English abstract) | |
[20] | 胡国明. 颗粒系统的离散元素法分析仿真[M]. 武汉: 武汉理工大学出版社, 2010. |
[21] | 朱德泉, 李兰兰, 文世昌, 等. 滑片型孔轮式水稻精量排种器排种性能数值模拟与试验[J]. 农业工程学报, 2018,34(21):17-26. |
ZHU D Q, LI L L, WEN S C, et al. Numerical simulation and experiment on seeding performance of slide hole-wheel precision seed-metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(21):17-26. (in Chinese with English abstract) | |
[22] | 任明磊, 樊啟洲. 水稻往复拨叉式排种器设计及其运动过程的离散元法仿真分析[J]. 河南农业科学, 2016,45(11):139-144. |
REN M L, FAN Q Z. Design of rice reciprocating fork type metering device and its motion process simulation analysis by discrete element method[J]. Journal of Henan Agricultural Sciences, 2016,45(11):139-144. (in Chinese with English abstract) | |
[23] | 文世昌. 水稻穴直播精量排种器设计与试验研究[D]. 合肥: 安徽农业大学, 2018. |
WEN S C. Design and experimental study of rice precision hill direct seed metering device[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese with English abstract) | |
[24] | 中华人民共和国农业部. 铺膜穴播机作业质量: NY/T 987—2006[S]. 北京: 中国标准出版社, 2006. |
[25] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水稻覆土直播机: GB/T 25418—2010[S]. 北京: 中国标准出版社, 2010. |
[1] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[2] | 厉宝仙, 王保君, 怀燕, 沈亚强, 张红梅, 程旺大. 水稻-红鳌螯虾共作对稻田土壤养分、碳库与稻米品质的影响[J]. 浙江农业学报, 2021, 33(4): 688-696. |
[3] | 陈丹, 汤翠凤, 董超, 甘树仙, 李俊, 阿新祥, 张斐斐, 杨雅云, 牛赛赛, 戴陆园. 云南软米地方品种籽粒淀粉品质特性研究[J]. 浙江农业学报, 2021, 33(2): 203-214. |
[4] | 邹文雄, 吴伟, 关亚静, 曹栋栋, 卞晓波, 施德云, 丁丽玲. 水稻种子休眠调控技术研究进展[J]. 浙江农业学报, 2021, 33(2): 369-379. |
[5] | 谷建诚, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李华, 李凝玉. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 2020, 32(6): 963-970. |
[6] | 夏文建, 秦文婧, 刘佳, 陈晓芬, 张丽芳, 曹卫东, 徐昌旭, 陈静蕊. 长期绿肥利用下红壤性水稻土有机碳和可溶性有机碳的垂直分布特征[J]. 浙江农业学报, 2020, 32(5): 878-885. |
[7] | 张金然, 李存超, 李询, 孙国峻, 何瑞银, 魏清. 基于GIS的油菜播种控制系统设计与试验[J]. 浙江农业学报, 2020, 32(3): 518-526. |
[8] | 邵文奇, 钟平, 董玉兵, 孙春梅, 纪力, 庄春, 陈川, 章安康. 托盘育苗中光温资源差异及其对水稻秧苗素质的影响[J]. 浙江农业学报, 2020, 32(2): 191-199. |
[9] | 杨红云, 罗建军, 孙爱珍, 万颖, 易文龙. 基于图像特征的水稻叶片全氮含量估测模型研究[J]. 浙江农业学报, 2020, 32(12): 2232-2243. |
[10] | 张馨月, 李友发, 刘江宁, 富昊伟. 利用广亲和基因S5-n的功能标记鉴定特殊配组类型杂交种纯度研究[J]. 浙江农业学报, 2020, 32(1): 15-19. |
[11] | 邴静静, 高红梅. 基于SWOT分析的天津市优质稻米产业发展研究--以"小站稻"为例[J]. 浙江农业学报, 2019, 31(8): 1217-1223. |
[12] | 潘俊峰, 钟旭华, 黄农荣, 刘彦卓, 田卡, 梁开明, 彭碧琳, 傅友强, 胡香玉. 不同栽培模式对华南双季晚稻产量和氮肥利用率的影响[J]. 浙江农业学报, 2019, 31(6): 857-868. |
[13] | 何海燕, 柴荣耀, 邱海萍, 毛雪琴, 王艳丽, 孙国仓. 五个抗稻瘟病基因在浙江省水稻品种中的分布和抗性评价[J]. 浙江农业学报, 2019, 31(6): 922-929. |
[14] | 索晨, 罗小三, 赵朕, 孙雪, 张丹, 陈燕. 大气降尘污染对典型农作物生长发育及重金属含量的影响[J]. 浙江农业学报, 2019, 31(6): 938-945. |
[15] | 张建桃, 曾家骏, 尹选春, 兰玉彬, 文晟, 林耿纯. 液滴体积对水稻叶面接触角的影响[J]. 浙江农业学报, 2019, 31(6): 986-995. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||